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ABSTRACT

We present a novel and flexible tensor approach to computing the effect of a time-
dependent tidal field acting on a stellar system. The tidal forces are recovered from the
tensor by polynomial interpolation in time. The method has been implemented in a
direct-summation stellar dynamics integrator (NBODY6) and test-proved through a set
of reference calculations: heating, dissolution time and structural evolution of model
star clusters are all recovered accurately. The tensor method is applicable to arbitrary
configurations, including the important situation where the background potential is a
strong function of time. This opens up new perspectives in stellar population studies
reaching to the formation epoch of the host galaxy or galaxy cluster, as well as for
star-burst events taking place during the merger of large galaxies. A pilot application
to a star cluster in the merging galaxies NGC 4038/39 (the Antennae) is presented.

Key words: globular clusters: general – open clusters and associations: general –
galaxies: star clusters – methods: analytical – methods: numerical

1 INTRODUCTION

The halos of nearly all galaxies are populated by old glob-
ular clusters that presumably formed in gaseous discs at
high redshift (z ∼ 3 − 5, Kravtsov & Gnedin 2005). Young
‘populous clusters’, or ‘super-star clusters’ are found in the
Large Magellanic Cloud (Hodge 1961), starburst galaxies
(e.g. van den Bergh 1971), interacting galaxies and merger
remnants (e.g. Whitmore & Schweizer 1995; Miller et al.
1997) and also in quiescent spirals (Larsen 2002; Figer
2008). This suggests that globular cluster formation is
not unique to the early Universe and that the forma-
tion of these dense stellar systems is a common phe-
nomenon in star formation (Elmegreen & Efremov 1997;
Portegies Zwart, McMillan & Gieles 2010).

There is increasing evidence from studies of the Milky
Way and the Andromeda galaxy that some globular clus-
ters have only recently (past ∼Gyr) been brought in
through satellite accretion (e.g. Maŕın-Franch et al. 2009;
Mackey et al. 2010). In order to understand the relation be-
tween the young massive clusters and the old globular clus-
ters, i.e. their life-cycle, we need to place their evolution in a
cosmological context. During the formation process of galax-
ies through repeated accretion phases, substructures such as
star clusters or dwarf satellites evolve along complex orbits
in a non-static external potential. This makes their evolution
difficult (if not impossible) to describe analytically.

⋆ florent.renaud@cea.fr

To approach this problem numerically is also challeng-
ing because of the large range of evolutionary time scales
involved, ranging from several days for tight binaries in the
cores of clusters to a Hubble time for the host galaxy (see
the recent review by Dehnen & Read 2011). To be able to
self-consistently model the evolution of star clusters in ‘live’
galaxies one needs to rely on a direct-tree hybrid approach
(e.g. Fujii et al. 2007).

This is why most studies of the (dynamical) evo-
lution of star clusters simplify the effect of the exter-
nal tidal field by assuming a static background poten-
tial (e.g. Chernoff & Weinberg 1990; Vesperini & Heggie
1997; Fall & Zhang 2001; Baumgardt & Makino 2003;
Dehnen et al. 2004; Gieles & Baumgardt 2008; Hurley et al.
2008; Peñarrubia et al. 2009; Zonoozi et al. 2011). Although
this is probably an adequate approximation for many pur-
poses, it does not suffice for more complicated orbits such as
those of clusters in mergers of massive galaxies, or satellite
galaxies that are accreted.

In light of the last point, several recent studies have
adopted a (semi-)analytical approach to star cluster evo-
lution in more realistic external tides, such as the hierar-
chical build-up of galaxies (e.g. Prieto & Gnedin 2008) and
galaxy mergers (e.g. Kruijssen et al. 2011). In here the ef-
fect of mass loss because of stellar evolution, evaporation of
stars over the tidal radius and the shock-enhanced escape of
stars because of rapidly varying tidal fields (i.e. disc cross-
ings and bulge shocks) are applied analytically. In almost all
cases these processes are assumed to be independent of each
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other such that the individual resulting mass-loss rates are
simply added.

An important, and often dominant, mass-loss mecha-
nism is the relaxation driven escape of stars, so-called evap-
oration. Some models assume that a constant fraction of the
stars evaporate per half-mass relaxation time, independent
of the orbit (e.g. Gnedin & Ostriker 1997; Prieto & Gnedin
2008). Others consider that the escape fraction depends on
the galactocentric radius, often assumed to be the pericen-
tre distance (King 1962; Innanen et al. 1983; Fall & Zhang
2001). The final lifetime of clusters can be quite different,
depending on the details of the assumptions that are made.

Another critical disruptive agent is mass-loss due to ex-
ternal tidal perturbations, or ‘shocks’. The related lifetime
scales linearly with the density of the cluster (Spitzer 1958;
Ostriker et al. 1972) and it is, therefore, that the results of
semi-analytical models rely critically on what is assumed for
the relation between the cluster mass and the half-mass ra-
dius; a relation which is not only affected by evaporation (i.e.
because of the reduction of the mass in time), but also be-
cause of relaxation driven expansion (Hénon 1965; Goodman
1984; Baumgardt et al. 2002; Gieles et al. 2010), which as
far as we are aware is neglected in all semi-analytic ap-
proaches. For clusters on circular orbits in static potentials
that are well within the tidal limit initially (the half-mass
radius being less than a few percent of the tidal radius), it
was found that the expansion phase dominates the evolution
in the first half of the cluster’s lifetime, while evaporation
dominates in the second half (Gieles et al. 2011). In the lat-
ter stage the cluster density adjusts to the mean (galactic)
density along the orbit (Küpper et al. 2010). It is, there-
fore, necessary to consider both the internal evolution (re-
laxation) and the external effects (tides) simultaneously if
one considers the entire life-cycle of clusters.

Current direct N-body codes are capable of solving the
N-body problem numerically for N ∼ 105, together with
the effects of mass-loss of the individual stars, binary inter-
actions and tidal fields (Portegies Zwart et al. 2001; Aarseth
2003). Thanks to increasing computational power, it is now
possible to combine the relaxation driven evolution of star
clusters in cosmologically motivated external conditions. In
this paper we present a new method that integrates the ef-
fect of any tidal field to the evolution of galaxy substruc-
tures, that we specifically apply to star clusters. We do this
by extracting the tidal tensor, that contains all information
about the tidal field at the location of the substructure, from
galaxy simulations and subsequently ‘feed’ this to a stellar
dynamics code. However, we have not yet implemented the
other half of the scale coupling, as the feedback from the
small scales (e.g. metal enrichment, stellar winds, super-
nova explosions) is not retroceded to the ambient galactic
medium.

The paper is organised as follows: first, we setup the
framework for the computation of the tidal acceleration by
means of tensors (Section 2). The expressions found are then
applied to the special cases of circular orbits: well-known
expressions are retrieved using the new formalism in Sec-
tion 3. The role of the galactic profile on the evolution of
clusters through the escape of stars is specially explored
in Section 3.4. The limitations of the analytical approach
are explained in Section 4, while Section 5 presents the nu-
merical implementation of the method to compute the tidal

forces in a stellar dynamics code. A comparison with pre-
vious results obtained for idealized configurations is carried
out. Applications to innovative cases are presented as the
first practical illustrations of the method. Finally, the lim-
itations and some possible future developments of our ap-
proach are discussed.

2 ANALYTICAL DESCRIPTION OF

ARBITRARY TIDAL FIELDS

The main goal of the paper is to provide a general framework
within which to follow the evolution of self-gravitating stel-
lar associations in arbitrary and time-dependent tidal fields.
For concreteness in the remainder of the paper we focus on
star clusters orbiting within a galaxy in equilibrium, but the
formalism can be exported to many other situations (such
as dwarfs galaxies, galaxy mergers, galaxy clusters, etc).

2.1 Tidal and effective tensors

It is convenient to work in coordinates centred on the star
cluster being embedded in the background gravitational po-
tential, as opposed to the global system’s barycentre. The
tides derive from gradients in the external gravitational ac-
celeration across the cluster. Subtracting the acceleration of
the cluster’s centre of mass by the host galaxy, the relative
acceleration of a member star at the position r

′ in this frame
reads

d2
r
′

dt2
= −∇φc(r

′)−∇φG(r
′) +∇φG(0), (1)

where φc and φG are the gravitational potentials of the
star cluster and the host galaxy, respectively. The standard
treatment of the background gravity in the tidal limit (e.g.
Binney & Tremaine 2008) consists in regrouping the last two
terms in equation (1) and performing a linear expansion by
considering that r′ ≪ RG, with RG the distance between
the cluster and the galaxy’s barycentre. It is important to
recall that the linear expansion will hold when and if the
Laplacian of the galaxy’s potential is small at the location
of the cluster, regardless of the ratio r′/RG. Bearing this in
mind, the linearised equations of motion are expressed in
general form through the tidal tensor Tt of components

T ij
t (r′) =

(

− ∂2φG

∂x′i ∂x′j

)

r
′

. (2)

To first order in r
′ we have

∇φG(r
′) = ∇φG(0)−Tt(r

′) · r′ +O(r′2). (3)

Substituting in equation (1):

d2
r
′

dt2
= −∇φc(r

′) +Tt(r
′) · r′. (4)

The symmetry T ij
t = T ji

t allows us to express Tt in diago-
nal form in the base of its eigenvectors νi, (i = 1 to 3): the
amplitude of the eigenvalues λi is a measure of the strength
of the tidal field along the corresponding eigenvector. When
the proper base of the tensor is used to express the accel-
erations, the reference frame becomes non-inertial. Even so,
only a rotational component at angular frequency Ω ap-
pears because the translational component is absorbed in

c© 0000 RAS, MNRAS 000, 000–000



Evolution of star clusters in arbitrary tidal fields 3

equation (1). The net acceleration now includes non-inertial
terms from fictitious forces:

d2
r

dt2
=

gravitational
︷ ︸︸ ︷

internal
︷ ︸︸ ︷

−∇φc(r)

tidal
︷ ︸︸ ︷

+Tt(r) · r

−Ω× (Ω× r)
︸ ︷︷ ︸

centrifugal

−dΩ

dt
× r

︸ ︷︷ ︸

Euler

−2Ω× dr

dt
︸ ︷︷ ︸

Coriolis
︸ ︷︷ ︸

fictitious

, (5)

where r is the position vector in the non-inertial frame. The
centrifugal acceleration can be derived from the gradient of
a scalar potential

φf(r) =
1

2
(r ·Ω)2 − 1

2
Ω

2
r
2, (6)

defined up to an arbitrary additive constant. This in turn
leads to an effective tidal potential φe and the associated
effective tidal tensor Te of components

T ij
e (r) = T ij

t (r) +

(

− ∂2φf

∂xi ∂xj

)

r

≡
(

− ∂2φe

∂xi ∂xj

)

r

. (7)

The total acceleration becomes

d2
r

dt2
= −∇φc(r) +Te(r) · r − dΩ

dt
× r − 2Ω× dr

dt
. (8)

In diagonal form, we write the effective tensor Te as

Te(r) =

(
λe,1 0 0
0 λe,2 0
0 0 λe,3

)

, (9)

with the convention λe,1 > λe,2 > λe,3. In the rest of the
paper we will refer to the three λe’s as the effective eigen-
values.

Equation (8) cannot be simplified for a non-zero Euler
acceleration. Hence, the following analytical Sections 2.2, 2.3
and 3 focus on cases where Ω is constant in time. More gen-
eral configurations will be explored numerically in Section 5.

2.2 Tidal radius

The positions where the internal gravitational acceleration
of the cluster is exactly balanced by all the other accelera-
tions are called the Lagrange points Li (with i = 1 to 5). By
convention, L1 and L2 fall down the galaxy-cluster axis (L1

being between the two objects). The distance between the
centre of the cluster and L1 is referred to as the tidal radius
rt.

At L1, it is reasonable to approximate the potential of
the cluster with that of a point of mass Mc. Furthermore,
the effective tidal acceleration1 there is λe,1rt. Finally, the
Lagrange points are static in this reference frame, meaning
that the Coriolis acceleration of L1 is zero. With these con-
siderations, equation (8) gives the expression of the tidal
radius:

1 The eigenvector related to the largest eigenvalue λe,1 points
toward the galaxy.

rt =

(
GMc

λe,1

)1/3

. (10)

Note that this definition applies to all galactic potentials.
The sphere of radius rt can be seen as an approximation

of the physical boundary of the cluster. A more precise three-
dimensional definition, called the Jacobi surface, can also be
used.

2.3 Jacobi surface

The effective tidal potential derives from the linearization of
equation (7):

φe(r) = −1

2
r
⊤ ·Te(r) · r (11)

where r
⊤ is the transpose vector of r. Therefore, with the

point mass approximation for the cluster potential, the total
potential is

φ(x, y, z) = − GMc
√

x2 + y2 + z2
−λe,1

2

(

x2 +
λe,2

λe,1
y2 +

λe,3

λe,1
z2
)

.(12)

The three-dimensional surface of equipotential passing
in L1 is called the Jacobi surface. From equation (12), we
find that the corresponding potential energy (also called crit-
ical energy) is

EJ = −3

2

GMc

rt
. (13)

The equality of equations (12) and (13) defines the
equation of the Jacobi surface:

0 = 2r3t+
√

x2 + y2 + z2

(

x2 +
λe,2

λe,1
y2 +

λe,3

λe,1
z2 − 3r2t

)

.(14)

A star whose energy is exactly EJ cannot pass through
this surface, and thus can only escape through the points
L1 or L2, where the surface is ‘opened’ (see an example in
Fig. 1). At energies higher than EJ, the apertures of the
surface are larger. This plays a non-trivial role in the escape
rate, as discussed in Section 3.4.

3 APPLICATION TO CIRCULAR ORBITS

In this Section, we apply the formulae obtained in Section 2
to the special case of circular orbits around various galaxies
sitting in (−RG, 0, 0). The centrifugal term is derived from
the rotation speed of the co-rotating reference frame which
is, by definition, the orbital angular velocity Ω = (0, 0,Ω):

Ω =

√

GMG(RG)

R3

G

, (15)

where MG(RG) is the mass of the galaxy enclosed within
the orbital radius RG, and MG (with no argument) is the
total mass of the galaxy, and Mc ≪MG(RG).

The centrifugal acceleration is strictly opposed to the
tidal contribution along the y- and z-axes:

Ω2
r = −

(

−∂
2φG

∂y2

)

RG

r = −
(

−∂
2φG

∂z2

)

RG

r, (16)

so that the effective tidal eigenvalues are
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L2

L1

x

y
z

Figure 1. Jacobi surface computed from equation (14) for a clus-
ter in circular orbit around a point-mass galaxy (equation 18).







λe,1 =

(

−∂
2φG

∂x2

)

RG

−
(

−∂
2φG

∂z2

)

RG

λe,2 = 0

λe,3 =

(

−∂
2φG

∂z2

)

RG

,

(17)

for all circular orbits.

3.1 Point-mass galaxy

We first focus on the academic case of a cluster in circular
orbit around a point-mass galaxy. Using equation (17), we
find that the triplet of effective eigenvalues reads

{λe,1, λe,2, λe,3} =
GMG

R3

G

{3, 0,−1} , (18)

Note that when replacing this value of λe,1 in equation (10),
we recover the well-known expression of the tidal radius:

rt = RG

(
Mc

3MG

)1/3

=
(
GMc

3Ω2

)1/3

, (19)

(see King 1962, Fukushige & Heggie 2000, or
Binney & Tremaine 2008). The corresponding Jacobi
surface is displayed in Fig. 1, and the one-dimensional
projections of the total potential (solid black) are compared
to those of a cluster in isolation (dashed green) in Fig. 2.
The potential yields a saddle shape in L1 (and in L2, by
symmetry).

3.2 Power-law galaxy

The formalism of the tidal tensor allows us to evaluate the
tidal acceleration from any galactic potential. As an illus-
tration, we now focus on power-law galactic profiles of index
α < 3 whose density is

ρG(x, y, z) = ρ0
[
(x+RG)

2 + y2 + z2
]−α/2

, (20)

ρ0 being a constant. At the position of the cluster (0, 0, 0),
the effective eigenvalues are

{λe,1, λe,2, λe,3} =
4πGρ0

(3− α)Rα
G

{α, 0,−1} , (21)

which is comparable to the point-mass case discussed above.
This sets the value of the tidal radius at

rt = R
α/3
G

(
Mc(3− α)

4πρ0α

)1/3

=
(
GMc

αΩ2

)1/3

. (22)

The projections of the potential are plotted in Fig. 2
for α = 2.5 and 2.0. When normalized to the tidal radius,
only the z-component differs from the point-mass case. The
impact of this difference is further explored in Section 3.4.

3.3 Plummer galaxy

Consider now a Plummer (1911) potential of characteristic
radius r0, once again centered on (−RG,0,0),

φG = − GMG

[r2
0
+ (x+RG)2 + y2 + z2]1/2

. (23)

We introduce ξ = RG/r0 and evaluate the effective eigen-
values at the position of the cluster:

{λe,1, λe,2, λe,3} =
GMG

r3
0
(1 + ξ2)3/2

{
3ξ2

(1 + ξ2)
, 0,−1

}

. (24)

First, we consider ξ = 1 so that the cluster lies in the
tidally extensive regime of the Plummer sphere, i.e. where
the tidal contribution to the first effective eigenvalue is posi-
tive (Renaud et al. 2008). The triplet of effective eigenvalues
is

{λe,1, λe,2, λe,3} =
GMG

r3
0

{
3
√
2

8
, 0,−

√
2

4

}

, (25)

which gives a tidal radius2 of

rt = r0

(

Mc

3
√

2

8
MG

)1/3

=

(
GMc

3

2
Ω2

)1/3

. (26)

Second, by decreasing ξ, we shift the cluster toward the
centre of the Plummer potential. The tidal contribution to
λe,1 first tends toward zero; a value reached for ξ = 2−1/2.
For smaller values of ξ, the cluster lies in the cored region
of the galactic potential, and thus is in compressive tidal
mode (see Renaud et al. 2009): the tidal acceleration acts
in the same direction as the internal gravitational acceler-
ation of the star cluster. Following Chandrasekhar (1942),
Appendix A demonstrates that the centrifugal contribution
always compensates the compressive tidal acceleration on
circular orbits, so that the Lagrange points still exist and
thus, the tidal radius can be defined, even in compressive
tidal mode.

The expression of λe,1 in equation (24) reveals that a
given tidal radius can be obtained at two different galactic
radii: one in tidally extensive mode, and one in compressive
mode. The compressive counterpart of our extensive exam-
ple (equation 26) is obtained for ξ ≈ 0.66. Both cases are
plotted in Fig. 2. Interestingly, the potential in the extensive

2 Substituting α in equation (22) with the local slope of the den-
sity profile of the Plummer model (here 5/2 for ξ = 1) does not
lead to the correct tidal radius because the angular frequency Ω
differs between the Plummer and the power-law galaxies.
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Evolution of star clusters in arbitrary tidal fields 5

Figure 2. Projections of the total potential (from equation 12, with G = Mc = rt = 1), along the x-, y- and z-axes, for the cluster in
circular orbit in the xy−plane around a point-mass galaxy, galaxies with power-law density profile of slope 2.5 and 2.0, and a Plummer
galaxy with the cluster in the tidally extensive (ξ = 1) and compressive regimes (ξ = 0.66, see text). Along the x- and y-axes, all these
projections are identical. A circle marks the position of the Lagrange point L1. The potential of the cluster in isolation (r−1, green) is
also plotted, for comparison.

case (ξ = 1) is strictly identical to that found with a power-
law galaxy of index α = 1.5: the evolution of identical star
clusters set in these two configurations would be impossible
to distinguish.

The comparison between these five configurations em-
phasizes that the potential well of a star cluster not only de-
pends on the tidal radius, but also on the three-dimensional
shape of the effective tensor, which varies from galaxy to
galaxy. In the next Subsection, we examine the implication
of this on the escape rate of stars from the cluster.

3.4 Escape rate

For circular orbits, the escape rate varies, to first order, as
Ṁc ∝ Ω (e.g. Lee & Ostriker 1987; Baumgardt & Makino
2003; Gieles & Baumgardt 2008). However, the constant of
proportionality contains details of the shape of the density
profile of the galaxy. Tanikawa & Fukushige (2010) recently
demonstrated the importance of this secondary effect. They
did this by considering clusters in galaxies with different
power-law density profiles (as in our Section 3.2). The con-
stant ρ0 was varied such that the tidal radius was the same
in all cases. They found, somewhat counter-intuitively, that
in this set-up the clusters with the lowest orbital angular
velocity Ω had the highest escape rate. In the following, we
confirm and generalize their result, using the tensor formal-
ism.

To escape from the cluster, a star needs (1) to be able
to fly outside of the Jacobi surface and (2) to exit in a way
not to fall back in. The first condition implies that the total
energy E = v2/2+ φ of the star must exceed the Jacobi en-
ergy: E > EJ. The second condition tells us that a candidate
escaper which fulfills the first condition can still be trapped
in the potential well of the cluster for many crossing-times

Figure 3. Projection of the surface of equipotential in the xz-
plane, for an energy E = 0.95EJ and for the five galaxies consid-
ered in Fig. 2. The green circle represent the tidal radius.

(Fukushige & Heggie 2000; Baumgardt 2001): the potential
barrier keeps increasing with the distance in all directions
except along the galaxy-cluster axis linking L1 and L2 (see
Fig. 2). Therefore, the actual escapers are stars (1) with ex-
ceeding energy and (2) flying through the apertures in the
corresponding equipotential surface around L1 and L2. The
size of these apertures depends on the excess of energy and
on the shape of the tidal field (see Fig. 3).

c© 0000 RAS, MNRAS 000, 000–000



6 Renaud, Gieles & Boily

To evaluate the escape time, we seek the flux of stars
through the apertures. We compute it by repeating the cal-
culation applied by Fukushige & Heggie (2000) to point-
mass galaxies, but here for any galactic profile by means of
the effective eigenvalues. Details of the derivation are given
in Appendix B. We find that the timescale for escape for a
star with an excess of energy E − EJ is

tesc(E) =
2

π
√
3
C GMc

√
−EJ

(E − EJ)2

√

1− λe,3

λe,1
, (27)

where C is a dimensionless constant which depends on
the intrinsic properties of the cluster and which we com-
pute by numerical integration (C ≃ 0.4, see Appendix B).
Baumgardt (2001) wrote the (time dependent) dissolution
timescale tdiss of the entire cluster as

tdiss ∝ t
3/4
rh
t1/4esc (E = 2EJ), (28)

where trh is the half-mass relaxation time. This relation
holds for homologous clusters for which the half-mass radius
scales linearly with the tidal radius. We can then write the
dependence of the dissolution timescale for circular orbits
on the galactic parameters as:

tdiss ∝ r
3/2
t

(

1− λe,3

λe,1

)1/8

. (29)

We observe a first order dependence of the dissolution
timescale on the tidal radius, but also a second order effect
due to the shape of the galactic potential. This relation con-
firms and extends the conclusion of Tanikawa & Fukushige
(2010) to any galaxy: for a given tidal radius, a highly neg-
ative ratio of the effective eigenvalues corresponds to a slow
dissolution, as illustrated in Fig. 4.

The proportionality factor in equation (29) depends on
the properties of the cluster (trh, C, Mc), which all evolve
with time. Thus, tdiss is an instantaneous estimate of the dis-
solution timescale, and should not be mistaken with the ac-
tual life-time of the cluster. Moreover, the evolution of these
properties depends on the tidal field and is very involved
(if not impossible) to estimate analytically. In Section 5.3,
numerical experiments show indeed that the actual life-time
can be very different from the analytical value of tdiss given
by equation (29).

4 NON-CIRCULAR ORBITS

As stated earlier, writing the tidal tensor in its proper base
makes the reference frame non-inertial: the fictitious accel-
erations must be added. In the cases of linear or circular
orbits, the Euler force is null and the formalism of the ef-
fective tensor allows for a simple mathematical description
of the net acceleration (see Section 3). However, for time
dependent rotations, the Euler effect must be added: the ef-
fective tensor does not suffice to describe the full impact of
the galaxy, and the formalism looses its advantage of ana-
lytical simplicity.

However, nothing forbids to write the tidal tensor in
the inertial frame, where it is non-diagonal, and to compute
the tidal acceleration numerically. The major advantage of
such a method is that the centrifugal, Euler and Coriolis
accelerations, which are difficult to evaluate along complex
orbits, are not required anymore. That is, the tidal tensor

Figure 4. Dissolution timescale (tdiss, from equation 29) and
surface of aperture in the Jacobi surface around L1 and L2 (A,
computed from equation 14) as functions of the ratio of the ef-
fective eigenvalues, for a given tidal radius and a given cluster.
Both quantities are normalized to the values they take in the case
of a point-mass galaxy. The tidally compressive regime is sepa-
rated from the extensive one by the vertical line. Symbols mark
the cases illustrated in Fig. 2 and 3 (from left to right: Plummer
ξ = 0.66, Plummer ξ = 1, power-law α = 2.0, power-law α = 2.5,
point-mass).

computed in the inertial reference frame fully represents the
galactic acceleration on star clusters and allows for a numer-
ical treatment in any galaxy and along any orbit. The next
Section explains how this method can be implemented in an
N-body code.

5 N-BODY SIMULATIONS: NBODY6tt

When expressed in the inertial reference frame, the tidal
tensor contains all the information on the effect of the galaxy
on its cluster. Therefore, the equations of motion of all the
stars of the cluster can be solved numerically, for any tidal
field. In this Section, we briefly present one implementation
and a suite of tests, before applying the method to innovative
cases.

5.1 Retrieving the external force

The simulations of the star clusters are done with the stellar
dynamics code NBODY6 and its version for Graphics Process-
ing Unit (GPU, Aarseth 20103). Several cases of galactic po-
tentials already exist in NBODY6 and have been widely used
in previous studies. For testing purposes, we use these fea-
tures and refer to them as built-in methods. On top of these
pre-existing tools, we have modified NBODY6 to include the
tidal forces by means of the tidal tensor: this new version of
the code is called NBODY6tt.

Before the simulation, the tidal tensor is computed in
the inertial reference frame (equation 2): its nine compo-
nents are sampled along the orbit of the cluster within the

3 http://www.ast.cam.ac.uk/∼sverre/web/pages/nbody.htm
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galaxy, either analytically, or by means of independent galac-
tic simulations (see Renaud et al. 2009; Renaud 2010). The
sampling frequency is chosen to ensure that the high fre-
quency features of the tidal acceleration, both in term of
intensity and orientation, are recovered. A table of sampled
tensors is then passed to NBODY6tt. During the simulation of
the cluster, the components of the tensor are quadratically
interpolated whenever the gravitational force on a particle
needs to be updated. For a star of mass m at the position
{x′i} with respect to the centre of the cluster, the tidal force,
whose i-th component reads

F i
t = m

∑

j

T ij
t x

′j , (30)

is added to the gravitational force due to the N − 1 other
particles (see Aarseth 2003, for details on the solving of the
N-body problem).

As soon as physically-time-dependent processes (like
stellar evolution) are not involved, the entire study remains
scale-free. The units adopted below are the cluster’s N-body
units (G =Mc = −4Ec = 1, with Ec being the total energy
of the cluster; see Heggie & Mathieu 1986). One of the pos-
sible scalings to physical units is proposed in Table 1.

In the inertial reference frame, it is generally not possi-
ble to evaluate the effective eigenvalues and thus, the tidal
radius and the energy of the Jacobi surface. Therefore, to
define the cluster membership, we have adopted an empiri-
cal criterion: a star is considered as a cluster member when
the sum of its kinetic energy exactly balances the potential
energy due to the N − 1 other stars, N being determined it-
eratively until convergence (see Peñarrubia et al. 2006). For
circular orbits, we have measured that this count only differs
from the number of stars within the tidal radius by a few
percent.

5.2 Tests

To ensure the validity of the method, we ran a series of
tests to compare the new implementation with the built-
in methods4 of NBODY6. For both codes, the centre of the
cluster is fixed and the tidal field mimics the orbit of the
galaxy around it. The orbits, shown in the top-right panel
of Fig. 5, are circular of radius RG = 1000 (A), circular of
radius RG = 3000 (B), and elliptical with an eccentricity 0.5
and a pericentre of 1000 (C), which places the apocentre at
a distance of 3000 so that the tidal field takes intermediate
values, between the strong field (A) and the weaker one (B).

The cluster is a Plummer (1911) sphere made of N =
8000 equal-mass particles. To focus on the effect of the tides,
we have switched off stellar evolution. The parameters of the
run are listed in Table 1. The evolution of some Lagrange
radii of the cluster are plotted in Fig. 5: before core-collapse,
the relative differences (1−rNBODY6/rNBODY6tt) remains be-
low 5%, in all cases. The differences increases after core col-
lapse, but not systematically, probably because of the forma-
tion of binaries which is sensible to numerical and N-body
noises. As a complement, Fig. 6 plots the evolution of the
number N of stars in the cluster, normalized to its initial
value. In both measurements (rLagr and N), the agreement

4 Option #14 = 3 in NBODY6.

Figure 6. Number of stars in the cluster along the orbits A, B
and C around a point-mass galaxy, normalized to its initial value.
The black curves represent the solution using the built-in method
of NBODY6, while the coloured ones are associated with the use of
the tidal tensor. The symbols mark the passage of the cluster at
the positions marked in the top-right panel of Fig. 5.

of the two approaches is very good for all the orbits. In
particular along the elliptical orbit C, the expansion of the
outermost layers of the cluster and the increased mass-loss
near the pericentre passages is well-reproduced by the new
method, both in term of time (epoch, delay and duration)
and amplitude. These tests demonstrate that the interpola-
tion scheme used to evaluate the tidal tensor at any time
and the computation of the force done by NBODY6tt allow
us to retrieve the results obtained with well-tested methods,
at a high level of accuracy.

5.3 Other galactic profiles

The method having been successfully tested, we now ex-
plore the evolution of clusters, still on circular orbits, but
in the galactic potentials presented in Section 3 and Fig. 2.
The parameters MG and ρ0 have been chosen so that the
tidal radius is the same as that of the orbit A. The ten-
sors are computed analytically along the orbit and passed
to NBODY6tt.

The evolution of N is presented in Fig. 7. The life-times
of the clusters are ordered as predicted in Section 3.4. We
notice however that, for example, the life-time of the cluster
in the Plummer galaxy at ξ = 0.66 is ≈ 2.2 time longer than
that around the point-mass galaxy, while equation (29) pre-
dicts a value of ≈ 1.57. The discrepancy is due to a different
evolution of the internal properties of the cluster (trh, C,
Mc), which are enclosed in the constant of proportionality
of equation (29). Furthermore, because of the different shape
of the potential (i.e. the second order effect in equation 29),
the escape of stars does not occur at the same rate in all
galaxies, which modifies Mc and the tidal radius itself (i.e.
the first order effect) differently from galaxy to galaxy. As
a consequence, the effect due to the mild variation of the
three-dimensional shape of the Jacobi surface gets strongly
amplified with time.

Simulations at higher resolution (N = 16×103 and 32×

c© 0000 RAS, MNRAS 000, 000–000



8 Renaud, Gieles & Boily

Table 1. One possible scaling of the simulations in physical units

Quantity N-body units Physical units
(at initial time)

Cluster scale
Mass (Mc) 1 8× 103 M⊙

Mass of a particle (m) 1/8000 1 M⊙
Virial radius (rv) 1 1 pc

Characteristic radius (r0,c) 3π/16 0.59 pc

Half-mass radius (rh) r0,c/
√

22/3 − 1 0.77 pc

Crossing time (tcr) 2
√
2 0.47 Myr

Galactic scale
Mass (MG) 1.25× 106 1010 M⊙

1st effective eigenvalue⋆ (λe,1) [3.75, 0.13]× 10−3 [135.0, 5.0]× 10−3 Myr−2

Orbital radius⋆ (RG) [1, 3]× 103 [1, 3] kpc
Orbital period† (torb) [178.3, 927.7, 504.8] [29.6, 154.0, 83.8] Myr

⋆ for the orbits A and B, respectively.
† for the orbits A, B and C, respectively.

Figure 7. Evolution of the normalized number of stars in the
cluster on circular orbit in the galactic potentials presented in
Section 3, compared to the case of a cluster in isolation (dashed
green line).

103 particles, but always the same Mc) have also been done,
with these tidal fields. Not surprisingly, NBODY6tt shows that
the actual life-time of the clusters increases as ∼ N3/4 (see
equation 28 with the usual scaling of trh with N), so that
the discrepancy between the analytical values of tdiss and the
life-times measured numerically for our five galactic cases is
preserved at higher resolution. This demonstrates that our
conclusions are not affected by the low-N statistics of our
experiments.

It is therefore very involved to derive analytically the
mass or the life-time of clusters from initial parameters only.
The use of numerical methods like NBODY6tt provides a so-
lution, but at the non-negligible cost of computational time.

5.4 Fully arbitrary tidal field

As a last step toward generality, this Subsection presents the
results obtained for a complex and highly time-dependent

tidal field. The orbit chosen is extracted from a simulation
of the Antennae galaxies (NGC 4038/39), a prototypical ma-
jor merger. The galactic run, the parameters and the orbit
are described in Renaud et al. (2009, Fig. 8, orbit B, see
also their Fig. 3): the cluster starts orbiting in the disc of
NGC 4038 at ∼ 6 kpc (on average) from the galactic cen-
tre; then it is ejected by the first galactic pericentre pas-
sage into the intergalactic bridges before falling back into
the central region and remaining there for the rest of the
merger. The Antennae being a real, observed object, the
units are now scaled according to the galactic simulation
(based on the observed spatial extension of the tidal tails
and the peak radial velocity). The NBODY6tt run is arbitrar-
ily started 100 Myr before the first pericentre passage of the
two galaxies. The orbit of the cluster has also been inte-
grated within its host galaxy (NGC 4038) in isolation, as a
reference simulation. In both cases, the cluster is setup iden-
tically to those of the previous Sections (see Table 1). Our
physical scaling makes it comparable in mass (8000 M⊙)
and density (∼ 2000 M⊙ pc−3 within the half-mass radius)
to Westerlund 1 or NGC 3603 (Portegies Zwart et al. 2010).

The maximum eigenvalue λ1 of the tidal tensor is plot-
ted in Fig. 8.a, in the case of the merger (red) and of the
isolated galaxy (blue). The cluster is in compressive mode
for λ1 < 0. The centrifugal term5 Ω2 is shown in logarith-
mic scale in Fig. 8.b. The peaks denote the velocity kicks the
cluster receives when it is gravitationally slingshot. Fig. 8.c
displays the ratio of the density of the cluster and the local
density of the galaxy6. Finally, the evolution of the number
of stars in the cluster is displayed in Fig. 8.d, and compared
to that of the cluster in isolation (green).

5 To evaluate the centrifugal term Ω2, we use the eigenvector ν1

associated with λ1. This vector points towards the main source
of gravitation and thus, the variation of its direction gives the
instantaneous orbital rotation speed. We obtain it via the dot
product of two consecutive (normalized) ν1’s:

Ω(t) ≈ acos[ν1(t) · ν1(t − dt)]

dt
.

6 The local density of the galaxy is given by the trace of the tidal
tensor, through Poisson’s law:

c© 0000 RAS, MNRAS 000, 000–000
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Figure 5. Top-right panel: orbits of the clusters in the galactocentric frame. Other panels: Evolution of the 10%, 50% and 90% Lagrange
radii of the cluster on the three orbits, computed by the built-in method (black) and by NBODY6tt (colour). On the top of each panel,
crosses mark the passages of the cluster at its left-most position in the top-right panel (i.e. at pericentre for orbit C). The core-collapse
phase is well visible at t ∼ 1700 − 2000.

At t ≃ 180 Myr, the cluster is in the extensive regime of
the tidal bridges, marked by a slow increase of λ1: the mass-
loss accelerates with respect to that of the cluster in the
isolated galaxy. During the second galactic pericentre pas-
sage (t ≃ 285 Myr), the tidal field is mostly extensive, which
once again, enhances the escape of stars. Later, the galaxies
have merged and the cluster is orbiting the remnant. Its or-
bital period (∼ 140 Myr) is clearly visible in both λ1 and Ω2,
but also in the mass-loss which is accelerated at pericentre,
in a comparable fashion as the elliptical test-case of Fig. 6.
The rapid variations of λ1 near the pericenter passages exist
because the cluster flies at high speed in a highly asymmet-
ric potential, which can be momentarily compressive at the
location of the cluster.

Along this particular orbit, the local galactic density is,
on average, about three orders of magnitude smaller than
that of the cluster but the ratio of the two is peaked at sev-
eral epochs. Therefore, the tidal field only affects the clus-
ter during precise and short periods of time: the cluster is
dense, robust enough to remain mildly disturbed on the long

∑

i

λi = −∇2φG(r) = −4πGρG(r).

timescale. In other words, the life-time of this cluster is al-
most independent of the merger; only its ‘life-style’ differs
from the case of the isolated galaxy. However, the analysis of
this single case is not statistically relevant to conclude that
the merger has no secular impact on its clusters. The prop-
erties of the cluster population, in particular the cluster age
function, rely on many parameters (structural and orbital)
and we leave their study to a forthcoming paper.

6 SUMMARY, LIMITATIONS AND

CONCLUSIONS

In this contribution, we propose a new formalism to describe
the tidal field in N-body simulations by the means of ten-
sors. Although the analytical approach rapidly becomes too
involved for accelerated motions, we have derived the ex-
pressions of quantities representing the effect of the tides
on stellar systems for circular orbits, with no restriction on
the shape of the external potential. The main results of this
study are:

• The use of the tidal and effective tensors allows us to
simplify the representation of the problem, without loss of
information (Section 2.1). Useful quantities like the tidal ra-
dius (equation 10), the energy of the Jacobi surface (equa-

c© 0000 RAS, MNRAS 000, 000–000



10 Renaud, Gieles & Boily

Figure 8. (a): Maximum eigenvalue of the tidal tensor along the
orbit in the Antennae (see text, red), and in the same progenitor
galaxy but isolated (blue). (b): Instantaneous centrifugal contri-
bution to the effective acceleration. (c): Logarithm of the ratio
of the density of the cluster and the local density of the galaxy.
The horizontal dashed lines show the ratios averaged over the
life-time of the cluster. (d): Evolution of the normalized number
of stars in the clusters in these galaxies, and in an isolated cluster
(green). Vertical dotted lines mark the galactic pericentre pas-
sages and the arrow indicates when the cluster is in the bridges
in the simulation of the Antennae.

tion 13) or the escape timescale (equation 27) can be easily
computed for a given cluster.

• The tidal radius is a first order approximation of the
effect of a galaxy on a star cluster. The three-dimensional
shape of the galactic potential has a second order effect (Sec-
tion 3.4 and equation 29).

• For a given tidal radius, a point-mass is the most ef-
ficient galactic profile in dissolving a cluster. Shallower po-
tentials lead to longer dissolution times (Fig. 4).

• A cluster in compressive tidal mode loses its stars more
rapidly than in isolation, but significantly more slowly than
if it was in extensive mode (Section 3.4).

• The knowledge of the evolution of the cluster parame-
ters (half-mass radius, mass, energy distribution) is key to
estimate the cluster life-time (Section 3.4 and Appendix B).

• For non-circular orbits, the analytical approach be-
comes very involved so that general and simple formulae
do not exist (Section 4).

To overcome this issue, we have developed and implemented
a numerical method called NBODY6tt which computes the
evolution of N-body models of star clusters in any tidal
field, by means of the pre-calculation of inertial tidal ten-
sors. This method has been successfully tested and applied
to innovative cases. Our main conclusions are:

• The tidal force felt by the stars of a star cluster can
be accurately computed by evaluating the tidal tensor at all
time by means of quadratic interpolation (Section 5.2).

• The dependence of the dissolution time on the three-
dimensional shape of the galactic potential highlighted in
Section 3.4 is confirmed by our numerical experiments. The
numerical method does not suffer from the lack of knowledge
of the evolution of the cluster properties that one has to face
in a (semi-)analytical approach (Section 5.3).

• Our implementation has been applied to the complex
case of a cluster in the major merger of the Antennae galax-
ies (Section 5.4). Its mass-loss reflects the nature of the time-
dependent tidal field experienced along the orbit. In particu-
lar, the alternation of extensive and compressive tidal modes
strongly affects the instantaneous dissolution rate, over a
time-scale of several 107 yr.

This preliminary study shows the way to a very wide
range of possible applications. However, one should keep in
mind that our study is limited in several aspects. On the one
hand, our cluster simulations are gas-free. Therefore, we can-
not address the important point of the early life of the star
cluster, prior to gas expulsion (first ∼ 106 yr of the cluster’s
life), and we limit our study to initially relaxed systems. On
the other hand, the second half of the galaxy-cluster cou-
pling is not taken into account by our method: the feedback
from stellar evolution, the escape of stars in the field and the
formation of long tidal tails or streams are not implemented.
Although they have a limited impact on the evolution of the
cluster itself, it would be important to monitor their effects
at larger scale (e.g. the metal enrichment of the interstel-
lar medium). Furthermore, the mass-loss experienced by a
cluster could affect its orbit within its host galaxy and thus,
change the tidal field. In our approach, the scale decoupling
does not allow to account for such effect.

To conclude, we have shown that a star cluster plunged
in a time-dependent tidal field leads to a complex evolu-
tion, out-of-reach of (semi-)analytical approaches. A numer-
ical method like the one proposed by NBODY6tt provides a
framework for future explorations of the role of the tides
on star clusters. Among others, the use of a stellar mass
function, primordial binaries and high order stars, stellar
evolution and stellar mass-loss are as many lines of investi-
gation to be pursued on top of the evolution in a background,
time-dependent, galactic potential.

In a forthcoming paper, we will use more detailed galac-
tic simulations including a prescription on the star forma-
tion, to compute the tidal tensors of an entire cluster popu-
lation. NBODY6tt will help us to derive the cluster- mass and
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age functions and their evolution, in various type of galaxies,
in particular in mergers.
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APPENDIX A: EXISTENCE OF THE

LAGRANGE POINTS

The Lagrange points L1 and L2, which define the tidal radius
rt, exist when the internal gravitational acceleration of the
cluster is balanced by the effective tidal acceleration:

GMc

r2t
= λe,1rt. (A1)

Along a circular orbit of radius RG, one gets

GMc

r2
t

=

[

−
(
∂2φG

∂r2

)

RG

+ Ω2

]

rt, (A2)

which can be re-written by introducing the epicycle fre-
quency κ:

GMc

r2t
=
[
−
(
κ2 − 3Ω2

)
+ Ω2

]
rt. (A3)

This tells us that the tidal radius can be defined for
κ2/Ω2 < 4, which is always the case since the maximum
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value κ2/Ω2 = 4 is reached for homogeneous mass distribu-
tions. To conclude, on a circular orbit, the centrifugal ac-
celeration always compensates the tidal component, even in
compressive mode, so that the Lagrange points L1 and L2

always exist.

APPENDIX B: COMPUTATION OF THE

ESCAPE TIME

In this Appendix, we generalize the expression of the escape
time derived by Fukushige & Heggie (2000) for a cluster in
a circular orbit around a point-mass galaxy, to the case of
any galactic potential. First, the origin of the coordinates is
shifted to L1 and the total potential is expanded to second
order, so that

φ− EJ =
λe,1

2

[

−3x2 + y2 + z2
(

1− λe,3

λe,1

)]

. (B1)

The flux of phase volume across the new x = 0 is expressed
as

F(E) =

∫

ẋ>0

δ

(

φ+
v2

2
− E

)

ẋdẋdẏ dż dy dz, (B2)

where the dot indicates derivation with respect to time and
δ is the Dirac function. We change variables to w : ẋ 7→
φ + v2/2 − E so that dw = ẋdẋ and integrate the Dirac
function over w to get

F(E) =

∫

ẋ>0

dẏ dż dy dz, (B3)

with integration boundaries satisfying

2(E − EJ)− λe,1

[

y2 + z2
(

1− λe,3

λe,1

)]

> 0. (B4)

We change the remaining four variables into the hyper-
spherical coordinates {R, θ, τ, ψ}, i.e.






y = λ
−1/2
e,1 R cos θ

z =
[

λe,1

(

1− λe,3

λe,1

)]−1/2

R sin θ cos τ

ẏ = R sin θ sin τ cosψ
ż = R sin θ sin τ sinψ

with







R > 0
θ ∈ [0, 2π]
τ ∈ [0, π]
ψ ∈ [0, π]

(B5)

so that the condition equation (B4) becomes

2(E − EJ)−R2 > 0. (B6)

The determinant of the Jacobian matrix of the transforma-
tion gives the hyper-volume element:

dẏ dż dy dz =
R3 sin2 θ sin τ

λe,1

√

1− λe,3

λe,1

dR dθ dτ dψ. (B7)

The flux is finally

F(E) =
2π2(E − EJ)

2

λe,1

√

1− λe,3

λe,1

. (B8)

The total flux is 2F because stars can escape through aper-
tures around two Lagrange points.

Similarly, the phase-space volume can be written

V =

∫

δ

(

φ+
v2

2
− E

)

d3r d3v. (B9)

We first take out the angular part of the velocity and inte-
grate the Dirac function over v:

V = 4π

∫
√

2(E − φ) d3r. (B10)

Defining the dimensionless quantities
{

Ψ⋆ = (E − φ) rt/(GMc)
r⋆ = r/rt,

(B11)

and substituting in equation (B10) yields

V = 4π
√
2 (GMc)

1/2 r
5/2
t

C, (B12)

where

C =

∫ √
Ψ⋆ d3r⋆ (B13)

is a dimensionless quantity which describes the intrinsic
properties of the cluster. Instead of integrating over the en-
tire solid angle, we note that the flux V is non-zero only
at the vicinity of the Lagrange points L1 and L2. In a first
approximation, we may consider a non-zero flux only at the
exact position of L1 and L2. In that case, we replace the an-
gular dependence of the previous integral with Dirac func-
tions so that only two angular directions remain. That is, C
becomes

C = 2

∫ √
Ψ⋆ r⋆

2
dr⋆. (B14)

For King profiles with the usual parameter Ψ0/σ
2 ranging

from 3 to 12, we found (by means of numerical integrations)
that C takes values ranging from 0.38 to 0.39 with a maxi-
mum reached for Ψ0/σ

2 ≈ 8.
By using the general definitions given in Section 2, we

find

V = 4π C
√
2 (GMc)

4/3λ
−5/6
e,1 . (B15)

It follows that the timescale for escape with the energy E is

tesc(E) =
V

2F(E)
, (B16)

which gives equation (27).
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