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ABSTRACT

Differential rotation is a common feature of main-sequence spectral F-type stars. In seeking to make contact with
observations and to provide a self-consistent picture of how differential rotation is achieved in the interiors of these
stars, we use the three-dimensional anelastic spherical harmonic (ASH) code to simulate global-scale turbulent
flows in 1.2 and 1.3 M� F-type stars at varying rotation rates. The simulations are carried out in spherical shells
that encompass most of the convection zone and a portion of the stably stratified radiative zone below it, allowing us
to explore the effects of overshooting convection. We examine the scaling of the mean flows and thermal state with
rotation rate and mass and link these scalings to fundamental parameters of the simulations. Indeed, we find that the
differential rotation becomes much stronger with more rapid rotation and larger mass, scaling as ΔΩ ∝ M3.9Ω0.6

0 .
Accompanying the growing differential rotation is a significant latitudinal temperature contrast, with amplitudes
of 1000 K or higher in the most rapidly rotating cases. This contrast in turn scales with mass and rotation rate as
ΔT ∝ M6.4Ω1.6

0 . On the other hand, the meridional circulations become much weaker with more rapid rotation
and with higher mass, with their kinetic energy decreasing as KEMC ∝ M−1.2Ω−0.8

0 . Additionally, three of our
simulations exhibit a global-scale shear instability within their stable regions that persists for the duration of the
simulations. The flow structures associated with the instabilities have a direct coupling to and impact on the flows
within the convection zone.
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1. INTRODUCTION

1.1. Stellar Convection and Rotation

Star-forming molecular clouds are generally endowed with
angular momentum and magnetic fields. As a star forms, gases
from the cloud fall into a proto-stellar region. Since the initial
position of this gas is far from the stellar core, the initial angular
velocity of the gas is amplified many orders of magnitude before
it is incorporated into the star. The fact that most young stars
are observed to have large rotation rates implies that, regardless
of the complicated processes that initiate and eventually lead
to the formation of a main-sequence star, some of this angular
momentum must be transferred to the star. During the early
evolution of these stars, it is thought that they lose their initially
high angular velocity. Stellar winds and magnetic braking acting
throughout the lifetime of the star may lead to such angular
momentum loss (Bouvier et al. 1997). However, even after
several billion years of angular momentum loss, stars such as
the Sun still possess a substantial angular velocity. Indeed, stars
with convective envelopes exterior to their radiative envelopes
are believed to behave in qualitatively similar ways, where
the complex interaction between the convection and the star’s
rotation likely yields non-uniform rotation. Hence, most stars
may be differentially rotating, with the angular velocity varying
with depth and latitude. The Sun is one such star, where the
equator rotates 30% faster than the poles.

Main-sequence stars of all masses appear to have convection
zones in some portions of their interiors. What makes F-type
stars of particular interest is that they bridge a gap between stars
that have external convection zones, like the Sun, and those

that have convective cores, such as A-type stars. They actually
possess two regions of convective instability, one exterior to
their radiative envelope and a convective core. Being slightly
more massive than the Sun, F-type stars span the mass range
between 1.1 and 1.6 M�. With increasing mass, the convection
zones of these stars become increasingly narrow and contain less
of the star’s total mass, ranging from 25% to 2% of the radius
of the star compared to the Sun’s 30%. The luminosity of the
F-type stars increases from about 1.4 L� at 1.1 M� to 6.0 L�
at 1.6 M�, while the stellar radius only increases by about 27%
over the same range of masses. Thus, the amount of energy flux
that must be transported through ever thinner convection zones
increases by a factor of 2.4. To accommodate the increasing
flux, the convection must become more vigorous in order to
efficiently transport the heat from the bottom of the convection
zone to the photosphere. Such properties place F-type stars in
an interesting position to address questions of how convection
interacts with rotation and convection-zone geometry to produce
differential rotation.

1.2. Observations of Differential Rotation

Detecting differential rotation in stars is very difficult as
stars other than the Sun generally cannot be spatially resolved.
However, recent observations using spectropolarimetry permit
some information about both the differential rotation and the
magnetic field to be mapped out on the surface of the star (e.g.,
Donati et al. 1997; Marsden et al. 2005). Several additional
techniques exist to extract information about the rotational
behavior of a star from spectra (e.g., Reiners & Schmitt
2003; Reiners 2006), photometry (e.g., Henry et al. 1995;
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Figure 1. Absolute latitudinal differential rotation contrast (ΔΩ) seen in
simulations and observed on F-type stars. The observational uncertainties of
the contrast and rotation rate are shown as gray lines. The values of the ΔΩ
realized in our simulations are shown in red symbols, while those observed on
F-type stars with masses in the range 1.15–1.25 M� are shown as diamonds,
1.25–1.35 M� as triangles, and 1.35–1.45 M� as squares. Observational data
are from Table B.1 of Reiners (2006).

(A color version of this figure is available in the online journal.)

Collier Cameron et al. 2002; Silva-Valio & Lanza 2011), and
asteroseismology (e.g., Thompson et al. 1996; Schou et al.
1998; Verner et al. 2011). For the F-type stars, a Fourier
analysis technique using stellar spectra has produced the largest
number of detections of differential rotation to date (Reiners
2007). In this method, many spectral lines from a target star
are averaged to produce a mean line profile, which is then
Fourier transformed. The ratio of the first two minima, which
are denoted as q1 and q2, of the resulting power spectrum of this
line is used to determine whether or not the star is differentially
rotating, and if so by how much.

In Figure 1, the upper bound of the absolute differential
rotation of F-type stars increases with rotation rate, where it
may reach a plateau or even slightly decrease at higher rotation
rates (Reiners 2006). However, the current paucity of accurate
observational data makes it difficult to establish robust trends.
In Figure 1, we have only shown stars with masses between 1.15
and 1.45 M� that have a measurement of both the differential
rotation and its uncertainty. It is likely, however, that rather
more of the stars in Reiners (2006) actually rotate differentially
as it is difficult to detect when a star rotates too rapidly or too
slowly. Indeed, stars with a projected rotational velocity (v sin i)
greater than 50 km s−1 have a relative differential rotation that
often falls below the detection threshold. Similarly, when using
the method of Reiners & Schmitt (2002), stars with v sin i �
10 km s−1 rotate too slowly to accurately measure the bulk
rotation rate, further restricting the range of detection. Those
stars identified as differentially rotating exhibit a wide range of
relative differential rotation. There is even the suggestion that
several stars may possess anti-solar differential rotation, where
the pole rotates more rapidly than the equator, and which may
also be interpreted as cool polar spots.

There appears to be a trend in the observations of Reiners
(2006) in which the number of stars that rotate differentially
seems to decrease with increasing mass and thus decreasing
B − V color. However, this could be a two fold selection
effect. The first effect is from the non-uniform color (effective

Table 1
Properties of Cases A and B

Cases M L R Teff log10g r1/R r2/R

A 1.20 2.00 1.19 6300 4.54 0.80 0.98
B 1.30 2.93 1.33 6540 4.48 0.86 0.98

Notes. The mass of the star being simulated (M) is given in units of M�
(1.98×1033 g), luminosity (L) in units of L� (3.86×1033), stellar radius (R) in
units of R� (6.96 × 1010 cm), the stellar effective temperature (Teff ) in kelvin,
and the logarithm of gravity in cm s−2. The lower and upper radial boundaries
of the simulation domains are in turn r1 and r2.

temperature) sampling of stars. The distribution is roughly
Gaussian between B − V values of 0.2 and 0.6, or spectral types
A7 and G1, respectively, with a peak at a B − V of 0.4 (spectral
type F4). The second effect arises from the fact that higher
mass stars tend to rotate more rapidly and thus their q2 − q1
values fall below the differential rotation detection threshold.
Of the stars that do rotate differentially, the results for the F-
type stars with the largest differential rotation in Reiners (2006)
are consistent with the trend of increasing absolute differential
rotation found (Barnes et al. 2005; Collier Cameron 2007), in
which it is found that absolute differential rotation increases
strongly with effective temperature or increasing mass. This
seems to be the case in our simulations as well (see Figure 1
and Section 8).

1.3. Global Models of F-type Star Convection

How the angular momentum in a star is redistributed to
produce and maintain a stable angular velocity profile appears to
involve subtle dynamical balances. The highly turbulent nature
of stellar convection coupled with rotation involves a vast range
of scales, making it quite challenging to directly model such
dynamic processes. Yet these issues must be explored if the
behavior of stellar rotation is to be understood. Rapid advances
in supercomputing have enabled global-scale three-dimensional
(3D) simulations of convection coupled with rotation that are
shedding light on the dynamics of the flow achieved within stars
(Bessolaz & Brun 2011; Brown et al. 2008; Miesch et al. 2008).
In a similar spirit, we are reporting on the dynamics of turbulent
global-scale convection in a realistically stratified computational
domain in two main-sequence F-type stars that are each studied
over a range of rotation rates. The two stars investigated here are
a 1.2 M� star (Case A simulations) and a 1.3 M� star (Case B
simulations) that possess the same central hydrogen abundance,
resulting in main-sequence ages of 1.15 Gyr and 1.00 Gyr,
respectively (see Table 1). As mentioned above, convection zone
depth and luminosity change rapidly with mass in F-type stars.
Indeed, the tenth of a solar mass difference between the two stars
simulated here leads to a 50% increase in luminosity and a 50%
decrease in convection zone depth, allowing us to also probe
how the vigor of the convection and convection zone geometry
impact the mean properties of the flows established in these stars.

In our analysis of these simulations, we first provide details
about the anelastic equations solved, the formulation of the nu-
merics, and the setup of the numerical experiments in Section 2.
The general properties of the convective patterns and mean flows
of selected cases are discussed in Section 3. We look at the dy-
namics in detail for a particular case in Section 4. The effects
of overshooting convection are addressed in Section 5. The link
between the thermal properties of the simulations and the differ-
ential rotation is probed in Section 6. The connection between
the two mean flows, the differential rotation and the meridional
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circulation, is examined for these two cases in Section 7. Finally,
in Section 8, the scaling of the magnitudes of the mean flows
and the thermal signatures of the flows are presented.

2. FORMULATING THE PROBLEM

The convection zones of most stars are extremely turbulent
with very small values of viscosity and thermal diffusivity.
A direct numerical simulation that effectively captures all of
the relevant scales of motion in a stellar convection zone is
currently, and for the foreseeable future, impossible. Therefore,
a model that eliminates the fast timescales of sound waves and
parameterizes the dynamics at small spatial scales is necessary
in order to capture the large number of rotational periods and the
full spherical geometry. Such features are thought to be crucial
in establishing an equilibrium state that maintains a differential
rotation. To this end, we use the 3D anelastic spherical harmonic
(ASH) simulation code. ASH is a mature modeling tool that
solves the anelastic MHD equations of motion in a rotating
spherical shell using a pseudospectral method. ASH simulations
capture the entire spherical shell geometry and allow for zonal
jets, large-scale vortices, and structures with connectivity such
as convective plumes. The simulated turbulence is still many
orders of magnitude removed from the intensely turbulent
conditions present in stellar convection zones. Despite this
discrepancy, simulations of the solar convection zone using ASH
have been successful in matching helioseismic constraints on
differential rotation within the solar convection zone (Miesch
et al. 2000, 2006, 2008; Brun & Toomre 2002; Brun et al. 2011).

2.1. Anelastic Equations

In the anelastic approximation, the time derivative of the den-
sity in the continuity equation is eliminated. This approximation
is employed to capture the effects of density stratification with-
out having to resolve the rapidly varying sound waves. In this
approximation, the Courant–Friedrichs–Lewy condition on the
time step will then be governed by the subsonic flow velocity
rather than the sound speed. The anelastic equations evolved
within ASH are fully nonlinear in the velocity variables, but the
thermodynamic variables are linearized about the spherically
symmetric and evolving mean stratification composed of the
quantities ρ, S, P , and T for the density, entropy, pressure, and
temperature, respectively. The fluctuations of thermodynamic
variables are taken about the mean stratification and are de-
noted as ρ, S, P, and T. These fluctuations are generally of the
order ε = (γ − 1) M2, where M is the Mach number of the flow
at a given depth, which in the simulations here gives ε ≈ 10−6.
The resulting equations in physical units, in spherical coordi-
nates (r, θ, φ), and with time t are (Glatzmaier 1984; Clune et al.
1999)

ρ
∂u
∂t

= − ρu · ∇u − ∇P − ρg

+ 2ρu × �̂0 + ∇ · D − Λr̂, (1)

ρT
∂S

∂t
= −ρT u · ∇(S + S) − ∇ · q + Φ, (2)

∂P

∂r
= −ρgr + Λ, (3)

∇ · ρu = 0, (4)

where u = ur r̂ + uθ θ̂ + uφφ̂ is the velocity vector, �̂0 = Ω0ẑ
is the angular velocity of the rotating frame, ẑ is the axial

unit vector, and cP is the specific heat at constant pressure.
The gravitational acceleration is taken to be g = −g(r)r̂. As
the simulation evolves, a turbulent pressure pushes the system
slightly away from the initial hydrostatic equilibrium; Λ in
Equation (3) is the radial gradient of the spherically symmetric
component of this turbulent pressure. The components of the
viscous stress tensor D are Newtonian and Φ is the viscous
heating, which are given by

Dij = 2ρν

[
eij − 1

3
∇ · uδij

]
, (5)

Φ = 2ρν

[
eij eij − 1

3
(∇ · u)2

]
, (6)

where eij is the stress tensor and ν is the effective kinematic
viscosity. The energy flux q is composed of two diffusive
components,

q = κrρcP∇(T + T ) + κρT ∇S + κ0ρT
∂S

∂r
r̂, (7)

where the first component is a radiation diffusion flux with
the molecular radiation diffusion coefficient κr . The second
component is an anisotropic entropy diffusion flux, with κ
acting on the non-axisymmetric entropy fluctuations and another
κ0 acting only on the spherically symmetric component of
the entropy. The form and impact of these diffusive transport
coefficients are discussed in Section 2.3.

Ideally, the system would adjust to a new equilibrium by mod-
ifying the Rosseland mean opacity and the thermal stratification.
The overshooting convection realized in our simulations modi-
fies the mean stratification in the overshooting region. However,
to fully adjust the mean thermal state, and thus the radiative flux,
would require evolving the simulation for a thermal relaxation
time. This timescale is about Ei/L ≈ 2400 yr for the 1.2 M�
F-type stars and about 160 yr for the 1.3 M� F-type stars, where
Ei is the total internal energy of the plasma in the stable re-
gion and L is the luminosity. Since achieving these timescales
is currently beyond our computational resources, we acceler-
ate this process by first simulating the stars with the Rosseland
mean opacity (κRos) and the 1D thermodynamic state from the
stellar model and then updating this opacity using the evolved
thermodynamic state of the simulation. This is accomplished by
Taylor expanding the opacity using the partial derivatives of the
opacity with respect to the density and temperature extracted
from the stellar model and then updating the radiative diffusion
coefficient with the mean thermal state as

κ ′
Ros = κ0

Ros +
∂κRos

∂ρ

∣∣∣∣
0

(ρ − ρ0) +
∂κRos

∂T

∣∣∣∣
0

(T − T0),

κr = 4acT
3

3cPρ
2κ ′

Ros

,

where the subscript 0 indicates that these quantities are taken
from the stellar model. This scheme is typically applied only
once but can be used as frequently as necessary to achieve an
equilibrium. Updating the diffusion coefficient in this fashion
ensures that the radiative energy flux and the enthalpy flux are
properly balanced in the stable region, providing for a nearly
constant total flux throughout the domain and also avoiding
the long-time evolution that would otherwise be required (see
Section 4.2). Finally, a linearized equation of state closes the set
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of equations for the fluctuations, while the ideal gas law closes
the equations for the mean state:

ρ/ρ = P/P − T/T = P/γP − S/cP, (8)

P = (γ − 1)cPρT /γ, (9)

where γ is the adiabatic exponent. A stellar evolution code,
MESA (Paxton et al. 2011), is employed to evolve a realistic 1D
stellar model at the solar metallicity and helium mass fraction
from the pre-main sequence to a central hydrogen mass fraction
of 0.54. This places these models at about 20% of their main-
sequence lifetime. This model is then used to establish the initial
mean stratification for an ASH simulation. For the numerical
experiments conducted here, we neglect the effects of stellar
evolution. A single initial stellar structure model is used for
each of the two simulated F-type stars shown in Table 1.

2.2. Numerics and Experimental Configuration

In the ASH code, the mass flux remains divergence free
through a poloidal–toroidal stream function decomposition.
These stream functions and the variations in the entropy
and pressure are expanded in spherical harmonics Ym

� (θ, φ),
with spherical harmonic degree � and azimuthal order m,
to resolve their horizontal structures and in Chebyshev
polynomials Tn(r) to resolve their radial structures. Tem-
poral discretization is accomplished using a semi-implicit
Crank–Nicolson time-stepping scheme for linear terms and an
explicit Adams–Bashforth scheme for nonlinear terms. ASH is
designed with modern programming constructs to yield efficient
performance and scaling on massively parallel supercomputers
(e.g., Clune et al. 1999). Several codes numerically solving
for anelastic magnetohydrodynamics, including ASH, have re-
cently been thoroughly tested on the same suite of nonlinear
problems in which the accuracy of several numerical methods
has been probed extensively and shown to be robust (Jones et al.
2011).

The studies here explore a range of rotation rates for each
mass, from 5 Ω� to 20 Ω� for the 1.2 M� Case A simulations
and from 8 Ω� to 30 Ω� for the 1.3 M� Case B simulations.
All cases at a given mass use the same initial stellar structure
and are initialized with random perturbations in the fluctuating
entropy. These ranges of rotation rates are chosen so that all
the cases exhibit solar-like differential rotation, where the poles
rotate more slowly than the equator, as is discussed in Section 8.
Note that the nomenclature for the cases is Case A or Case B
depending on the mass followed by the bulk rotation rate quoted
in integer multiples of the solar rotation rate. So, Case A10 is a
1.2 M� F-type star rotating at 10 times the solar rate. Cases that
omit the stable layer, simulating only the convectively unstable
region, are denoted with an i after the case’s name.

While most parameters and the initial stratification are taken
from the stellar model, a perfect gas is assumed (Equation (9)).
Therefore, the He and H ionization zones that occur in the
outer 1% by radius of these stars cannot be properly captured.
Additionally, ionization coupled with radiative losses drives
very intense convection on small scales. These small-scale flows
are nearly sonic, so sound waves play an important role in
the dynamics and cannot be neglected. Thus, the radius of the
upper boundary (r2) in our simulations is taken to be below
this region, where the Mach number is generally very small, so
that the assumptions made in the formulation of the anelastic
approximation remain valid.
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Figure 2. Time-averaged mean stratification established in Case A10 (black
lines) and Case B10 (red lines). (a) The entropy gradient (∂S/∂r in units of
10−4 erg cm−4 K−1); the break in the y-axis denotes the change from linear to
logarithmic scaling. (b) The density (ρ in units of 10−3 g cm−3, dash-dotted
line) and temperature (T in units of 105 K, solid line).

(A color version of this figure is available in the online journal.)

The simulations being reported on here include a portion of
the stable radiative zone below the convection zone as seen
in Figure 2, in a manner similar to the simulations that have
been carried out in a solar setting in Browning et al. (2006) and
Brun et al. (2011). Such a layer has been shown to play a large
role in determining the radial and latitudinal structure of the
differential rotation (Rempel 2005). Indeed, the dependence of
the morphology of the differential rotation on the amplitude of
a weak latitudinal entropy gradient imposed at an impenetrable
lower boundary has been explored within ASH simulations
of the Sun. The simulations in Miesch et al. (2006) use this
latitudinal entropy gradient to emulate a tachocline that is in a
thermal wind balance. It was found that this gradient spurred
an adjustment of the contours of constant angular velocity from
an alignment with the rotation axis to a radial alignment. The
impetus behind these various efforts is to understand why the
helioseismically determined angular velocity of the Sun has
nearly conical contours (Schou et al. 1998), as is also found in
the angular velocity contours of the simulations explored here
(see Sections 3.1 and 3.2).

The position of the radius of the lower boundary (r1) is
determined by how deep the overshooting motions occurring
within the simulations penetrate into the stable zone and by how
much resolution is necessary to fully resolve the steep entropy
gradient that arises below the convection zone. The radial extent
of the stable region in these simulations is set to be roughly twice
the penetration depth of the overshooting motions. This choice
reduces the need for a high radial resolution and allows these
simulations to capture the effects that convective overshooting
and a stable layer have on the mean flows and thermodynamic
properties of the convection. However, it does restrict the ability
of the simulations to capture the full spectrum of gravity waves
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excited by the convection as some of the modes are trapped
within this cavity (see Brun et al. 2011).

2.3. Diffusion and Sub-grid-scale Models

The anelastic system of hydrodynamic equations requires
eight boundary conditions in order to be well posed. One of
the primary goals of this work is to assess the redistribution of
angular momentum and energy in our simulations. Thus, we
have opted for the following torque-free and flux-transmitting
boundary conditions:

ur = ∂

∂r

(uθ

r

)
= ∂

∂r

(uφ

r

)
= ∂S

∂r

∣∣∣∣
r2, r1

= 0, (10)

where the constant flux boundary condition on the entropy
fluctuations implies that the mean entropy gradient remains
unchanged on the boundaries throughout the simulation. The
stress-free boundary conditions used in the simulations here
ensure that the volume-integrated transport terms nearly vanish.
Indeed, the total angular momentum is conserved to within the
global accuracy of the radial derivatives at each time step. Over
the course of the entire simulation where the mean stratification
is allowed to change, it is conserved to within the order ε,
roughly the order to which the anelastic approximation is valid.

Current and foreseeable computing resources render simula-
tions that directly capture all scales of stellar convection from
global to molecular dissipation scales unattainable. The simu-
lations reported on here resolve nonlinear interactions among a
large range of scales in both the convective and radiative zones of
two F-type stars. Motions and waves within the actual star exist
on scales smaller than our grid resolution, and in this sense our
models should be regarded as large-eddy simulations (LESs).
These sub-grid-scale motions are parameterized as effective vis-
cous and thermal diffusivities (ν and κ , respectively), which are
meant to emulate the mixing properties of the unresolved tur-
bulent eddies. The anisotropic diffusion treatment comes from
our separation of the � = 0 component of the energy equation,
from higher order spherical harmonic modes. The second term
in Equation (7) involving κ is a sub-grid-scale diffusion that acts
on the � > 0 components of the entropy fluctuations. The term
in Equation (7) with κ0 is a sub-grid-scale transport acting on
the mean entropy gradient and the � = 0 entropy fluctuations in
an isolated upper portion of the domain. This term ensures that
the full stellar luminosity is carried through the upper boundary
by conduction. This term can alternatively be thought of as a
cooling near the surface. This anisotropic formulation has been
used in most prior work employing the ASH code (e.g., Brown
et al. 2008, 2010; Brun et al. 2011). It also allows the simu-
lations to relax more rapidly and provides better convergence
characteristics. Most importantly, it allows the convection to
dominate the radial energy transport in the bulk of the domain.
We have found that this anisotropic diffusion model has little
impact on the resulting flows and mean properties of the more
rapidly rotating simulations.

These diffusivities are allowed to vary in radius only and
evolve slowly in time as they are dependent on the profile of the
mean density ρ. The radial profiles of ν, κ , and κ0 are given by

f (r; a, b) = {1 + exp [a (b − r) / (r2 − r1)]}−1 , (11)

ν (r) = νtop

(
ρ

ρ top

)−1/2

f (r;α, rν) + νmin, (12)

κ (r) = κtop

(
ρ

ρ top

)−1/2

f (r;α, rκ ) + κmin, (13)

κ0 (r) = κ
top
0 exp [−β (r2 − r) / (r2 − r1)]f (r; δ, rκ0 ) + κmin

0 ,
(14)

where κtop is the thermal diffusivity at the upper boundary,
κmin is the floor value of this diffusivity, and α controls the
steepness of the tapering function f (r;α, rν) below a particular
radius rν . This allows the diffusion to be greatly reduced in
stable regions, where motions have a small amplitude and the
expected sub-grid-scale motions are subsequently smaller. The
Prandtl number is Pr = ν/κ = 1/4 and is fixed throughout
the domain, so ν = Prκ . In both the Case A and Case B
simulations, α = 300 and the minimum levels of diffusion
νmin and κmin are set to be 1000 times smaller than νtop and
κtop = νtop/Pr, with νtop given in Table 2. The radius below
which the diffusion drops rapidly is rκ = rν = 6.7 × 1010 cm
for Case A simulations and rκ = rν = 8 × 1010 cm for Case B
simulations. The diffusion acting on the mean entropy has
the coefficient κ0, which is set so that this unresolved eddy
flux carries the stellar luminosity through the upper boundary
but is exponentially tapered with depth below r2. It is further
quenched below the radius rκ0 , with the rapidity of the decrease
controlled by δ. This allows the convective motions to carry
the majority of the flux throughout the convection zone and
avoids an inward diffusive energy flux in sub-adiabatic regions.
In the Case A simulations, κ

top
0 = 1.91 × 1013 cm2 s−1, β = 60,

δ = 200, and rκ0 = 6.95 × 1010 cm, while in the Case B
simulations κ

top
0 = 6.67 × 1014 cm2 s−1, β = 100, δ = 200,

and rκ0 = 8.22 × 1010 cm.
The unresolved eddy diffusion associated with the spheri-

cally symmetric diffusion component acts to conduct the full
stellar flux through the upper boundary. Thus, almost by defini-
tion it has a substantial influence on the spherically symmetric
component of the entropy. The monotonically decreasing initial
entropy gradient from the stellar model is significantly steep-
ened near the upper boundary by the cooling induced by the
unresolved eddy flux, as is clearly seen as a large dip near the
upper boundary in Figure 2. This has the effect of enhancing
the buoyancy driving in the upper convection zone relative to
what might be expected if the upper boundary were open and
the surface convection allowed to influence the deeper flows.
Recent 3D surface convection simulations have shown a sizable
change in the entropy gradient in the surface layers of various
stars when compared to the gradient expected from standard
mixing-length theory (Trampedach & Stein 2011). While the to-
tal integrated entropy deficit across the convection zone remains
the same, as the luminosity is the same, its radial distribution is
somewhat different. The gradient of the entropy becomes more
superadiabatic near the surface and more adiabatic in the bulk
of the convection zone. Therefore, the total entropy contrast
across the domain in these simulations may be too high relative
to the actual stratification, especially in simulations at lower
rotation rates where the steepest superadiabatic gradients arise.
This results in flows that begin to feel the effects of rotation at
depths greater than otherwise might occur. The transition be-
tween flows that strongly feel the bulk rotation and those that do
not takes place where the fluctuating Rossby number of the flows
drops below one. Thus, we attempt to temper the influence of
the upper boundary on the dynamics of the interior by ensuring
that the fluctuating Rossby number throughout the convection
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Table 2
Diagnostic Flow Parameters

Mass Case Ω0/ Ω� Nr × Nθ × Nφ Ra Ta Re Re′ Ro Ro′ RoDR Romc νtop τc τν

1.2 M� A5 5 257 × 512 × 1024 1.75 × 105 2.40 × 105 84 37 0.69 0.48 0.29 0.017 2.52 2.8 101
A7 7 257 × 512 × 1024 2.62 × 105 7.36 × 105 140 44 0.52 0.35 0.24 0.014 2.01 3.0 126

A10 10 257 × 512 × 1024 4.22 × 105 2.41 × 106 240 52 0.39 0.25 0.21 0.008 1.59 3.3 159
A15 15 257 × 512 × 1024 7.64 × 105 9.32 × 106 451 75 0.28 0.18 0.19 0.004 1.21 3.7 209
A20 20 257 × 512 × 1024 1.60 × 106 2.42 × 107 644 102 0.25 0.15 0.16 0.004 1.00 3.9 252
A5i 5 97 × 512 × 1024 1.22 × 105 2.29 × 105 82 38 0.63 0.44 0.23 0.016 2.52 3.2 96

A20i 20 97 × 512 × 1024 1.04 × 106 2.30 × 107 410 76 0.23 0.14 0.14 0.002 1.00 4.2 241

1.3 M� B8 8 193 × 512 × 1024 4.32 × 104 9.21 × 104 62 41 0.99 0.73 0.07 0.021 3.20 1.1 39
B10 10 193 × 512 × 1024 6.45 × 104 1.90 × 105 108 44 0.84 0.61 0.11 0.012 2.78 1.2 44
B15 15 193 × 512 × 1024 1.19 × 105 7.34 × 105 207 57 0.56 0.40 0.12 0.009 2.12 1.3 59
B20 20 193 × 512 × 1024 2.34 × 105 1.91 × 106 363 76 0.46 0.31 0.13 0.009 1.75 1.5 71
B30 30 193 × 512 × 1024 4.25 × 105 4.31 × 106 324 73 0.28 0.19 0.09 0.004 1.75 1.7 71
B20i 20 97 × 512 × 1024 9.49 × 104 1.43 × 106 248 58 0.51 0.30 0.21 0.001 1.75 1.5 60

Notes. The depth of the convection zone (d = r2 − rb , where rb is the radius of the bottom of the convection zone) is the relevant length scale in the following
parameters and is 1.3 × 1010 cm for Case A simulations and 9.2 × 109 cm for Case B simulations. We estimate and quote the following diagnostic parameters at
mid-convection zone: the Rayleigh number Ra = ΔSgd3/cPνκ , Taylor number Ta = 4Ω2

0d
4/ν2, Reynolds number Re = vrmsd/ν, fluctuating Reynolds number

Re′ = v′
rmsd/ν, Rossby number Ro = |ω|/2Ω0, and fluctuating Rossby number Ro′ = |ω′|/2Ω0, where 〈〉 denotes a horizontal average and ω is the vorticity vector.

The differential rotation and meridional circulation Rossby numbers at mid-convection are RoDR = |λ∇ ln Ω| and Romc = ∣∣ωφ

∣∣/2Ω0, respectively. The bar denotes
the horizontal average. Kinematic viscosity (ν) values are given in units of 1013 cm2 s−1. The mid-convection zone local overturning time τc and the viscous diffusion
time τν across the convection zone are quoted in days. Case labels are as in Section 2.2, where an i indicates an impenetrable lower boundary.

zone is less than one. This requires that the rotation rate be high
enough to attain Ro′ < 1, as is the case for the simulations here
as indicated in Table 2.

2.4. Scaling Diffusion with Rotation

In the Boussinesq approximation, convection becomes possi-
ble above a critical Rayleigh number, which scales with rotation
rate as Rac ∝ Ω4/3

0 (e.g., Chandrasekhar 1961; Dormy et al.
2004). Anelastic systems have a similar constraint on the min-
imum Rayleigh number that is necessary for the flows to be
convective (Glatzmaier & Gilman 1981; Jones et al. 2009). We
seek here to explore the effects of rotation on stellar convection
in the global spherical geometry at a representative point of time
within the main-sequence lifetime of these two F-type stars. This
goal means that the simulations must be highly supercritical so
that the level of turbulence dominates diffusion. With unlimited
computer resources, we ideally would maintain a constant level
of supercriticality, but this requires scaling the effective diffu-
sivities ν and κ as Ω−2

0 . However, lower diffusivities lead both
to longer viscous and thermal diffusion timescales and to flows
possessing finer spatial scales. Achieving equilibrated states in
these systems requires high-resolution simulations carried out
over extended periods, which would be prohibitively expensive
if we followed this path. We have attempted to balance the level
of supercriticality and the resolution requirements necessary to
resolve the flow in our path through parameter space. Thus, our
trajectory through the parameter space of Ω0, ν, and κ attempts
to maintain strongly nonlinear dynamics without the increased
rotation rate laminarizing the convection. In our simulations,
we have constrained this trajectory to be 1D by requiring that
the Prandtl number be 1/4 and that the value νtop be set rela-
tive to the most rapidly rotating case and subsequently scaled
according to νtop ∝ Ω−2/3

0 , as seen in Table 2.
The Rayleigh numbers at mid-convection zone are about

50 times the critical Rayleigh number (Jones et al. 2009) for
the Case A simulations and about 25 times for the Case B
simulations. These levels of supercriticality are equivalent to

ASH simulations of lower mass stars (e.g., Brown et al. 2008;
Matt et al. 2011). The lower level of supercriticality in the
1.3 M� simulations is primarily due to the stronger driving of
the convection and larger superadiabatic gradient, both of which
are in turn due to the higher luminosity and narrower convection
zones of the higher mass F-type stars. This requires that the
diffusion in the Case B simulations be about two times larger
than the lower mass Case A simulation at the same rotation rate.
This is done to ensure numerical stability at a chosen resolution
as the downflows tend to be faster with larger temperature
deficits in Case B simulations due to the higher luminosity of the
star. The radial extent of the convection zone is taken to be the
representative scale for determining the flow parameters seen in
Table 2. This, in combination with a larger diffusion, results in
lower Reynolds and Rayleigh numbers for Case B simulations.
As a matter of definition, an evolved case is one in which the
volume-averaged differential rotation and kinetic energies vary
by less than 0.1% relative to an initial value over a span of about
1000 days of simulation time. The differential rotation and other
quantities are measured in these evolved cases to ensure that the
time averages taken are essentially stationary.

3. CONVECTIVE PATTERNS AND MEAN STRUCTURE

The variation of convective patterns of selected Case A
simulations with increasing rotation rate Ω0 is illustrated in
the first column of Figures 3(a), (e), and (i), while the same is
shown for three Case B simulations in Figure 4. These snapshots
of the radial velocity near the top of the domain (0.96 R) are
shown in Mollweide projection for three cases in Figure 3:
Case A5, Case A10, and Case A20. The radial velocities
exhibit the complex, evolving, and global-scale nature of the
convection established in these simulations. The convective cells
that compose these complex patterns are outlined by the dark
downflows. A distinctive transition in the morphology of the
convective cells occurs between the columnar equatorial cells,
which are essentially viewed from the side given the spherical
geometry, and the polar columns, where they are viewed from
the top down. Equatorial convective columns march around the
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Figure 3. Overview of convective patterns, mean flows, and mean temperature fluctuations in selected Cases A. (a, e, i) The first column of the figure displays
convective patterns in radial velocities near the upper boundary in turn for Case A5, Case A10, and Case A20. (b, f, j) The second column presents the time-averaged
and azimuthally averaged angular velocity with radius and latitude, with the fast prograde equator in red and slower poles in blue. (c, g, k) Azimuthally averaged and
time-averaged temperature fluctuations (where the � = 0 component has been removed) with the warm poles in red tones and the cool equator in blue tones. (d, h, l)
The stream function of the meridional flow (ψ), clockwise (CW) flows in red, and counterclockwise (CCW) flows in blue. The dashed line in the second, third, and
fourth columns delineates the beginning of the stable region.

(A color version of this figure is available in the online journal.)

equator in a prograde sense, constantly jockeying for position
as they collide and overtake one another. Cells of convection
at higher latitudes continually form and reform as they interact
with one another and are shuffled along by the mean flows in a
retrograde sense. The mean zonal flow makes its presence felt
at mid-latitudes, where there is an obvious shear between the
prograde equatorial flows and the retrograde polar flows. These
flows exhibit somewhat different timescales over which they
maintain their coherence. The convective cells at the poles can
last a few days, and those at the equator last even longer.

3.1. Case A: 1.2 M� Simulations

In Figure 3, there is a juxtaposition between high and low
latitudes in both the scale and structure of the convection,
especially for more rapidly rotating cases. The latitudinal

variation of convection patterns can be in part understood by
considering a cylinder tangent to the base of the convection
zone whose axis of symmetry is aligned with the rotation axis.
Within the geometry of the Case A simulations, the top of
such a cylinder intersects the upper boundary at latitudes of
±32◦. Outside the tangent cylinder, downflows are deflected
equatorward by Coriolis forces and can connect across the
equator before they are strongly braked in the stable region. For
downflows inside the tangent cylinder, they generally encounter
the stable region before they can be paired with a flow from
the opposite hemisphere. Such constraints on the convection
become more severe as the rotation rate of the frame is increased.

The flows outside the tangent cylinder organize into large-
scale sheared cylindrical rolls aligned with the rotation axis.
Individual convective cells remain coherent for roughly the
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Figure 4. Overview of convective patterns, mean flows, and mean temperature fluctuations in selected Cases B. (a, e, i) The first column of the figure displays
convective patterns in radial velocities near the upper boundary in turn for Case B10, Case B20, and Case B30. (b, f, j) The second column presents the time-averaged
and azimuthally averaged angular velocity with radius and latitude, with the fast prograde equator in red and slower poles in blue. (c, g, k) Azimuthally averaged and
time-averaged temperature fluctuations (where the � = 0 component has been removed) with the warm poles in red tones and the cool equator in blue tones. (d, h, l)
The stream function of the meridional flow (ψ), clockwise (CW) flows in red, and counterclockwise (CCW) flows in blue. The dashed line in the second, third, and
fourth columns delineates the beginning of the stable region.

(A color version of this figure is available in the online journal.)

global overturning time, which is between 15 and 30 days for
these 1.2 M� simulations. These convective structures are very
similar to the linearly unstable columnar modes arising in the
presence of a significant density gradient and a convex boundary
(Busse 2002; Jones et al. 2009). The convective columns form
a thermal Rossby wave that has a phase velocity larger than
the local rotation rate, leading to downflows that propagate
prograde faster than the local differential rotation. In a linear
regime, the effects of compressibility counteract the tendency
of the convection to occur along the tangent cylinder, where
it instead increasingly occupies the outermost portions of the
domain (Jones et al. 2009). In our simulations, however, these
effects often lead to two sets of columnar structures, one being

somewhat more confined to larger radii and another that occurs
deeper along the tangent cylinder. The primary difference in
the simulations here is that they are highly supercritical with a
realistic stratification, yet these structures largely persist despite
their nonlinear interaction with turbulent flows.

The downflow sheaths surrounding the upflows are elongated
in azimuth, forming thin sheets that spiral outward from the base
of the convection zone in a prograde direction. Such structures
are largely due to vortex stretching near the upper boundary that
is enhanced by the effects of compressibility, both of which are in
turn due to our choice of a Prandtl number that is less than unity
(Zhang 1992; Jones et al. 2009). This prograde spiraling leads
to strong Reynolds stresses that act in concert with the thermal
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state to help build the strong zonal flow and thus the differential
rotation seen in these simulations (see Sections 6.2 and 7). The
radial differential rotation, as seen in panels (b), (f), and (j)
of Figure 3, which increases with larger rotation rates, also
must play a role in stretching out these columns. The latitudinal
differential rotation tends to shear the columns, creating the
so-called banana cells. There also tends to be less latitudinal
connectivity in the downflow networks than in more slowly
rotating cases. This enhanced connectivity at lower angular
velocities can prevent the formation of the columnar structures
so prevalent in cases with a larger angular velocity.

The number of such convective modes that can fit within
the circumference of the star increases with rotation rate and
thus the Taylor number (Gilman & Glatzmaier 1981; Dormy
et al. 2004; Jones et al. 2009). This means that at a given
radius these modes will have less longitudinal extent as ex-
hibited in panels (a), (e), and (i) of Figure 3. Analyses carried
out using the modal equations of rotating Boussinesq convec-
tion within tangent cylinders (Dormy et al. 2004) and numerical
computations of linear modes in compressible anelastic con-
vection (Gilman & Glatzmaier 1981; Jones et al. 2009) reveal
that the azimuthal wavenumber of the most unstable mode in-
creases as m = mcTa1/6, where mc is the critical wavenumber.
For our cases, the viscosity scales as Ω−2/3

0 ; thus, the most
unstable mode is only a function of the rotation rate, where
m = mc (Ω0/Ω�)5/9. The critical mode is determined by us-
ing a value estimated from those given in Jones et al. (2009)
as m̂c and the values of convection zone depth, viscosity in
Case A5, and its rotation rate in the Taylor number, which yield
mc ≈ 21/35−2/9m̂cd

2/3ν
−1/3
A5 Ω1/3

� = 9. The resulting wavenum-
bers agree well with the modes that are most visible at the
equator in cases Case A5, Case A10, and Case A20 that have az-
imuthal order of m = 22, 32, and 54, whereas the brief analysis
here yields m = 22, 32, and 47. There is likely a discrepancy
between the order of the two modes for the fastest rotators be-
cause an instability arises in these cases that may change this
scaling (see Section 3.5).

At higher latitudes inside of the tangent cylinder, the convec-
tion is more isotropic and the downflow networks organize on
scales smaller than in the equatorial regions, as is seen in panels
(a), (e), and (i) of Figure 3. These convective cells are intricate
and dynamic, with cells constantly evolving as they interact with
one another and the bulk motions. When viewed on a spherical
shell, the downflows of the high-latitude convective cells take
on a crescent-like shape and precede the upflows as both are
carried along by the differential rotation. As described by the
Taylor–Proudman theorem, the tendency for these flows to align
with the rotation axis becomes more pronounced at higher rota-
tion rates. Indeed, as the angular velocity of the frame increases,
the high-latitude downflows form into cylindrical sheaths nearly
aligned with the rotation axis. Such convective structures have
a strong vertical vorticity. The sense of this vorticity in the
downflow plumes is cyclonic above the middle of the convec-
tion zone: counterclockwise (CCW) in the northern hemisphere
and clockwise in the southern. As the plumes descend deeper
into the convection zone, their vorticity changes sign, and the
downflows become anti-cyclonic (Miesch et al. 2000, 2008).
The upflows, on the other hand, are anti-cyclonic at all depths
outside the tangent cylinder and at latitudes above about ±60◦.
However, at mid-latitudes the upflows are anti-cyclonic in the
upper convection zone but are cyclonic in the lower portion.

In Table 2, flow diagnostics for the last two 1.2 M� F-type
star simulations (Case A5i and Case A20i) are shown. The

computational domain of these two simulations is restricted
in radius to be only in the convectively unstable portion of the
domains of the other 1.2 M� F-type star simulations. Placing the
lower boundary of the domain at the bottom of the convection
zone is tantamount to having an infinitely stiff entropy gradient
there, eliminating penetrative motions. While the convective
patterns are largely unchanged in these simulations, the rate of
deceleration of downflow plumes generally increases as they
approach the lower boundary. This alters the Reynolds stress
correlations and turbulent enthalpy flux, which in turn changes
the differential rotation, meridional circulation, and temperature
structures established in these simulations and will be discussed
further in Section 5.

3.2. Case B: 1.3 M� Simulations

Three 1.3 M� F-type star simulations are shown in Figure 4,
Case B10, Case B20, and Case B30. The two Case B simulations
carried out at 10 and 20 times the solar rate allow for an easy
comparison to the two Case A simulations at the same rotation
rate. The third simulation (Case B30) exhibits modulated
convection that is not seen in the other cases and therefore is
shown for its inherent interest. A striking similarity is seen
between the convective patterns established in the Case B
simulations and the Case A simulations (Figures 4(a), (e),
and (i)). There is still a transition from columnar convection
outside the tangent cylinder to more isotropic and smaller scale
convective cells inside of it. For these simulations, the edges of
the tangent cylinder intersect the upper boundary at latitudes of
± 26◦, 6◦ closer to the equator than in the 1.2 M� F-type stars.

Careful scrutiny reveals that the columnar equatorial convec-
tive modes, as seen in the Mollweide projections of the radial
velocity (Figures 4(a), (e), and (i)), have less of a latitudinal
extent when compared to the 1.2 M� simulations. The radial
velocities are about 15% larger on average than in the Case A
series of simulations, but the tails of the radial velocity distribu-
tion extend out even further to several km s−1 in the downflows.
The difference in temperature fluctuations between the center of
an upflow and the downflows at its edges is about 120 K, 50%
larger than in the 1.2 M� F-type stars. These somewhat larger
velocities and temperature fluctuations are expected given that
both the lower background density is lower and the luminosity is
50% higher in the 1.3 M� simulations. As seen in Table 2, there
is a single case that captures only the convectively unstable re-
gion, Case B20i. This case is meant to be a point of comparison
for assessing the role of overshooting in maintaining a strong
differential rotation.

The mean angular velocities and temperature variations for
Case B10, Case B20, and Case B30 are shown in the second
and third columns of Figure 4. The nine panels in the last
three columns of Figure 4 all demonstrate the convection zone
geometry of the Case B simulations. The convection zone is
much narrower than in both the Sun and the 1.2 M� F-type
stars. This narrowing of the convectively unstable region and
the increased luminosity of the higher mass stars play a role
in the behavior of the differential rotation established in these
simulations.

3.3. Average Flows

Shown in the second column of Figure 3 are the mean
radial and latitudinal profiles of angular velocity (Ω = Ω (r, θ ))
achieved in Case A5, Case A10, and Case A20. These profiles
are averaged in longitude and in time, over 150 days. All of the
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1.2 M� F-type star simulations exhibit solar-like differential
rotation profiles, with prograde (fast) equators and retrograde
(slow) poles. Contours of constant angular velocity, black lines
in Figures 3(b), (f), and (j), are largely radial but become
increasingly aligned with the rotation axis with more rapid
rotation.

More specifically, the average rotation profile in depth and
latitude established in Case A10 are shown in Figure 3(f). The
red and white tones indicate a fast prograde equator, while
the black and blue tones indicate a pole rotating more slowly
than the frame rate; this is considered solar-like differential
rotation. The color associated with the frame rate of 4240 nHz is
yellow. The rotational shear averaged over the convection
zone between the equator and the pole is ΔΩ = 1290 nHz,
corresponding to a relative latitudinal shear of ΔΩ/Ω0 = 34%.
Thus, this simulation has a latitudinal shear that is quite similar
to that observed at the solar surface. Similarly, Case A5 and Case
A20 possess an equator-to-pole absolute differential rotation of
ΔΩ = 560 nHz or ΔΩ/Ω0 = 26% and ΔΩ = 2330 nHz or
ΔΩ/Ω0 = 27%. Though we have attempted to drop the diffusion
within the stable region, we are restricted in both the depth of the
layer and the magnitude of the motions that still require some
diffusion. This leads to a slow spread of the differential rotation
into the stable region, which can be seen in Figures 3(b), (f),
and (j).

A trend is readily discernible; the absolute contrast of angu-
lar velocity grows in latitude and radius with more rapid rota-
tion. These profiles show some weak asymmetry between the
northern and southern hemispheres, but only at lower rotation
rates and at high latitudes. This behavior would likely disappear
if very long time averages were taken. Variation between the
hemispheres should be expected as the patterns of convection,
and thus the mean zonal flows, are not symmetric about the
equator.

The streamlines of the time-averaged meridional mass flux
(ψ) are shown in the last column of Figure 3. The stream
function ψ is defined such that 〈ρum〉 = ∇ × ψ φ̂. The sense
of the flow is CCW for the blue contours and clockwise (CW)
for the red. There is typically a CCW cell of meridional flow
in the northern hemisphere, and a CW cell in the southern
hemisphere, that stretches from the inner edge of the tangent
cylinder to the pole, indicating a poleward meridional flow in
the upper convection zone and an equatorward flow near the base
of the convection zone. These high-latitude cells are very large
scale flows and are thus constrained by the global spherical
geometry. These flows reside mostly on contours of constant
radius and possess weaker meridional flows than the low-latitude
cells. Outside the tangent cylinder the mean meridional flow is
dominated by the columnar structures seen in the Mollweide
projections of the radial velocity in Figures 3(a), (e), and (i).

The meridional flows associated with these structures have
streamlines that are quite complicated, having multiple cells
in radius and latitude. The trend is that the number of cells
increases with rotation rate, primarily with more cells in radius.
These cells are aligned with the rotation axis and extend from the
upper radial boundary to the equator where they close, indicating
that there is very little mean cross-equatorial flow or flow across
the tangent cylinder. The net effect of these low-latitude cells
is to largely isolate the equatorial region from higher latitudes
inside the tangent cylinder. This behavior can be understood
by considering the latitudinal connectivity of the downflow
networks established in the convection; at low rotation rates
there is a tendency for a large degree of latitudinal connectivity

that is reduced at higher rotation rates due to the influence of the
Coriolis forces. The meridional circulations established within
the Case B simulations are similar in morphology to those in
the Case A simulations. They are multi-cellular at low latitudes
and single celled at high latitudes, as seen in the streamlines of
the meridional flow (ψ) shown in Figures 4(d), (h), and (l).

3.4. Average Temperature Fluctuations

The azimuthally averaged and time-averaged profiles of
temperature fluctuations about the spherical mean are shown for
Case A5, Case A10, and Case A20 (Figures 3(c), (g), and (k)).
A clear pattern arises in these simulations, where the poles are
warm and the equator is cool, while mid-latitudes are cooler yet,
relative to the background temperature. These fluctuations are
nearly constant on cylinders, especially at high latitudes. Such
a pattern has also been found in simulations of global-scale
convection in G-type stars (Brown et al. 2008). The origins of
these fluctuations are discussed in detail in Section 6.

These fluctuations about the spherical mean are generally still
small but become more significant for more rapid rotation rates.
In Case A20, for instance, the temperature fluctuations near the
top of the simulation are about 3% of the background value,
or about 3000 K. All of the cases presented here have similar
latitudinal profiles in temperature. The latitudinal temperature
contrast between the equator and 60◦ latitude increases markedly
at higher rotation rates as shown in Table 3. Indeed, the primary
difference between the Case B simulations and those shown for
the Case A simulations is that the absolute latitudinal contrasts
of differential rotation and temperature fluctuations are larger
(see Section 8), but the structure is largely the same with slow,
warm poles and a cool, fast equator (Figures 4(c), (g), and (k)).

3.5. Modulated Convection and Shear Instabilities

Spatially modulated convection, such as that discussed in
Brown et al. (2008), becomes readily apparent in Case B30
(Figure 4(i)). The convection in the equatorial region is less
vigorous at certain longitudes and more so at others. In this
simulation, there is a roughly m = 1 modulation in the equa-
torial convection. This modulation is increasingly pronounced
with depth and is most evident in the stable region where the
overshooting convection and gravity waves are confined to a
horizontal region covering roughly a quarter of the sphere at the
equator and converging at the poles. This localized overshoot-
ing convection feeds back onto the upflows initiated at the base
of the convection, giving them a substantially larger tempera-
ture perturbation than elsewhere on the sphere generating faster
flows. This case is also slightly off the path in parameter space
followed in the other cases in that the diffusivity is the same as
in Case B20 and thus is about 25% higher than expected given
its bulk rotation rate. This is to avoid the high cost of increas-
ing the resolution of the simulation and the subsequently longer
evolution time.

The presence of a sufficiently large differential rotation within
a convectively stable region can give rise to a global shear in-
stability similar to Rossby–Haurwitz or planetary waves (Hau-
rwitz 1940; Longuet-Higgins 1964; Kitchatinov 2010). These
waves can efficiently transport energy and angular momentum
between the equatorial region and the poles. Such an instability
has arisen in the radiative zone of Case A15, Case A20, and
Case B20, where several low-degree spherical harmonic modes
are unstable as are visible for Case B20 in Figure 5. These mo-
tions have a pressure and vorticity signature that prints through
the convection zone, surviving despite the vigorous convection
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Table 3
Global Properties of the Evolved Convection

Mass Case KE/106 KEDR/106 KEMC/103 KEC/106 ΔΩr /Ω0 ΔΩ60/Ω0 ΔT60 ΔS60 do/HP

1.2 M� A5 7.46 6.35 (85.1%) 5.39 (0.072%) 1.10 (14.8%) 0.065 0.195 −117 −20750 0.088
A7 15.0 13.9 (92.9%) 4.31 (0.029%) 1.07 (7.11%) 0.063 0.212 −246 −44830 0.089

A10 29.4 28.4 (96.6%) 3.68 (0.013%) 1.01 (3.42%) 0.054 0.211 −501 −93010 0.101
A15 67.1 65.3 (97.4%) 2.44 (0.004%) 1.74 (2.60%) 0.043 0.200 −1048 −184400 0.339
A20 91.9 90.4 (98.4%) 1.99 (0.002%) 1.51 (1.65%) 0.037 0.177 −1635 −290300 0.332
A5i 6.92 5.65 (81.7%) 6.04 (0.087%) 1.26 (18.2%) 0.057 0.199 −101 −13900 · · ·

A20i 28.5 27.5 (96.5%) 2.48 (0.009%) 0.99 (3.47%) 0.049 0.114 −714 −44940 · · ·
1.3 M� B8 2.23 1.41 (63.1%) 2.93 (0.131%) 0.82 (36.8%) 0.030 0.101 −190 −31000 0.121

B10 6.70 5.99 (89.3%) 2.46 (0.037%) 0.71 (10.7%) 0.038 0.177 −613 −111670 0.122
B15 15.5 14.6 (94.4%) 1.97 (0.013%) 0.86 (5.55%) 0.041 0.204 −1444 −267900 0.137
B20 35.0 33.8 (96.5%) 1.53 (0.004%) 1.22 (3.49%) 0.036 0.224 −2799 −503200 0.334
B30 26.4 25.6 (97.2%) 0.88 (0.003%) 0.75 (2.83%) 0.024 0.142 −3745 −812000 0.358
B20i 15.3 14.6 (95.5%) 1.43 (0.009%) 0.69 (4.51%) 0.038 0.182 −1797 −224100 · · ·

Notes. Total (KE), differential rotation (KEDR), meridional circulation (KEMC), and convective (KEC) kinetic energy densities are both averaged in time and volume and
are shown in units of erg cm−3, and relative to the total kinetic energy in parentheses. The spatial averages are taken only over the convection zone to allow comparison
between the cases with and without overshooting. The relative radial and latitudinal differential rotation (ΔΩr /Ω0 and ΔΩ60/Ω0), the latitudinal temperature difference
(ΔT60, in K), and the latitudinal entropy difference (ΔS60, in erg K−1 cm−3) are measured between the equator and 60◦ latitude (averaged over both hemispheres). The
depth of the overshooting region (do) is shown measured relative to the pressure scale height (HP) at the base of the convection zone and is horizontally averaged.

(a)

-0.18 / 0.17 Ω0

   
(b)

-0.52 / 0.39

Figure 5. Large-scale shear instability existing within the stable region prints
through the convection zone as evident in Case B20. Mollweide projections of
the radial vorticity (ωr ) are shown relative to the vorticity of the reference frame
(Ω0) and at two depths with the m = 0 component removed (a) 0.86 R and
(b) 0.92 R. Dark tones indicate negative radial vorticity.

(A color version of this figure is available in the online journal.)

present there as in Figure 5(b). The instability of these modes
is sensitive to the magnitude of the differential rotation and to
its latitudinal profile (Watson 1981; Kitchatinov 2010). Further-
more, it has significant impact on the overshooting convection,
allowing mixing to greater depths (Figure 8(c)). We will present
the details of these solutions and an analysis of them in a forth-
coming paper (K. C. Augustson et al. 2012, in preparation).

4. EXAMINING DYNAMICS WITHIN CASE A10

The convective patterns, like those discussed in Section 3.1,
are complex and time dependent with asymmetries between

upflows and downflows due to mass conservation in a stratified
medium. The downflows are cold, fast, and narrow and border
their more leisurely ascending counterparts. The convective cells
are outlined by the dark downflows visible in the radial velocities
shown in the top four panels of Figure 6.

4.1. Typical Flows and Thermal Properties

The archetypal convective cell is defined by a central broad
upflow bordered by narrow downflows. Indeed, the color tones
in Figures 6(a)–(d) are meant to construe both the sign of
the temperature fluctuations (Figures 6(e)–(h)) associated with
these structures and the direction of the flow. Namely, the
upflows are warm and the downflows are cool relative to the
mean temperature. Radial velocities that are within 1σ of
the mean at mid-convection zone for the flows in Case A10 are
between −230 m s−1 for downflows and 190 m s−1 for upflows,
where the rms radial velocities are 150 m s−1. Large- and small-
scale thermal structures are visible in Figures 6(e)–(h), where
the large m = 0 temperature perturbations have been removed.
The average difference of temperature fluctuations between the
central upflow and the bordering downflows defining the con-
vective cell is about 45 K at mid-convection zone and increases
with height. A large-scale structure corresponding to an m = 1
spherical harmonic mode is also visible. This global-scale pat-
tern persists for long periods of time and is most evident in the
more rapidly rotating cases.

The effects of the stratification are visible in the patterns
of the convection in Figures 6(a)–(c). The convective cells
near the surface in panel (a) show the greatest asymmetry in
areal coverage and rms radial velocity between the upflows
and the downflows. This asymmetry is reduced at greater
depths as in panel (c) as the upflows and downflows become
increasingly symmetrized both in the rms velocities achieved
and in areal extent due to the larger local density scale height.
The temperature field appears slightly more diffuse than the
radial velocity due to the thermal diffusion being four times
greater, as reflected in the Prandtl number being 1/4 at all
depths. However, it shows the changes in the morphology of
the convection that are similar to those of the radial velocity,
where the longitudinal extent and magnitude of the temperature
fluctuations of the convective cells decrease with depth.
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Figure 6. Radial velocities (ur) and temperature fluctuations (T ′) at several depths in Case A10. The temperature fluctuations are taken about the m = 0 component,
removing the largest scale variations. The quantities ur and T ′ are shown in orthographic projection at several radial levels with r/R equal to (a, e) 0.97, (b, f) 0.92,
(c, g) 0.85, and (d, h) 0.80. Light tones are warm upflows, while dark tones are cool downflows. Panels (d) and (h) show flows within the radiative zone.

(A color version of this figure is available in the online journal.)

The areal filling factors of the upflows and downflows are
roughly 2/3 and 1/3, respectively, when averaged over the con-
vection zone. There is a further asymmetry in the magnitudes of
the radial velocity within these flows, with the downflows being
faster than the upflows. Indeed, the distribution of the radial
velocities has a large negative skewness within the convection
zone. The distribution of radial velocities in the downflows has a
tail that is about twice as long as the distribution of velocities in
the upflows. These properties are similar to the flows established
in solar simulations detailed in Miesch et al. (2008). Further, the
mean negative radial velocity is about twice as large as the mean
positive radial velocity. This asymmetry in the radial velocities
reflects the density stratification and mass conservation, with the
caveat that the degree of asymmetry is dependent on the level of
turbulence within a simulation where higher Reynolds numbers
lead to more asymmetry.

The downflows, visible as dark lanes in Figures 6(a)–(c),
are initiated by cooling near the surface and sustained through
buoyancy driving within the bulk of the convection zone.
The cooler and more dense downflows entrain fluid from the
surrounding upflows through mass conservation and diffusion.
These processes act to erode the density contrast between
the downflow and the surrounding fluid. Thus, the downflows
experience less buoyancy driving as they fall deeper into the
convection zone. Even without a significant buoyancy to provide
a downward acceleration, they have enough momentum to
continue under their own inertia. Once the downflows reach
the bottom of the convection zone, they become buoyantly
braked as they enter the stable region. However, they continue
into the uppermost reaches of the radiative zone through their
own inertia, as in Figures 6(d) and (h). Eventually they are
fully braked, but not before they have penetrated a significant
distance into the stable region. Such overshooting motions can
excite gravito-inertial waves that propagate within the stable
region. These waves are eventually dissipated through diffusive

processes but can play a role in the redistribution angular
momentum and energy (Rogers & Glatzmaier 2006; Brun et al.
2011).

4.2. Energetics of the Convection

These flows give rise to the transport of energy and momen-
tum throughout the domain. The energy transport by resolved
convective motions will not in general be equivalent to the
mixing-length prescriptions assumed in the 1D solar structure
model, so the simulation must adjust accordingly. In a steady
state, an equilibrium is reached that balances the different com-
ponents of the mean radial transport of energy.

The large outward enthalpy flux Len seen in Figure 7(a)
exceeds the luminosity of the star at its peak and is balanced
primarily by the unresolved eddy flux Led near the top of the
domain and by the radiative flux Lrd below mid-convection
zone to produce a nearly constant stellar luminosity throughout
the domain. While the upflows contribute about 10% of the
enthalpy flux, the dominant factors contributing to the enthalpy
flux are the downflows. These flows are cool relative to the mean
value as seen in the temperature fluctuations of Figure 6; this
correlation between the negative fluctuating temperature and the
negative radial velocities leads to a radially outward enthalpy
flux. There is significant latitudinal variation in the enthalpy
flux, with the largest positive flux in the polar regions and with
fluxes that are about 30% less outside of the tangent cylinder.
Near the base of the convection zone, indicated by the dashed
line in Figure 7, the enthalpy flux becomes negative due to the
overshooting convection, as will be discussed in the following
section. The overshooting enthalpy flux attains its most negative
value near the poles, though when integrated over the stable
and overshooting regions it peaks at the tangent cylinder. This
variation in the enthalpy flux reflects the latitudinal variation in
the depth of the overshooting.
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Figure 7. Time- and horizontally averaged radial energy fluxes for (a) Case
A10 and (b) Case B10. Fluxes are shown as luminosities (L = 4πr2F ) and
taken relative to the solar luminosity with the total (Ltot) shown as a solid black
line. The components of the total flux are the kinetic energy flux (Lke, dashed
blue), enthalpy flux (Len, solid blue), radiative flux (Lrd, solid red), unresolved
eddy flux (Led, solid orange), and viscous diffusive flux (Lvd, dashed red). The
vertical dashed line indicates the radius at which the mean entropy gradient
changes sign.

(A color version of this figure is available in the online journal.)

The asymmetrically larger velocities in the downflows give
rise to an inward kinetic energy Lke (inside the tangent cylinder)
that is due to the cubic dependence on the velocity. Outside
the tangent cylinder, the columnar equatorial flows produce a
net outward kinetic energy flux, dominated by the large zonal
velocity component, that are on average slightly larger than the
higher latitude components and lead to a small net outward flux
for Case A10 (Figure 7(a)).

5. CONVECTIVE OVERSHOOTING

The Péclet number (Pe = Re′Pr) of the radial flows is
of essential importance in determining the properties of the
overshooting convection (e.g., Brummell et al. 2002; Brun et al.
2011). Small values of Pe give rise to convective overshoot, in
the sense that the stratification remains sub-adiabatic. Large Pe
values, those much greater than one, promote efficient entropy
mixing such that the stratification becomes nearly adiabatic,
and the base of the convection zone can spread downward
in time if nothing acts to oppose the spreading. In the stable
region, the Peclet number is about 1/40 at the lower boundary,
around 1 in the overshooting region, and approximately 10 in
the bulk of the convection zone. Therefore, it is expected that
the motions at the base of the convection zone are overshooting
rather than penetrative. This is indeed the case, as demonstrated
in Figure 2(a), where the evolved mean entropy gradient is
shown for Case A10 and Case B10. However, all the cases
reported on here possess a strongly sub-adiabatic region below
the convection zone that is essentially fixed in time. It extends
from the lower boundary to the radius at which the entropy
gradient changes sign or the bottom of the convection zone. The

mixing there is inefficient and the stratification remains largely
unchanged as indicated by the Peclet number there (Zahn 1991;
Spiegel & Zahn 1992; Brummell et al. 2002). The width of
this layer is likely overestimated because this width scales as
the square root of the filling factor of the downflowing plumes,
which are likely larger in these simulations than in the actual
stars (Zahn 1991; Rempel 2004).

In the region of overshooting, on the other hand, the entropy
gradient is steepened significantly compared to the stellar model.
This is a consequence of the downflows within the convection
dragging cool fluid to the bottom of the domain, where they
are then quickly heated due to buoyancy braking in the region
of overshooting as will be seen in the following section. While
there is not a physical boundary at the bottom of the convection
zone, the rapid increase in the entropy gradient acts very
much like a wall that rapidly slows downflows. However, these
flows overshoot into the stable region where the work done by
buoyancy rapidly brakes and heats them. This allows the fluid to
thermally equilibrate with the surrounding fluid. The stronger
downflows, those that are cooler and faster than the majority
in the convection zone, retain enough inertia to flow past the
bottom of the convection zone and continue to be buoyantly
heated. They quickly become warmer than the surrounding fluid
but are still traveling into the stable region. Thus, correlations
between the fluctuating temperature and the radial velocity in
the overshooting convection give rise to a substantial negative
enthalpy flux as seen in Figure 7, where it reaches around half
of a solar luminosity. This is in contrast to 1D stellar structure
models, where there is either a small, negative overshooting
enthalpy flux or none depending on how the overshooting is
parameterized.

In Figure 8, we quantify the beginning of the overshooting
region by the radius rc where the enthalpy flux becomes negative,
the radius at which the entropy gradient equals zero (rbcz) is
demarked by the dashed line, and the bottom of the overshooting
region occurs at a radius where the negative enthalpy flux of
the overshooting convection equals 1% of the most negative
value (ro). It is clear from Figure 8(a) that the convection zone
in Case A10 is most shallow around ±20◦ (at about 3% of
the stellar radius R) and is deepest at the equator (0.0075 R),
with an average width of 0.015 R. The overshooting region in
Case B10 is 1.5% of the stellar radius at its deepest around
±20◦, 0.009 R at its most shallow at the equator, and 0.0125 R
on average. The depth of overshooting at the equator is reduced
as the centroid of the region of the overshooting occurs at a
greater depth due to the penetration of the convection, resulting
in convection that feels a much stiffer stratification. At higher
latitudes, the centroid of the overshooting region occurs at a
larger radius, which results in a larger region of overshooting as
the convection feels a less stiff stratification.

The bottom of the overshooting region is deepest at low
latitudes and most shallow at the poles in Case A10, which
implies that the radiative zone is slightly prolate. In Case B10,
the bottom of the overshooting region is essentially spherically
symmetric. This is also true of the radius of the base of the
convection zone (rbcz), which has almost no latitudinal variation
in both cases. The radius at which the enthalpy flux becomes
negative (rc) is everywhere larger than rbcz. This property arises
from some of the downflow plumes having a change in the
sign of their fluctuating temperature (from cool to warm) that
precedes their arrival at rbcz. The downflows are diffusively
heated by the warm upflows that surround them, which occurs
because the time for the downflow to cross the distance between
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Figure 8. Changes in the radial extent of overshooting motions with latitude.
Shown as a shaded region below rbcz for (a) Case A10 and (b) Case B10.
The radii where the enthalpy flux is negative encompass the full shaded
region. The radius at which there is a transition to the convection zone is
denoted by rc. The lower boundary of the overshooting motions is denoted by
ro. The scaling with rotation rate of the depth of the overshooting region relative
to the pressure scale height at rbcz is (do/HP) for cases A and B.

(A color version of this figure is available in the online journal.)

rc and rbcz is longer than the horizontal diffusion time across the
downflow. This results in a negative enthalpy flux that begins
before the bottom of the convection zone and builds to its most
negative values as the downflows continue into the stable region
where they are buoyantly heated.

We have conducted simulations with the same initial stellar
model, but without the region of penetration, these are Case
A5i, Case A20i, and Case B20i. It is clear from Table 3
that these simulations have much weaker latitudinal entropy
and temperature contrasts than their counterparts with a stable
region. However, the equator to 60◦ differential rotation contrast
is only slightly lower. Hence, the inclusion of a stable region
alters several aspects of the mean thermal state and flows,
where it primarily leads to a tilting of the contours of the
angular velocity toward being conical. It also leads to a stronger
scaling of the latitudinal temperature gradient with rotation rate.
The primary driver behind this is that there is an enhanced
equatorward latitudinal enthalpy flux relative to the cases that
have a stable region. The meridional circulation kinetic energy,
on the other hand, is lower in cases with a region of overshooting
than those without. This behavior arises due to a change in
the axial torque near the lower boundary. The impenetrable
lower boundary imposes a much stronger constraint on the
flows; indeed, all flows must halt at this point. This means that
the divergence of both the Reynolds and the viscous stresses
must be larger in simulations with an impenetrable boundary
when compared to simulations with a region of overshooting,
as is indeed the situation in Case A5i, Case A20i, and Case
B20i. The equation of gyroscopic pumping (cf. Section 7 and
Equation (20)) implies that this leads to a larger meridional

circulation kinetic energy as is evident in the energies given in
Table 3.

6. THERMAL STRUCTURING

As an example of the mean thermal structure established
in these simulated stars, consider the time-averaged and az-
imuthally averaged temperature fluctuations for Case A10
(Figure 9(a)). It is clear that the perturbations do not have a
zero mean, as expected from the broken spherical symmetry
arising from the rotation of the system. The temperatures range
from the hot poles at 840 K to the cool equator at −280 K with
yet cooler mid-latitudes. This equator-to-pole temperature con-
trast is slightly more than two orders of magnitude greater than
the observational limits on the latitudinal temperature profile of
the Sun (Rast et al. 2008). However, these variations are taken
relative to the mean temperature that varies between 1.3×106 K
at the bottom of the domain and 105 K at the top, so they are still
relatively small, being of order 1%. These averaged temperature
fluctuations are nearly constant on cylinders at latitudes above
±45◦, while it has a positive radial gradient at lower latitudes.
This distribution of temperature fluctuations impacts the local
energy flux balance and is intimately linked to the differential
rotation and meridional flows, such as those seen for Case A10
in Figures 3(f) and (h).

6.1. Principal Contributions to Temperature

The time-averaged and azimuthally averaged temperature
fluctuations are decomposed into the fluctuating pressure and
entropy components (T = P/ρcP + T S/cP), from which it
becomes apparent that the pressure is the largest contributor
(Figures 9(b) and (c)). This is especially true at latitudes
above 45◦, where the pressure perturbation has nearly radial
contours and contains about 80% of the amplitude of the
temperature fluctuations. At these higher latitudes, the entropy
contribution tilts the contours of the temperature fluctuations to
be nearly cylindrical. At low latitudes, the two components
play more equal roles, at least within the deep convection
zone. Figure 9(d) exhibits the latitudinal structure of the mean
temperature fluctuations at several depths: near the top of the
domain, at mid-convection zone, and in the stable region. There
is a substantial change in the temperature structure with depth
outside the tangent cylinder where it swings from −280 K in
the stable region to almost 0 K near the top of the domain
at the equator. The entropy and pressure act in tandem to
depress its value at the base of the convection zone and the
pressure drives its value above zero near the surface where
the entropy contribution wanes. Figure 9(e) shows the mean
entropy fluctuations at the same depths as in panel (d). The
entropy fluctuations increase nearly monotonically in latitude
and have little radial variation. This mean latitudinal entropy
structure arises due to a balance of energy fluxes in latitude. As
the simulation evolves and reaches a steady state, the turbulent
enthalpy flux and kinetic energy flux adjust to achieve a balance
with the diffusive flux of entropy in latitude. Once in this
statistically steady state, the mean latitudinal energy fluxes do
indeed balance and thus lead to the mean latitudinal structures
seen in Figures 9(c) and (e).

In Case A10, the background temperature decreases by about
a factor of 10 across the convection zone, and since it weights
the entropy fluctuations, it causes an equivalent decrease in
them (Figure 9(c)). The decrease is in part due to the weak
radial differential rotation in Case A10 (Figure 3(f)). Indeed,
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Figure 9. Fluctuating thermal structures found within Case A10. Azimuthally
averaged variations are shown for (a) the temperature and the scaled contribu-
tions from the fluctuations of (b) pressure [P/ρcP] and (c) entropy [T S/cP].
Cuts through (d) the averaged temperature fluctuations and (e) the averaged
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(A color version of this figure is available in the online journal.)

a time-steady meridional force balance leads to a linking of
the entropy to the ageostrophic component of the differential
rotation (see Section 6.2), which implies that a strong radial
differential rotation could lead to a larger entropy contribution.
But as is evident in Figure 9(e), the entropy perturbations have
little variation in radius, reflecting the weak radial differential
rotation. In an azimuthal and time average of the momentum
equation (Equation (1)), the time and azimuthal derivatives of
the mean flows vanish, leaving the advection, viscous, Coriolis,
buoyancy, and pressure gradient terms. If we keep only the
largest contributing terms, the gradient of the zonally averaged
pressure fluctuations is then primarily balanced by three terms:
the buoyancy arising from the mean density fluctuations, the
Coriolis forces acting on the mean zonal flow, and the centripetal
force due to the differential rotation arising from the largest of
the advection terms. These terms combine to give

∇〈P 〉 ≈ ρλ
(
Ω2 − Ω2

0

)
λ̂ − 〈ρ〉gr̂, (15)

where Ω = Ω(r, θ ) is the angular velocity and λ = r sin θ is
the distance from the rotation axis. When integrated over the
domain, the relative difference between the pressure gradient
and the terms on the right-hand side (R) of Equation (15), which

is given by ‖∇〈P 〉 − R‖/‖∇〈P 〉‖, shows that this balance is
satisfied to within 2% over the entire domain. The agreement
is best at higher latitudes but is significant everywhere. The
Coriolis and the advection terms compose about 66% of the
magnitude of the gradient, while the buoyancy terms make up
about 34%. Thus, the structure of the pressure arises primarily
from the geostrophy of the flow (Pedlosky 1982), which is
particularly important for the low-latitude peak in the pressure
and temperature in the upper reaches of the convection zone. The
buoyancy arising from the mean density fluctuations, however,
is also important. This term follows from the equation of
state (Equation (8)) and arises from the baroclinicity of the
flow. Indeed, the differential rotation plays a crucial role in
determining the structure of these fields.

6.2. Thermal Signature of Differential Rotation

If the planetary vorticity of a system is large relative to
the turbulent vorticity, the Rossby number is small, which
is the case in the simulations conducted in this paper (see
Table 2). In these systems, the dynamics that arise tend to
minimize variations across cylinders aligned with the rotation
axis. Indeed, in constant density settings, the Taylor–Proudman
theorem states that there is no variation along these cylinders.
On the other hand, the density and pressure isosurfaces can lose
alignment in stratified flows, leading to baroclinicity and flows
that can violate this constraint as is seen in the cylinder crossing
meridional circulation in Figures 3 and 4. One might suspect that
given the large equator-to-pole thermal contrast established in
these simulations, a strong meridional circulation would arise to
wipe it out. As will be shown in the following section (Section 7),
the differential rotation and turbulent Reynolds stresses mediate
the mean meridional flow; thus, another mechanism must act to
maintain this large thermal contrast. In the simulations reported
on here, there is a balance between latitudinal enthalpy flux
and entropy diffusion that establishes the thermal contrast,
which in turn evolves in conjunction with the meridional
flow and differential rotation. It is clear from the previous
section that quasi-geostrophic flow accounts for a portion of the
average temperature fluctuations, where the differential rotation
leads to temperature perturbations, while another mechanism is
responsible for the ageostrophic component.

The bulk rotation of these simulations is sufficiently rapid to
increase the axial alignment of the convective structures, which
leads to a more cylindrically aligned transport of enthalpy and
angular momentum. The domains are highly stratified, and thus
baroclinicity plays an important role in them. These tendencies
lead to a mean thermodynamic state and the two mean flows
(the meridional circulation and the differential rotation) that
are closely coupled and maintained through the time-averaged
properties of the turbulent transport of energy and momentum.
We here explore the connection between the mean thermal
structures and the differential rotation by examining the zonal
vorticity equation, which is the azimuthal component of the curl
of the momentum equation divided by the background density as
detailed in Brun et al. (2011). We begin with the time-averaged
and azimuthally averaged zonal vorticity equation that has been
divided by Ω2

0 in order to aid our assessment of how the various
terms scale with rotation rate. It is important to note that the
advection terms can be split into three contributing pieces, those
due to the mean zonal velocity, the mean meridional circulation,
and the Reynolds stresses arising from the fluctuating velocities.
The advection term arising from the mean zonal velocity cancels
the contribution from the Coriolis force, leaving the quadratic
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terms, and (c) their difference, which is composed of the viscous and Reynolds stresses, for Case A10. (d)–(f) Show the same quantities for Case B10. The color tables
used in each panel are scaled by the indicated values.

(A color version of this figure is available in the online journal.)

dependence on the angular velocity seen on the left-hand side
of the following equation:

RoDR︷ ︸︸ ︷
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, (16)

where z = r cos θ is the axial coordinate and the overbraces
and underbraces indicate the scaling of a particular term with its
associated Rossby number (Ro) and label the baroclinic terms.
The baroclinic terms have been simplified using Equation (3).
The viscous stresses 〈VS〉 scale as the Ekman number (Ek =
Ta−1/2) times the Rossby number. The turbulent Reynolds
stresses 〈RS〉 arising from the fluctuating velocity component
subsequently are proportional to the fluctuating Rossby number
(Ro′), and the advection of the meridional vorticity by the
meridional circulation 〈MC〉) varies with Romc. These stresses
are given explicitly by

〈RS〉 = 〈u′ · ∇ω′
φ〉 +

〈u′
φω′

λ

λ

〉
− 〈ω′ · ∇u′
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′
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〉
, (17)

〈MC〉 = 〈umc〉 · ∇〈ωφ〉 − 〈ωφ〉〈uλ〉
λ

− 〈ωφ〉〈ur〉∂ ln ρ

∂r
, (18)
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∂r
+
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]
〈∇ ·D · θ̂〉.

(19)
Here, λ is the cylindrical radius and ωλ and uλ are the
cylindrically radial directed vorticity and velocity, respectively.
Within the convection zone of these simulations, the pressure
contribution to the baroclinic terms is small, but it becomes
appreciable in the stable region and is retained. The Reynolds
stresses of the fluctuating velocities (u′) in Equation (17) possess
two primary components of stretching and advection. The first
two terms of this equation are the advection of the zonal vorticity

and the second two are the vortical stretching of the zonal
velocity, and the last term arises from the compressibility of the
flows. The terms associated with the meridional circulation (umc,
Equation (18)) are similar in that the meridional flow advects
meridional vorticity and retains the effects of compressibility,
but they lack vortical stretching with contributions from only the
component due to the geometry (〈ωφ〉〈uλ〉/λ). The definition of
D from Equation (5) is used here for the viscous stress terms
given in Equation (19).

Consistent with the strong thermal gradients seen in Table 3
and discussed in Section 6, Figure 10 demonstrates the extent to
which the baroclinic terms are linked to the differential rotation
through a meridional force balance. Indeed, from Equation (16)
it is clear that the cylindrical gradient of the square of the
angular velocity (labeled LHS in Figures 10(a) for case Case
A10 and 10(d) for Case B10) is almost entirely balanced by
the latitudinal gradients of the entropy and pressure. These two
thermal gradients arise due to the baroclinicity of the flows
and are labeled as such in Figures 10(b) and (e). The entropy
gradient dominates the meridional force balance within the
convection zone because the pressure gradient is weighted by
the nearly adiabatic mean entropy gradient. Within the stable
region, however, the mean entropy gradient is about four orders
of magnitude larger than in the convection zone, leading to
a significant contribution form the latitudinal gradient of the
pressure. The baroclinic terms in the bulk of the convection zone
change sign at higher latitudes. This reversal in sign occurs at
a lower latitude in the 1.3 M� cases, at about ±45◦ rather than
±60◦ as in the 1.2 M� cases. The presence of the latitudinal
pressure gradient causes the large negative structure that occurs
around the tangent cylinder in the northern hemisphere (positive
in the south) to stretch to the poles in the stable region.

The balance, however, is not perfect as there are effects near
the upper boundary that are primarily due to the Reynolds
stresses associated with the turbulent velocity field, as has
been seen in previous simulations of G-type stars (e.g., Brun
et al. 2011; Brown et al. 2008; Brun & Toomre 2002). These
departures from a pure thermal wind balance are easily seen in
Figures 10(c) and (f), where the difference between the angular
velocity gradient and the baroclinic terms is shown for Case A10
and Case B10. It is also apparent that the turbulent Reynolds
stresses play more of a role in the 1.3 M� simulations than
in those of the 1.2 M� F-type stars, where the rms values of
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the Reynolds stresses contribute to about 10% of the balance
versus 5% for the lower mass 1.2 M� F-type stars. This is
expected given that the fluctuating Rossby number in Case
B10 is larger than in Case A10 as seen in Table 2. There
are additional contributions from the viscous stresses and the
advection terms associated with the meridional circulation, but
they play a much smaller role in the meridional force balance
than the baroclinicity and turbulent Reynolds stresses. Indeed,
the importance of these various terms scales well with the values
of the Rossby numbers given in Table 2, with the viscous stresses
being proportional to Ek Ro ≈ 10−4 and 〈MC〉 varying as
Ro2

mc ≈ 10−4. For comparison, 〈RS〉 scales as Ro′2 ≈ 10−1.
Accordingly, we may safely neglect these small contributions
to the meridional force balance due to 〈MC〉 and 〈VS〉. This
leads to an expected proportionality of the baroclinic terms in
Equation (16) of RoDR + O(Ro′2) ≈ Ro.

7. MAINTAINING MEAN FLOWS

The convective motions in these simulations are influenced
by the bulk rotation, spherical geometry, and stratification of the
domain. The mean flows and thermodynamic structures, such
as those described above, are established and maintained by the
transport of momentum and energy supported by these motions.
Here we will consider how the transport of angular momentum
leads to a co-evolution of and a direct link between the
meridional circulation and the differential rotation. To illustrate
the subtle balances achieved within this turbulent convection
that lead to the maintenance of these mean flows, consider the
time-averaged and azimuthally averaged zonal component of the
momentum equation (Miesch & Hindman 2011), which yields
the evolution equation for the specific angular momentum

〈ρu〉 · ∇L = −∇ ·
[
Fλλ̂ + Fzẑ

]
≡ T , (20)

Fλ = ρλ〈u′
λu

′
φ〉 − ρνλ2 ∂Ω

∂λ
, (21)

Fz = ρλ〈u′
zu

′
φ〉 − ρνλ2 ∂Ω

∂z
, (22)

whereL = λ2Ω = λ
(〈uφ〉 + λΩ0

)
, λ = r sin θ is the cylindrical

radius, u′ = u−〈u〉 is the fluctuating velocity, λ̂ is the cylindrical
radial unit vector, and 〈u〉 is the axisymmetric velocity. The
advection of angular momentum by the meridional flow could
be incorporated into the flux but is retained separately for later
analysis. The axial torque T is the divergence of the sum of
both the radial and cylindrical angular momentum fluxes, which
are due to the viscous stresses arising from the mean zonal
velocity and the Reynolds stresses produced by the turbulent
alignment of the cylindrical and radial velocity components
with the fluctuating longitudinal component. These transport
mechanisms act in concert during the evolution of a case to
accelerate the equator and decelerate the poles until a steady
state is reached in which the axial torques act to balance the
meridional advection of angular momentum, while also helping
to maintain the differential rotation. The axial torque for Case
A10, as well as the angular momentum fluxes that contribute to
it, is shown in Figure 11.

In a statistically steady state where ∂L/∂t ≈ 0, the angular
momentum advected by the meridional flows must balance
the net torque T as in Equation (20). Although the angular
velocity profile Ω of these simulations is roughly conical at
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Figure 11. Axial torques that balance the meridional advection of angular
momentum are shown for Case A10. (a) The net axial torque of the right-hand
side of Equation (20). (b) The axial torque due to Reynolds stresses (RSs).
(c) The axial torque due to viscous stresses (VSs). (a)–(c) are scaled relative to
the net torque and shown in units of g cm−1 s−2. (d) Vertically integrated angular
momentum fluxes in the cylindrical radial direction (〈Fλ〉z) and (e) cylindrical
angular momentum fluxes integrated over the cylindrical radius (〈Fz〉λ) with
RSs as blue lines, transport by the meridional circulation in green, VSs in red,
and the total in black. The dashed line in (d) indicates the value of λ at the
tangent cylinder at the base of the convection zone. In (e) the dashed line shows
the values of z along the tangent cylinder until it intersects the upper radial
boundary.

(A color version of this figure is available in the online journal.)

most latitudes, as shown in Figures 3 and 4, the specific
angular momentum L is much more cylindrical, increasing
away from the rotation axis due to the weighting by the
square of the lever arm. For some intuition, Equation (20)
can be understood by considering the largest component of the
left-hand side, 〈ρuλ〉∂L/∂λ ≈ 2Ω0λ〈ρuλ〉. This approximate
relationship implies that the axial torque is balanced largely
by the cylindrically radial component of the meridional flow.
Moreover, this can be interpreted as 〈ρuλ〉 ≈ T /2Ω0λ, namely,
that an axial torque induces a meridional flow either toward
or away from the rotation axis depending on its sign. Thus,
Equation (20) implies that a net prograde torque (T > 0) will
induce a steady meridional flow away from the rotation axis,
while a retrograde torque (T < 0) will generate a flow toward
the rotation axis. Thus, the steady state meridional circulation is
achieved in part through the Coriolis force acting on the mean
zonal flow, a process referred to as gyroscopic pumping (e.g.,
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McIntyre 1998; Wood & McIntyre 2007; Miesch & Hindman
2011).

7.1. Decrypting the Axial Torques

Figure 11 depicts the balance of the axial torques expressed
in Equation (20) that is established in Case A10, averaged over
approximately 30 rotation periods. The sum of the torques due
to the Reynolds and viscous stresses (Figures 11(b) and (c))
balances the meridional advection of angular momentum so
closely that it is visually indistinguishable from Figure 11(a),
and thus the left-hand side of Equation (20) is not included in the
figure. This indicates that the mean flows have indeed reached
an equilibrium state, as can be deduced from the very small
departure from zero of the integrated total cylindrical radial and
axial angular momentum fluxes shown in Figures 11(d) and (e).
The net axial torque shown in Figure 11(a) illustrates that there
is a prograde equatorial torque and retrograde torque inside the
tangent cylinder as one would expect given the sense of the
differential rotation (see Sections 3.1 and 3.2). The mean net
torque is sustained over a long period of time, as the average
taken here is over several hundred rotational periods. Given that
energy is conserved within the system, this implies that energy
is being transferred from the thermal state to the kinetic energy
of the system and through dissipation it is transferred back to
the thermal reservoir.

By comparing Figures 11(a) and (b), it is apparent that the
Reynolds stresses are the dominant mode of angular momentum
transport inside of the tangent cylinder. In the regions above 45◦
latitude, the axial component of the Reynolds stress transports
angular momentum outward along cylinders and is balanced by
the meridional circulation advecting angular momentum inward,
as is seen in Figures 11(a) and (e). At mid-latitudes between the
tangent cylinder and about 45◦, the radial component of the
Reynolds stress angular momentum flux is positive, so angular
momentum is transported toward the surface, but it then reverses
sign above 45◦. The torque resulting from the divergence of
these Reynolds stress angular momentum fluxes is negative at
mid-depth, decelerating the mid-convection zone, and positive
at the boundaries, thus accelerating the upper convection zone
and the overshooting region (Figure 11(b)). Inside the tangent
cylinder, the downflow plumes are nearly aligned with the
rotation axis and tend to conserve their angular momentum. This
supports an inward angular momentum transport and results in
the zonal deceleration seen at higher latitudes and throughout
the bulk of the convection zone. However, the downflows are
buoyantly braked and diverge as they approach the bottom
of the convection zone and enter the overshooting region.
During this process, the flows begin to dilate and become anti-
cyclonic so that they accelerate the lower convection zone and
overshooting region. This torque results in a gyroscopically
pumped meridional flow that is equatorward near the base of
the convection zone and poleward closer to the surface, where
it must cross L contours (Figures 3(h) and 11(b)).

Outside the tangent cylinder, where the columnar convec-
tive structures are so prominent, the viscous and the Reynolds
stresses are of nearly equal importance. The integrated fluxes
shown in Figures 11(d) and (e) reflect this balance. A strong
columnar feature saturates the color table and is visible in
the viscous and Reynolds stress torques (Figures 11(b) and
(c)), where it nearly follows the tangent cylinder as is clear in
Figure 11(e). The Reynolds stresses arise from the thin, spiral-
ing, columnar equatorial convective cells. The properties of the
torque due to Reynolds stresses associated with these structures

are clear; they act to reduce the angular momentum at depth and
increase it nearer the surface, while the viscous stresses attempt
to counteract this action but are slightly weaker. The axially
aligned equatorial flows seen in these simulations are strongly
affected by the boundary geometry. In Busse (2002), it is shown
that the convex curvature of the caps of the cylindrical annular
convective domain geometry leads to prograde tilted columnar
cells. These tilted columns transport prograde momentum out-
ward and retrograde angular momentum inward, as occurs with
the equatorial convection cells here. This occurs because the
thermal Rossby wave associated with the columnar convection
tends to propagate faster in the upper convection zone and slower
in the lower convection zone (Busse & Hood 1982). The pro-
grade torque of the Reynolds stresses above the mid-convection
zone and the retrograde torque in the lower convection zone and
overshooting region, visible in Figure 11(b), indicate that these
equatorial convective structures do indeed play a crucial role in
the angular momentum transport. This is manifest in the radial
dependence of the angular velocity (Figures 3 and 4).

There are two sets of equatorial columns in this simulation.
One set of columns is confined to the deep convection zone,
terminating at the base of the convection and extending up to
the middle of the convection zone. A second set of columns
exists at the upper boundary and extends down to the middle
of the convection zone. This situation arises because the radial
differential rotation is large enough to shear the columns and
because the density scale height acts to confine columns near
the upper boundary, which can be understood as a result of a
large Taylor number. This configuration of columns manifests
itself in the axial torque as a region of negative torque at the base
of the convection zone, a positive torque just below the middle
of the convection zone, a negative torque at the base of the outer
columns, and a positive torque near the upper boundary as in
Figure 11(b).

In the limit that the outer boundary becomes spherical,
the equatorial columns described in Busse (2002) become
increasingly sheared in longitude with increasing latitude, where
the fastest prograde flows are at the equator and are slower near
the latitude at which the tangent cylinder intersects the upper
boundary. This process is accentuated by the thin-shell geometry
of the F-type stars, where the spherical upper boundary has
an increasing slope as one approaches the equator, which in
turn causes the phase speed of the thermal Rossby waves to
increase. This leads to faster equatorial flows and slower flows at
higher latitudes. The net axial torque reflects these effects, with
a retrograde torque (flux divergence) at low latitudes between
the tangent cylinder and about ±8◦ and a prograde torque (flux
convergence) near the equator (Figure 11(a)).

7.2. Meridional Flows Induced by Axial Torques

The Reynolds stresses arising from the convective cells
outside the tangent cylinder are not perfectly cylindrical and
have a convergent structure, where the latitude of the outer
boundary of the cell is dependent on the spherical radius as is
evident in Figures 11(a) and (b). On the other hand, the viscous
stresses in the bulk of the convection zone are nearly cylindrical.
The slight misalignment of these two torques gives rise to the net
torque, as they almost cancel one another outside of the tangent
cylinder (Figure 11(d)). Indeed, the complicated morphology
of the net torque gives rise to four reversals in the sign at the
equator, resulting in four cells of low-latitude meridional flow
(Figures 11(a) and 3(h)). These cells close on the equator and
either end at very low latitudes or merge and stretch up to the
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Figure 12. Scaling of the inverse Rossby number with mass and rotation rate, as well as latitudinal differential rotation (ΔΩ), latitudinal thermal contrasts (ΔT ),
and the volume-averaged meridional circulation kinetic energy (KEMC) with mass and inverse Rossby number. (a) Inverse Rossby number for F-type star Case A
simulations (diamonds) and Case B simulations (triangles), and for 1.0 M� G-type star simulations (crosses) (from Brown et al. 2008). The fit to the Rossby number
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in the following panels: (b) ΔΩ with the solid lines as in Equation (24); (c) ΔT with the lines given in Equation (30); (d) KEMC with lines given in Equation (37).

(A color version of this figure is available in the online journal.)

tangent cylinder. At latitudes below the tangent cylinder, but
above the lowest latitudes, there are two meridional cells. In the
northern hemisphere, a clockwise circulation is centered on the
tangent cylinder and the CCW circulation at larger cylindrical
radii is a combination of a cylindrical cell at mid-convection
zone and a curved cell that stretches along the outer boundary.

A similar balance of angular momentum fluxes is realized
in both the Case B simulation at 10 Ω� and also at other
rotation rates. The trend is that there are a larger number of
meridional circulation cells outside the tangent cylinder with
faster bulk rotation rates, while the equatorial region remains
isolated from the higher latitudes by the meridional circulation
cells at the tangent cylinder. At higher latitudes inside the tangent
cylinder, the Reynolds stresses support a dual-celled meridional
circulation at higher rotation rates. These two cells are split in
radius, one nearer the surface and one at depth. The upper cell
connects with the cell that sits on the tangent cylinder, moving
fluid with lower angular momentum from the upper layers at
high latitudes to the base of the convection zone, which is then
whisked poleward by the polar circulation cell at the base of the
convection zone. However, in cases with the shear instability
(Section 3.5) there is a substantial peak in both the diffusive and
Reynolds stress components of the angular momentum transport
at higher latitudes inside the tangent cylinder not seen in other
cases. The time dependence of the instability leads to angular
momentum fluxes that fluctuate much more than in the cases
that do not have this instability.

8. SCALING WITH ROTATION AND MASS

With our choices in the scaling of the diffusivities with
rotation rate, the parameter space covered by these simulations
is essentially restricted to varying the rotation rate (or Rossby
number) and mass of the system. Thus, we explore the variation
of the differential rotation (ΔΩ), meridional circulation (KEMC),
and latitudinal temperature gradient (ΔT ) with these parameters.
The latitudinal differential rotation is not known a priori and is
fit for; however, the latitudinal temperature gradient follows
directly from ΔΩ given the quasi-geostrophy and thermal wind
balance of the flow. The energy associated with the meridional
circulation also follows from the differential rotation, but
through the mechanism of gyroscopic pumping and the influence
of the Reynolds stresses.

The Rossby numbers of these simulations and those in Brown
et al. (2008) (see Table 2 and Figure 12(a)) are fit as a function

of mass (with M between 1.0 M� and 1.3 M�) and bulk angular
velocity (Ω0), which yields

Ro = 〈|ω|〉
2Ω0

∝ M5.7Ω−0.77
0 . (23)

This is close to the value expected from mixing-length theory,
where Romlt = vmlt/RΩ0 and vmlt = (L/R2ρcz)1/3. In the mass
range of stars covered here, the depth of the convection zone
decreases rapidly, so we restrict our consideration to stellar
masses between 1 M� and 1.3 M�. In this range, the mean
density of the convection zone scales as ρcz ∝ M−15.5, while the
radius and luminosity of the stars simulated here are proportional
to R ∝ M and L ∝ M4. This implies that the mixing length
velocity scales as vmlt ∝ M5.8, which leads to an estimate of the
Rossby number that scales as Romlt ∝ M4.8Ω−1

0 . The exponents
of the mass and rotation rate for this estimate are close to the fit
to the Rossby number shown above but imply a slightly smaller
dependence on the mass and more dependence on the rotation
rate. In laboratory experiments (Aubert et al. 2001), the Rossby
number is found to scale as Roexp ≈ (RaQEk3)2/5 ∝ Ω−1.2

0 ,
where RaQ = RaNu is the heat-flux-based Rayleigh number,
Nu is the Nusselt number, and Ek is the Ekman number. We
find that our stellar convection simulations scale similarly to
the experiments where Ro ∝ Ro1/2

exp = (RaQEk3)1/5 with RaQ
sampled at mid-domain.

Numerical simulations, on the other hand, suggest that the
Rossby number is inversely proportional to a power of the
rotation rate that is less than unity. This scaling is exhibited
here, in G-type star simulations using ASH (Brown et al. 2008),
in spherical shell segments (Käpylä et al. 2011), and in Cartesian
f-plane simulations (Käpylä et al. 2004). The rotational scaling
of the Rossby number in these simulations, with a power less
than one, is expected given the influences of rotation on the
convective patterns and the rms velocities of the flow, effects that
mixing-length theory does not explicitly treat. One can see this
directly from the convective flux in the simulations, where it can
be greater or less than the luminosity of the star depending on the
rotation rate. This leads to a mixing-length velocity that varies
with rotation rate and thus a more complicated dependence of
the Rossby number on the rotation rate.

On our path through parameter space, a complication arises,
where there is a threshold bulk rotation rate Ωth below which the
differential rotation becomes anti-solar. Such behavior is seen in
both simulations of spherical domains and Cartesian domains
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at various levels of turbulence in both the ASH simulations
(Brun & Palacios 2009; Matt et al. 2011) and simulations
carried out in Cartesian domains (Käpylä et al. 2004), as well
as in spherical segments (Käpylä et al. 2011). We observe that
this transition between solar-like and anti-solar-like differential
rotations occurs within flows that have a Rossby number of
nearly one. It is also apparent that this change in the rotational
behavior of the simulations is a function of mass, as it occurs
around 0.8 Ω� for 1.0 M� G-stars in Brown et al. (2008),
near 4 Ω� for the 1.2 M� F-type stars, and at about 7 Ω� for
the 1.3 M� F-type stars. We have been working to understand
how and why there is this branch of solutions possessing anti-
solar-like differential rotation, and we will be subsequently
reporting on it with models of F-, G-, and K-type stars. Briefly,
this transition arises from overdriven convection occurring due
to our choices of boundary conditions, diffusion profiles, and
initial stratification, all of which result in a Rossby number
greater than one throughout the bulk of the convection zone
and a reversal in the sign of the Reynolds stresses for rotation
rates below the threshold. However, due to the existence of this
branch of solutions, we have chosen the bulk rotation rates of the
simulations reported on here to be above this threshold rotation
rate.

8.1. Differential Rotation

The relative latitudinal differential rotation (ΔΩ/Ω0) estab-
lished in these simulations is measured between the equator and
60◦ latitude (Table 3). The relative radial differential rotation
measured between the bottom of the domain and the top at the
equator is also shown in Table 3. The trend for increasing rel-
ative latitudinal differential rotation at lower rotation rates and
decreasing ΔΩ/Ω0 at higher rotation rates is clear. There is a
peak in ΔΩ/Ω0 in both the 1.2 M� and 1.3 M� simulations,
with the former achieving a maximum around 7 Ω� and the
latter at 20 Ω�. In Brown et al. (2008), a peak in the latitudinal
differential rotation is reached at about 2 Ω�. These maxima,
however, are sensitive to the level of turbulence in both the sim-
ulations as shown in Brown et al. (2008), which is likely also
the case here but is not explicitly explored.

An intriguing feature of these simulations is that the absolute
differential rotation in both radius and latitude increases with
rotation rate (decreasing Rossby number), as seen in Figure 12.
It is also apparent that the mass of the star plays an important
role through its influence on the depth of the convection zone,
as well as the strength of the convective driving arising from
the increased luminosity of the star. Indeed, we find here that
the absolute latitudinal differential rotation ΔΩ60 established in
these simulations, and measured between the equator and 60◦
latitude, scales with the mass of the star and the inverse of the
Rossby number as

ΔΩ60 = 8.3 × 10−2 rad day−1

(
M

M�

)3.9 (
Ω0

Ω�

)0.6

(24)

= 5.3 × 10−2 rad day−1

(
M

M�

)6.2

Ro−1.05. (25)

This scaling of the absolute latitudinal differential rotation
with Rossby number and mass is shown in Figure 12(b).
Although the differential rotation decreases consistently with
increasing Rossby number among all the cases studied here,
there is some indication from the levels of differential rotation

achieved in Brown et al. (2008) that there may be a change in the
rate of increase of the absolute differential rotation at larger rates
of rotation. This may arise because there is either a maximum in
absolute differential rotation or simply slower growth at larger
rotation rates. However, probing these higher rotation rates is
beyond the current capabilities of ASH due to the exclusion of
centrifugal forces.

Mass also plays a crucial role in building increasingly strong
differential rotation in higher mass stars. The strong mass
dependence of the fit in Equation (24) reflects the more vigorous
convection and consequently larger Reynolds stresses that arise
during the transition from the Sun to the slightly more massive
F-type stars. The dependence of the magnitude of the differential
rotation on the mass, or more concretely the dependence on
effective temperature, is also clear in observations over a
large range of temperatures (Barnes et al. 2005; Reiners 2006;
Collier Cameron 2007). The scaling of the latitudinal differential
rotation in Collier Cameron (2007) is ΔΩ ∝ Teff

8.6 ∝ M4.3,
where Teff ∝ M1/2. As is evident in Equation (25), our scaling
of the differential rotation is close to this observational mass
scaling, within the bounds of the uncertainty of the observational
data. The reason for the discrepancy in the expected mass scaling
between Equations (24) and (25) is that the above fit is applied
to shifted data, making the mapping between rotation rate and
Rossby number more complicated. This is due to the fact that the
rotation rate mass fit to the differential rotation of our models
crosses zero and becomes negative below a particular value
of the rotation rate that depends on the mass of the star. We
remove this variation by shifting the data so that they may be fit
consistently as in Equation (25).

8.2. Latitudinal Temperature Gradient

A striking property of the meridional force balance in
Equation (16) is that increasing Ω0 leads to increasingly cylin-
drical rotation profiles, as one would expect from gyroscopic
pumping (Section 7). In the absence of baroclinicity, gyroscopic
pumping will produce a meridional circulation that acts to make
the contours of the angular momentum, and thereby the angular
velocity, more cylindrical (Miesch & Hindman 2011). We find,
however, that the baroclinicity of the flows increases with more
rapid rotation. The scaling of the latitudinal gradients in temper-
ature and entropy increases at a rate that nearly keeps pace with
the quadratic scaling of the rotation rate, reducing the tendency
for increased alignment with the rotation axis. This variation
of the temperature with mass and Rossby number is shown in
Figure 12(b), where ΔT60 decreases substantially with increas-
ing Rossby number (increase with increasing rotation rate) as

ΔT60 = 5.3 K

(
M

M�

)6.4 (
Ω0

Ω�

)1.6

, (26)

= 5.3 K

(
M

M�

)16.1

Ro−2.3. (27)

To understand the origin of these scalings, consider the
latitudinal gradients of the entropy and pressure that scale with
the ageostrophic component of the angular velocity, which in
turn scales as the Rossby number. To find how the latitudinal
gradient of the temperature should vary with rotation rate, we
combine the geostrophic pressure balance (Equation (15)) and
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the ageostrophic thermal wind (Equation (16)), which leads to
the following:

∂〈T〉
∂θ

= rλT
2

g

∂

∂z

[
Ω2 − Ω2

0

T

]
. (28)

This allows a simple homology relationship to be developed
with the assumptions that the effective temperature and the
radius of the star depend on only the mass of the star as
mentioned above. We find that when integrated over latitude
the temperature gradient becomes

ΔT60 ≈ ΔT0

(
M

M�

)2.5 (
Ω0

Ω�

)
ΔΩ (29)

= ΔT0

(
M

M�

)9.6

Ro−1.3ΔΩ. (30)

The solid curves in Figure 12(b) depict this homology rela-
tionship, where it overlays the actual values of the temperature
contrast in the simulations.

8.3. Meridional Circulation Kinetic Energy

Volume-averaged energy densities for our simulations are
shown in Table 3. At the lowest rotation rate, fluctuating
convective kinetic energy (defined as 0.5ρ〈u′2〉, KEC) and the
kinetic energy in the average differential rotation (0.5ρ〈uφ〉,
KEDR) are comparable. As the rotation rate is increased, the
KEDR grows strongly and the convective energy decreases
slightly, leading the KEDR to dominate the total kinetic energy.
The energy in meridional circulations (0.5ρ(〈vr〉+〈vθ 〉), KEMC)
is always small and decreases in both magnitude and percentage
of the total energy with more rapid rotation.

The volume-averaged meridional circulation kinetic energy
clearly decreases with rotation rate in both these simulations
and those of Brown et al. (2008). If we fit for this scaling, as we
have for the absolute differential rotation, we find that

KEMC = 2.4 × 104 erg cm−3

(
M

M�

)−1.2 (
Ω0

Ω�

)−0.8

(31)

= 2.4 × 104 erg cm−3

(
M

M�

)−7.4

Ro1.04. (32)

We can understand this scaling by returning to the equa-
tions of gyroscopic pumping and considering the scaling of the
axial torques. First, though, it is useful to extract the depen-
dence of the stream function on the gradients of the angular
momentum and the torques. Since the mean poloidal mass flux
is divergenceless, the meridional flow can be represented as
a stream function ψ such that 〈ρu〉 = ∇ × ψ φ̂. Expressing
Equation (20) in terms of this stream function and then inte-
grating the result clockwise from the lower boundary along L
contours, we arrive at

ψ = 1

λ

∫
C

λF
|∇L|ds, (33)

where C is the contour of integration. The denominator in
this equation is dominated by the λ component such that

∇L ≈ 2Ω0λ. This reduces Equation (33) to the following:

ψ ≈ 1

2λΩ0

∫
C

Fds ∝ M−7.4Ro1.3F [M, Ro] . (34)

The meridional circulation kinetic energy is consequently pro-
portional to

KEMC = 1

V

∫
V

(∇ × ψ φ̂)2

ρ
dV ∝ M−1.3Ro2.6F [M, Ro]2 .

(35)
The proportionality of the torque F is difficult to predict a

priori. One could assume that the Reynolds stresses follow the Λ
effect (Rüdiger 1989), in which case the axial torque associated
with the Reynolds stresses in our parameter regime should scale
as ρczv

2
mltRomlt

−1 ∝ M−4Romlt
−1 ∝ M9.8Ω0. However, this

would lead to a KEMC that is constant with the rotation rate,
which is clearly not the case here. Thus, without guidance to
predict the scaling of the torque, it must be fit for. Indeed, we
find that the Reynolds stress axial torque scales as

F ∝ M−3Ro−0.6. (36)

Therefore, the KEMC that arises from gyroscopic pumping
(Equation (20)) is proportional to

KEMC ∝ M−7.3Ro1.4, (37)

which correlates well with the KEMC found in our simulations
as seen in Figure 12(d) and Equation (32). That is, the torque
associated with the Reynolds stresses increases with rotation
rate, rather than decreases as expected from mean-field theory.

9. CONCLUSIONS

As is apparent from the observation of F-type stars, they rotate
on average much more rapidly than does the present Sun. In these
stars, rotation must strongly influence the convective motions
and lead to differential rotation. Such differential rotation has
been observed in many F-type stars (e.g., Reiners 2007). To
assess how this differential rotation may arise, we have explored
here the effects of rotation rate, convective overshooting, and
stellar mass on the patterns and mean properties of the global-
scale convection in simulations of two F-type stars.

We have found that the mean zonal flows of differential rota-
tion become much stronger with more rapid rotation and larger
mass, scaling as ΔΩ ∝ M3.9Ω0.6

0 or as ΔΩ/Ω0 ∝ M3.9Ω−0.4
0

(Section 8). This corresponds well with observational detec-
tions of differential rotation for increasing rotation rate (Reiners
2007) and with mass (Barnes et al. 2005; Reiners 2006;
Collier Cameron 2007). Accompanying the growing differential
rotation is a significant latitudinal temperature contrast, with
amplitudes of 1000 K or higher in the most rapidly rotating
cases. This contrast in turn scales with mass and rotation rate as
ΔT ∝ M6.4Ω1.6

0 . The maximum temperature contrast near the
surface occurs between the hot poles and the cool mid-latitudes
at about ±30◦, near the tangent cylinder. These temperature
fluctuations about the spherically symmetric mean temperature
are decomposed into its geostrophic and ageostrophic compo-
nents, both of which are linked to the rotation of the star and its
baroclinicity (Section 6). If this latitudinal temperature contrast
prints through the vigorous convection at the stellar surface, it
may appear as an observable latitudinal variation in intensity.
The thermal contrast would presumably persist for long periods
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compared to stellar activity, offering a way to disentangle this
intensity signature from that caused by spots of magnetism at
the stellar poles.

Additionally, we have seen that the mean meridional circula-
tion becomes much weaker with more rapid rotation and with
higher mass, consistent with the concept of gyroscopic pumping,
where the energy contained in these circulations drops approx-
imately as KEMC ∝ M−1.2Ω−0.8

0 . However, the scaling of these
quantities is sensitive to the variation of the Reynolds stresses,
and thus their variation with the level of turbulence in the sim-
ulations must be better understood. As suggested in Brown
et al. (2008, 2010), the weaker meridional circulations in more
rapidly rotating stars will have a strong impact on many theo-
ries of stellar dynamo action, including the Babcock–Leighton
flux–transport model favored for Sun-like stars as recently in-
vestigated (Jouve & Brun 2007; Jouve et al. 2010; Miesch &
Brown 2012). Indeed, the lack of large single cells of merid-
ional circulation at all latitudes in many models of more rapidly
rotating stars suggests that the most common profile used for
these flows may be oversimplified and is actually associated
with anti-solar-like differential rotation.

The simulations here include a portion of the stably stratified
radiative interior below the convection zone. It has been shown
here and in previous works to have a significant impact on
the morphology of the mean flows and on the magnitude of
the latitudinal thermal contrast. The largest impact is on the
thermal field, where it leads to about a 50% greater latitudinal
temperature contrast but only about 10% more differential
rotation. However, its inclusion does lead to a tilting of the
angular velocity contours to be more conical than cylindrical,
as occurs in cases without a stable region. The convection
exhibited in the simulations with a stable zone yields a region
of overshooting that is very slightly prolate and occupies about
1% of the star by radius.

Three of the cases presented here have exhibited a global-
scale shear instability that operates within the stable region and
persists for the duration of our simulations. This instability
is sensitive to the magnitude and the latitudinal profile of
the differential rotation and is present in both mass stars but
only at higher rotation rates. It has a significant impact on the
convection, causing greater depths of overshooting (Section 5),
and prints through into the convection zone (Section 3.5).
The instability and angular momentum transport and mixing
properties associated with it will be examined in a subsequent
paper (K. C. Augustson et al. 2012, in preparation).

Our simulations are hydrodynamic, and it is possible that the
inclusion of magnetism may alter the scalings of differential
rotation and latitudinal temperature contrast with rotation rate.
Prior MHD simulations of stellar convection have demonstrated
that in some parameter regimes, strong dynamo-generated
magnetic fields can react back on the differential rotation, acting
to lessen angular velocity contrasts as energy is transferred into
the magnetic fields (e.g., Brun et al. 2005; Browning 2008). We
are currently pursuing magnetic F-type star simulations, but it
is still too early to say whether the scaling trends identified here
for differential rotation and latitudinal temperature contrasts as
a function of Ω0 will survive. Given previous experience with
G-type stars, it is likely that the general functional dependence
with rotation rate is retained (Brown et al. 2010; Brown 2011).
Our simulations stop short of the turbulent stellar surface, and
it is thus difficult to estimate how all of the properties of the
convection seen here may affect stellar observations in detail.
However, we have found that the strong differential rotation

and large thermal contrasts are a robust feature over a range
of parameters, and it is likely that they will have observable
consequences.
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