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1 Introduction

Besides providing explicit examples of black hole uniqueness violations in five dimen-

sions, [1–6] and revolutionizing our understanding of the phases of black hole solutions

in various dimensions [7, 8], black rings have triggered the crystallization of the so-called

blackfold approach [9, 10] for determining whether a certain black membrane with certain

angular momenta and a certain horizon topology exists in pure gravity in any number of

dimensions. This approach is in the process of being extended to blackfolds with magnetic

and electric charges in supergravity, which will help to better understand the physics of

branes in thermal backgrounds and have important applications to the study of strongly-

interacting gauge theories at finite temperature via the AdS-CFT correspondence [11].

One of the best benchmarks for testing and perfecting the blackfold approach and its

charged generalizations is the construction of fully-backreacted explicit solutions that de-

scribe rings or membranes in various spacetimes. This is by no means an easy task, except

when there exists an underlying principle (like supersymmetry) that allows one to simplify

and solve the cohomogeneity-two Einstein’s equations. Starting from an observation of

Goldstein and Katmadas that by flipping a few signs in the equations underlying BPS so-

lutions one obtains non-supersymmetric “almost-BPS” solutions [12], the authors together

with Warner, Dall’Agata and Bobev have uncovered over a series of papers several very

large classes of multicenter solutions in four-dimensional supergravity [13–17], that describe

both non-supersymmetric black rings in Taub-NUT, as well as the seed solution for the

most general under-rotating four-dimensional black hole. Furthermore, two of the authors
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and Dall’Agata have constructed the explicit duality transformations that allow one to

start from an almost-BPS solution and obtain the most general class of multicenter ex-

tremal solutions of the STU model where one center is “intrinsically” non-supersymmetric

and has four-dimensional rotation, while the other centers are “locally-BPS” [18]. Work

is in progress by one of the authors and Bossard to obtain the most general multicenter

solution with an arbitrary number of rotating non-BPS interacting centers [19].

Given the importance of finding new black rings, and given the power of the methods to

construct multicenter non-BPS solutions, it is but natural to ask whether these methods can

be used to construct black rings. After all, from the perspective of multicenter solutions [20],

a black ring in R
4 or Taub-NUT is nothing but the five-dimensional supergravity uplift of

a two-center solution, where one center has a nontrivial Gibbons-Hawking (or D6) charge

but no horizon, while the other center is a D4-D2-D0 black hole.

By now, three solutions for black rings in Taub-NUT have been constructed: the

first one is supersymmetric [21–23], and descends in four-dimensions to a BPS two-center

solution where one of the centers is a D6 brane and the other center is a BPS D4-D2-D0

black hole. The second black ring solution [13] is non-supersymmetric, and falls in the

so-called almost-BPS class [12]: it is again a two-center solution, and each center is BPS

by itself, but the orientation of the charge of one of the centers is reversed compared to

the BPS solution, and hence supersymmetry is broken. The third solution is a solution of

pure gravity, that does not have any electric or dipole magnetic charges [24].

The black-ring-in-Taub-NUT solution that we construct in this paper does have electric

and dipole magnetic charges, but is different from the BPS and almost-BPS solutions

because the black-ring center descends in four dimensions to a rotating black hole, and

hence is intrinsically non-supersymmetric. The uplifted solution therefore not only has

angular momentum along the S1 of the black ring horizon (as all black rings do) but also

rotates along the S2 of the horizon. In pure gravity such a black ring was constructed in

five-dimensions by Pomeransky and Senkov [25], generalizing the non-rotating black ring

of Emparan and Reall [1], but for rings with nontrivial dipole and electric charges no such

generalization is known.1

The method for building our black ring solution uses the explicit four-dimensional

S-duality map recently found in [18], that allows one to take a multicenter solution with

certain electric and magnetic charges and obtain, roughly speaking, a solution whose elec-

tric and magnetic charges are flipped. If one starts from a single-center solution for a

four-dimensional rotating non-BPS black hole with one D6 and three D2 charges, this du-

ality map yields a rotating black hole with three D4 and one D0 charge, which lifts up in

M-theory to an M5-P rotating extremal black string. Furthermore, by turning on Wilson

lines (axion vev’s) in the original solution, one can also give M2 charges to this rotating

black string.

Having obtained a rotating black string solution, the question is whether one can bend

it into a black ring and put in in Taub-NUT, and if possible in an asymptotically-five-

dimensional solution. This is done by constructing a two-center solution, where one of the

1For doubly-rotating black rings with only electric charges see for example [26, 27].
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centers is the black string, and the other is a Gibbons-Hawking center (which descends in

type IIA to a fluxed D6 brane2). Given that we obtained the black string by S-dualizing

an D6-D2-D2-D2 black hole, we can ask what should be the object one needs to S-dualize

to obtain a fluxed D6 brane. The answer is: any fluxed brane with D0 charge.

Hence we propose to obtain a rotating charged non-BPS black ring in Taub-NUT by

S-dualizing a two-center almost-BPS solution in which one of the centers is a rotating

D6-D2-D2-D2 and the other center is a fluxed brane with D0 charge, or equivalently an

M-theory object that rotates along the M-theory circle. The most obvious such object

is a fluxed D4 brane, which uplifts in M-theory to a two-charge supertube wrapping the

M-theory circle. Since the S-dual of a supertube is a fluxed D6 brane, the M-theory uplift

of the S-dual configuration should produce a rotating black ring in Taub-NUT. Note that

taking for the second center a fluxed D4 brane, one expects — and this will indeed happen

— to have non trivial “charges dissolved in fluxes” in the final solution, coming from the

second center.

By explicitly constructing the solution we find that the story is a bit more complicated:

the interaction between the two centers induces after S-duality a nontrivial D6 charge at the

black hole location; this causes its M-theory uplift to change topology, and not be a black

ring but a KK black hole. However, there exists a very special choice of parameters that still

maintains the black-ring horizon topology. For this choice, the solution describes a Taub-

NUT rotating non-supersymmetric black ring with M5 dipole charges and M2 charges.

The first obvious question is whether this Taub-NUT ring can be made into an asymp-

totically five-dimensional black ring. Indeed, by turning off the constant part in the Taub-

NUT harmonic function, this space becomes R
4, and the solution for a BPS black ring in

Taub-NUT [21–23] can be transformed straightforwardly into the solution for a BPS black

ring in five dimensions [3–6]. Nevertheless, for the black ring we construct this does not

seem possible, at least after reasonable attempts. The reason is that the various constants

that appear in the harmonic functions are already constrained by the requirement that the

solution be a black ring, and one does not have the freedom to decompactify the Taub-NUT

fiber at infinity and obtain a black ring in five dimensions.

The next question is whether our solution is the only Taub-NUT black ring within

the class of solutions uncovered in [13–16, 18], or whether there are more black rings to

be found. The solution we obtain falls into the class of extremal solution that can be

obtained starting from a four-dimensional “electrovac” solution [15]. More precisely, our

solution could in hind-sight have been constructed starting from a two-center Israel-Wilson

base space [31]; however, the fact that one can construct a Taub-NUT black ring in this

class of solutions is far from obvious, and the harmonic functions one must choose to get

a black ring are far from being intuitive. One can also suspect that there may exist black

ring solutions in the two new classes of solutions unveiled recently in [18], and it would be

clearly interesting to understand this.

2By fluxed D6 brane we mean a D6 brane that has abelian worldvolume fluxes, and hence is T-dual to

a single D3 brane at angles. A fluxed D6 brane preserves locally 16 supersymmetries, and uplifts to 11

dimensions to a smooth GH center [28–30].
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Since the new black ring solution is obtained by acting with dualities on a known

solution, this paper is organized as follows: we begin in section 2 by presenting both the

starting solution — a two-center configuration describing a D6-D2-D2-D2 black hole and

a supertube — and the dualities that we will perform on this solution. In section 3, we

review the black string solution obtained in [18], whose properties will be related to the

local features of the black ring. The reader who is interested in the solution alone can skip

directly to section 4 where we give the explicit doubly spinning black ring in Taub-NUT

solution, and explore its properties.

2 The starting solution and the explicit duality transformations

As explained in the Introduction, we obtain our black ring solution in an indirect way: we

start from a known two center solution, in Type IIA supegravity on T 6 and transform it

using 6 T-dualities along this internal six-torus and an M-theory uplift in order to obtain

the final solution. In this section, we therefore present first the seed solution, and then the

T-duality rules that we will apply.

2.1 Starting solution

Our starting solution is a two-center configuration corresponding to an a non-BPS black

hole and a supertube in 11D supergravity on T 6 [13], which when compactified to type

IIA becomes

ds210 = −I4
−1/2 (dt + ω)2 + I4

1/2 ds23 +

3∑

I=1

I4
1/2

ZIV
ds2I ,

e2Φ =
I
3/2
4

Z3V 3
, (2.1)

B(2) =
3∑

I=1

B
(2)
I dTI

with

B
(2)
1 = −

µ

Z1
, B

(2)
2 = −

µ

Z2
, B

(2)
3 = K3 −

µ

Z3
, (2.2)

for the NSNS-fields, where Z = (Z1Z2Z3)
1/3 and where ds2I and dTI are the metric and

the volume form on each of the three 2-tori inside T 6. In detail, ds2I = dy2
I,1 + dy2

I,2 and

dTI = dyI,1 ∧ dyI,2, with I = 1, 2, 3. The three-dimensional metric ds23 is flat, and we have

also defined

I4 = Z1Z2Z3V − µ2V 2 . (2.3)

In order to satisfy the equations of motions, V , K3 and the ZI ’s need to be harmonic

functions on the flat three-dimensional space, and µ and ω satisfy

∗3 dω = d(V µ) − V Z3dK3 , d ∗3 d(V µ) = d(V Z3) ∗3 dK3 . (2.4)
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The RR fields are

C(1) = A−
µV 2

I4
(dt + ω) ,

C(3) =

3∑

I=1

C
(3)
I ∧ dTI (2.5)

with

C
(3)
1 =−

dt+ω

Z1
−
µ

Z1
A, C

(3)
2 =−

dt+ω

Z2
−
µ

Z2
A, C

(3)
3 =−

dt+ω

Z3
+
(
K3−

µ

Z3

)
A+ b3, (2.6)

with

∗3 dA = −dV , (2.7)

∗3db3 = K3dV − V dK3 . (2.8)

In order to perform the T-dualities, it will also be necessary to have the higher RR fields

C(5) and C(7). They are given by the equations of motion of C(1) and C(3)

dC(5) = − ∗10

(
dC(3) − dB(2) ∧ C(1)

)
+ dB(2) ∧C(3) , (2.9)

dC(7) = ∗10dC
(1) + dB(2) ∧ C(5) . (2.10)

Using the explicit expressions for C(1), C(3) and B(2) (2.2), (2.5), (2.6), C(5) is explicitly

given by

C(5) = C
(5)
JK dTJ ∧ dTK (2.11)

with

C
(5)
12 =

µ

Z1Z2
(dt + ω) − γ3 +

µ2

Z1Z2
A ,

C
(5)
13 =

µ

Z1Z3
(dt + ω) − γ2 −

µ

Z1

(
K3 −

µ

Z3

)
A−

µ

Z1
b3 , (2.12)

C
(5)
23 =

µ

Z2Z3
(dt + ω) − γ1 −

µ

Z2

(
K3 −

µ

Z3

)
A−

µ

Z2
b3 .

Finally, C(7) is

C(7) =

[
−
Z3V + µ2V 2

V 2Z3
(dt + ω) − β +

µ

ZI
γI −

µ3

Z3
A+

µ2

Z1Z2
b3 +K3

(
−γ3 +

µ2

Z1Z2
A

)]

∧ dT1 ∧ dT2 ∧ dT3 , (2.13)

with the vectors γI and β defined such that they verify the following relations

∗3 dγI = dZI , (2.14)

∗3dβ = Z3dK3 −K3dZ3 . (2.15)
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We finally have to specify what are exactly our harmonic functions, in order to describe

the announced two-center solution. We parametrize the three-dimensional base space in

cylindrical coordinates (r, θ, z) and take the black hole to be at the center of the space,

at r = 0, while the supertube is located along the positive z axis at a distance R from

the origin. We denote the polar coordinates centered at the supertube position as (Σ, θΣ).

Their relation to the polar coordinates (r, θ) centered at the origin is:

Σ =
√
r2 +R2 − 2rR cos θ , cos θΣ =

r cos θ −R

Σ
. (2.16)

The explicit functions are then [13]

V = h+
Q6

r
, K3 = k3 +

dST
3

Σ
,

Z1 = 1 +
Q1

r
+
QST

1

Σ
, Z2 = 1 +

Q2

r
+
QST

2

Σ
, Z3 = 1 +

Q3

r
, (2.17)

M = m0 +
m

r
+ α

cos θ

r2
+
mST

Σ
, µ =

M

V
+
dST
3

2Σ
+
hQ3 d

ST
3

2V rΣ
+
Q6Q3 d

ST
3

V RrΣ
cos θ

for the scalars and

A=−Q6 cos θdφ , b3 =

(
k3Q6 cos θ − hdST

3 cos θΣ −Q6 d
ST
3

r −R cos θ

RΣ

)
dφ ,

γ1=(Q1 cos θ +QST
1 cos θΣ)dφ , γ2 = (Q2 cos θ +QST

2 cos θΣ)dφ , γ3 = Q3 cos θdφ ,

ω=
(
κ+m cos θ +mST cos θΣ − α

sin2 θ

r
−
hdST

3

2
cos θΣ (2.18)

−(Q6 + hQ3) d
ST
3

r −R cos θ

2RΣ
−Q6Q3 d

ST
3

sin2 θ

RΣ

)
dφ ,

β=

(
−k3Q3 cos θ + dST

3 cos θΣ +Q3 d
ST
3

r −R cos θ

RΣ

)
dφ

for the corresponding vector fields. Note that there is a constant term in the K3 harmonic

function that appears in B
(2)
3 . This gives an additional contribution to the axion field at

infinity. As we will see, this constant will be crucial after dualities in order to obtain a

black ring.

2.2 Performing 6 T-dualities

We now review the general action of T-duality along all the T 6 directions y1,1, y1,2, . . . y3,1,

y3,2 [18] that we will apply on the solution presented in the previous subsection.

2.2.1 NSNS fields

The string metric and B-field have the general form

ds210 = ds24 +
3∑

I=1

GIds
2
I , B(2) =

3∑

I=1

BIdTI . (2.19)
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Define the matrix

EI =

(
GI BI
−BI GI

)
. (2.20)

The sequence of two T-dualities along yI,1, yI,2 simply inverts the matrix EI :

EI → ẼI = E−1
I =

1

∆I

(
GI −BI
BI GI

)
, ∆I = G2

I +B2
I . (2.21)

Hence the after T-duality on T 6 the torus metric and B-field are transformed as

GI → G̃I =
GI
∆I

, BI = B̃I = −
BI
∆I

. (2.22)

The dilaton transforms as

e2Φ → e2Φ̃ =
e2Φ

∆1∆2∆3
. (2.23)

2.2.2 RR fields

The action of T-duality on T 6 on the RR fields was obtained again in [18] by the brute

force method of applying recursively the rules for T-duality along a compact direction. The

rules we use are as follows. Let y be the direction along which one performs T-duality and

let us write the string metric, B-fields and RR gauge fields C(p) as

ds10S = Gyy(dy +Aµdx
µ)2 + ĝµνdx

µdxν ,

B(2) = Bµydx
µ ∧ (dy +Aµdx

µ) + B̂(2) ,

C(p) = C(p−1)
y ∧ (dy +Aµdx

µ) + Ĉ(p) , (2.24)

where the forms B̂(2), C
(p−1)
y and Ĉ(p) are along the xµ directions. The T-duality trans-

formed fields are

ds̃210 = G−1
yy (dy −Bµydx

µ)2 + ĝµνdx
µdxν , e2Φ̃ =

e2Φ

Gyy
,

B̃(2) = −Aµdx
µdy + B̂(2) , (2.25)

C̃(p) = Ĉ(p−1) ∧ (dy −Bµydx
µ) + C(p)

y .

The starting solution is

ds210 = ds24 +
∑

I

GIds
2
I , B(2) =

∑

I

BIdTI , C(1) , (2.26)

C(3) =
∑

I

C
(3)
I ∧ dTI , C(5) =

∑

I<J

C
(5)
IJ ∧ dTI ∧ dTJ , C(7) = C

(7)
123 ∧ dT1 ∧ dT2 ∧ dT3 .
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One finds the fields after 6 T-dualities on T 6:

ds̃210 = ds24 +
∑

I

GI
∆I

ds2I , B̃(2) = −
∑

I

BI
∆I

dTI , (2.27)

C̃(1) =−C
(7)
123 +

|ǫIJK |

2
BIC

(5)
JK −

|ǫIJK |

2
BIBJC

(3)
K +B1B2B3C

(1) , (2.28)

C̃
(3)
I = ∆−1

I

[
BIC

(7)
123 −BI |ǫIJK |BJC

(5)
IK +G2

I

|ǫIJK |

2
C

(5)
JK

+B1B2B3C
(3)
I −G2

I |ǫIJK |BJC
(3)
K +G2

I

|ǫIJK |

2
BJBKC

(1)
]
, (2.29)

C̃
(5)
JK = (∆I∆J)

−1
[
−BJBKC

(7)
123 +B1B2B3C

(5)
JK − |ǫIJK |(G

2
IBJC

(5)
JK +G2

JBIC
(5)
IK)

+|ǫIJK |BK(G2
IBJC

(3)
J +G2

JBIC
(3)
I )−G2

IG
2
J |ǫIJK |C

(3)
K +G2

IG
2
J |ǫIJK |BKC

(1)
]
, (2.30)

C̃(7) = (∆I∆J∆K)−1
[
B1B2B3C

(7)
123+

|ǫIJK |

2
(G2

IBJBKC
(5)
JK+G2

IG
2
JBKC

(3)
K )+G2

1G
2
2G

2
3C

(1)
]
.

3 The rotating non-BPS black string

Before presenting the main result of this paper: the new rotating non-BPS black ring in

Taub-NUT, let us make a small detour to review the rotating non-BPS black string [18]

which gives the infinite-ring or the near-ring limit of the black ring we will construct. This

will allow us to explore its local properties, and understand the role of the Taub-NUT

center in the final solution.

To obtain the black string solution, one has to start from the solution in section 2.1

with the the supertube fields turned off: K3 = 0, b3 = 0, QST
1 = QST

2 = mST = 0. This

simplifies the solution, which can now be written in a closed form in terms of five harmonic

functions V , M and ZI , I = 1, 2, 3. It describes the rotating D6-D2-D2-D2 black hole

found in [13]:

V = 1 +
Q6

r
, A = −Q6 cos θdφ ,

K1 = K2 = K3 = 0 , ZI = LI = 1 +
QI
r
, (3.1)

M = m0 + α
cos θ

r2
, µ =

M

V
, ω = m cos θdφ− α

sin2 θ

r
dφ .

The quartic invariant I4 is given by

I4 = Z1Z2Z3V −M2 . (3.2)

After the 6 T-dualities, the new solution is given by

ds210 = −I4
−1/2 (dt + ω)2 + I4

1/2 ds23 +
I4

1/2

Z3

3∑

I=1

ZIds
2
I ,

e2Φ =
I
3/2
4

Z6
, (3.3)

B(2) =
M

Z3

3∑

I=1

ZIdTI ,

– 8 –
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and

C(1) =
Z3

I4
(dt + ω) ,

C(3) = −
3∑

I=1

γI ∧ dTI ,

C
(5)
JK =

CIJK
ZI

(dt + ω) −
M

Z3
(ZJγK + ZKγJ) ,

C(7) =

(
2M

Z3
(dt+ ω) −

M2

Z3

∑

I

γI
ZI

+A

)
∧ dT1 ∧ dT2 ∧ dT3 . (3.4)

One can easily lift this solution back to eleven dimensions. We recall that this is

done by

ds211 = e4φ/3(dψ + C(1))2 + e−2φ/3ds210 , (3.5)

A(3) = B(2) ∧ dψ + C(3) .

We then obtain

ds211 =
2

Z
(dt + ω)dψ +

I4
Z4
dψ2 + Z2ds23 +

∑

I

(
ZI
Z
ds2I) , (3.6)

A(3) =
∑

I

(
M

Z3
ZIdψ − γI

)
∧ dTI . (3.7)

This solution corresponds to a non-supersymmetric black string. As found in [18], the

charges of the solution are:3

QD6 =

∫

S2
∞

dC(1) = 0 ,

QD4
JK =

∫

S2
∞
×T 2

dC(3) = CIJKQI , (3.8)

QD2
I =

∫

S2
∞
×T 4

dC(5) = m0(QJ +QK) ,

QD0 =

∫

S2
∞
×T 6

dC(7) = Q6 +m2
0(Q1 +Q2 +Q3) .

and the angular momentum of the solution in the transverse R
3 plane is

J = α . (3.9)

Using (3.1) and (3.6), the near-horizon geometry is:

ds25
r→0
= 2

r

Q
dtdψ+Q2 dr

2

r2
+
Q3Q6−α

2 cos2 θ

Q4
dψ2−2

α

Q
sin2 θdψdφ+Q2(dθ2+sin2 θdφ2) ,

(3.10)

where we defined Q = (Q1Q2Q3)
1/3.

3One may have naively expected that since B(2) has a non-zero value at infinity (3.3), this would affect

the values of the D4, D2 and D0 charges, but this does not happen: the constant in the asymptotic B-field

can be gauged away without affecting these charges; a more complete discussion of this can be found in [18].
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By performing a coordinate change

φ̃ = φ−
α

Q3
ψ , (3.11)

one can bring the metric into the form

ds25 = 2
r

Q
dtdψ +

Q3Q6 − α2

Q4
dψ2 +Q2 dr

2

r2
+Q2(dθ2 + sin2 θdφ̃2) . (3.12)

The space spanned by (t, ψ, r) is AdS3 and thus the near-horizon geometry of this black

string is a fibered AdS3 × S2 space. Note that for this black string solution we have not

specified any periodicity for ψ, and hence the near-horizon metric can always be brought

into the AdS3 × S2 form.

The induced metric on the horizon at r = 0 is

ds2hor =
Q3Q6 − α2 cos2 θ

Q4
dψ2 − 2

α

Q
sin2 θdψdφ+Q2dΩ2

2

= Q2dθ2 +Q2 Q6Q
3 − α2

Q6Q3 − α2 cos2 θ
sin2 θdφ2 (3.13)

+
Q6Q

3 − α2 cos2 θ

Q4
(dψ −

Q3α

Q6Q3 − α2 cos2 θ
sin2 θdφ)2 .

The horizon has topology S2 × S1 and its area gives the entropy of the string:

S = 2π
√
Q1Q2Q3Q6 − α2 . (3.14)

4 The rotating non-BPS black ring in Taub-NUT

We now construct the full two-center solution, which describes a black ring in Taub-NUT.

As we will discuss later this solution falls in the class of solutions with an Israel-Wilson

base space, but because of its charges at infinity it is more appropriate to refer to it as

a black ring in Taub-NUT than a black ring in an Israel-Wilson space. As hinted in the

Introduction, we will see explicitly that adding a second center with a nontrivial D6 charge

bends the string of the previous section into non-trivial ring.

4.1 The solution

Starting from the solution constructed in section (2.1) and applying six T-dualities on

obtains the explicit type IIA two-center solution:

ds210 = −I4
−1/2 (dt + ω)2 + I4

1/2 ds23 +
3∑

I=1

I4
1/2

ZI∆IV
ds2I ,

e2Φ =
I
3/2
4

Z3∆3V 3
, (4.1)

B(2) =
1

∆1

µ

Z1
∧ dT1 +

1

∆2

µ

Z2
∧ dT2 −

1

∆3

(
K3 −

µ

Z3

)
∧ dT3 ,
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where we recall that ∆I = G2
I +B2

I , explicitly given by

∆1 =
Z2Z3

V Z1
, ∆2 =

Z1Z3

V Z2
, ∆3 =

Z1Z2

V Z3
+K2

3 − 2
K3µ

Z3
, (4.2)

and the functions ZI ,K3, ω and µ are given in (2.17), (2.18). We also defined ∆ =

(∆1∆2∆3)
1/3.

The corresponding RR-fields are

C(1)=
1

I4

(
Z3 − V µZ3K3

)
(dt + ω) + β ,

C(3)=
3∑

I=1

C
(3)
I ∧ dTI , (4.3)

C(5)=

3∑

J,K=1

C
(5)
JK ∧ dTJ ∧ dTK , (4.4)

C(7)=C
(7)
123 ∧ dT1 ∧ dT2 ∧ dT3 (4.5)

with4

C
(3)
1 = −

K3

Z2
(dt + ω) + γ1 −

V µ

Z2Z3
β , C

(3)
2 = −

K3

Z1
(dt + ω) + γ2 −

V µ

Z1Z3
β , (4.6)

C
(3)
3 = −

K3

V∆3
(dt + ω) − γ3 −

1

∆3
(K3 −

µ

Z3
)β , (4.7)

for C(3),

C
(5)
12 =

(
1

Z3
+
K3V µ

Z3

)
(dt+ ω) − b3 −

V µ

Z3

(
γ1

Z1
+
γ2

Z2

)
+

V 2µ2

Z1Z2Z
2
3

β , (4.8)

C
(5)
13 =

1

V Z3∆3

(
Z1−

K3V µ

Z2

)
(dt+ω)−b2−

V µ

Z2Z3
γ3+

1

∆3

(
K3−

µ

Z3

)
γ1−

V µ

Z2Z3∆3

(
K3−

µ

Z3

)
β,

C
(5)
23 =

1

V Z3∆3

(
Z2−

K3V µ

Z1

)
(dt+ω)−b1−

V µ

Z1Z3
γ3+

1

∆3

(
K3−

µ

Z3

)
γ2−

V µ

Z1Z3∆3

(
K3−

µ

Z3

)
β.

for C(5) and

C
(7)
123=

1

Z3∆3

(
2µ

Z3
−K3 −

K3V µ
2

Z3

)
(dt + ω) +A+

1

∆3

(
K3 −

µ

Z3

)
b3 −

V 2µ2

Z1Z2Z2
3

γ3

+
V µ

∆3Z3

(
K3 −

µ

Z3

)(
γ1

Z1
+
γ2

Z2

)
−

V 2µ2

Z1Z2Z2
3∆3

(
K3 −

µ

Z3

)
β (4.9)

for C(7).

Reconstructing the 11D fields. One can lift this solution to eleven dimensions, us-

ing (3.5). This gives

ds211 = −Z̃−2
(
dt + k̃

)2
+ Z̃ds24 +

3∑

I=1

Z̃

Z̃I
ds2I , (4.10)

A(3) =
∑

I

[
−

1

Z̃I
(dt + k̃) + ãI

]
∧ dTI ,

4We have for convenience redefined y1
I to −y1

I for I = 1, 2. This changes the signs of C
(3)
1 and C

(3)
2 .
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with

Z̃1 =
Z2

K3
, Z̃2 =

Z1

K3
, Z̃3 =

Z1Z2

Z3K3
+ V (K3 − 2

µ

Z3
) , (4.11)

k̃ = µ̃(dψ + Ã) + ω , µ̃ = −
Z3

(Z3K3)2
+

V µ

Z3K3
,

and

ãI = K̃I(dψ + Ã) + b̃I , (4.12)

K̃1 = −
Z1

K3Z3
, K̃2 = −

Z2

K3Z3
, K̃3 = −

1

K3
,

b̃1 = γ1 , b̃2 = γ2 , b̃3 = −γ3 .

The four-dimensional base is given by

ds24 = Ṽ −1(dψ + Ã)2 + Ṽ ds23 , (4.13)

Ṽ = Ṽ+Ṽ− , Ã = β ,

where we relabeled

Ṽ+ = K3 and Ṽ− = Z3 . (4.14)

With these redefinitions, one can see that equation (2.14) can be rewritten as

∗ dβ = Ṽ−dṼ+ − Ṽ+dṼ− . (4.15)

Hence, the base space of our solution is an Israel-Wilson space [31]. One should recall

that in [15] the authors and Warner have shown that one can construct a certain class

of eleven-dimensional non-supersymmetric solutions starting from any four-dimensional

Euclidean electrovac solution, and that moreover when this electrovac solution is an Israel-

Wilson space the solution can be obtained by solving in a linear algorithm certain harmonic

equations in R
3. It would be of course interesting to disentangle the building blocks of

this black ring solution in the language of solutions with an Israel-Wilson base, and to

understand what is the physics of the more general solutions one can construct with these

building blocks.

4.2 Physical properties

We now turn to the analysis of the physical properties of the constructed solution.

Regularity. For absence of Dirac-Misner strings ω has to vanish at θ = 0 and θ = π,

which for a two-center solution imposes three constraints on the parameters, one for θ = π,

one for θ = 0 and r < R and the last one for θ = 0 and r > R. These constraints can be

solved by taking

κ = −m =
hQ3 +Q6

2R
dST
3 , mST =

hQ3 +Q6 + hR

2R
dST
3 . (4.16)
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We also want to make sure that the pole at Σ = 0 is a Taub-NUT center, and therefore

regular, and locally R
4. At this location, Z̃1 and Z̃2 are constant, but Z̃3 has a pole

Z̃3 =
QST

1 QST
2 R2 − (Q6 + hR)(Q3 +R)dST

3
2

dST
3 R(Q3 +R)Σ

+O(1) (4.17)

and one therefore has to impose

dST
3

2
=

QST
1 QST

2 R2

(Q6 + hR)(Q3 +R)
(4.18)

for this pole to vanish. With these values for mST and dST
3 , one can then check that µ̃ does

vanish for Σ → 0, and this ensures the required regularity. Finally, it is easy to check that

Ṽ ∼ 1/Σ, near Σ = 0, and hence the four-dimensional space looks locally like R
4.

Asymptotic behavior. Asymptotically, the eleven dimensional metric becomes

ds2
∞

= C1/3
[
gtt∞ (dt + µ∞(dψ +A∞))2 (4.19)

+(gψψ∞ − gtt∞µ
2
∞

)(dψ +A∞)2 + ds23 +
∑

I

gI∞ds
2
I

]

with

C = 1 + hk2
3 − 2k3m0 , gtt∞ = −

k2
3

C
,

gψψ∞−gtt∞µ
2
∞

=
1

k2
3

, µ∞=
−1+k3m0

k2
3

, A∞ =

(
dST
3 Q3

R
+(dST

3 −k3Q3) cos θ

)
dφ ,

g1∞ = 1 , g2∞ = 1 , g3∞ =
1

C
. (4.20)

Let us perform the following change of coordinates

ψ → ψ −
gtt∞µ∞
gψψ∞

t , t→ C−1/6
(
−
gtt∞(gψψ∞ − gtt∞µ

2
∞

)

gψψ∞

)
−1/2

t ,

r → C−1/6r , yI,a → C−1/6(gI∞)−1/2 yI,a , I = 1, 2, 3 a = 1, 2 . (4.21)

Then the asymptotic metric becomes

ds2
∞

= −dt2 + ds23 +
∑

I

ds2I + C1/3gψψ∞(dψ + (dST
3 − k3Q3) cos θdφ)2 (4.22)

and hence the solution is not asymptotically R
4,1 but R

3,1 × S1. More precisely, because

of the non-trivial fibration, the space is asymptotically Taub-NUT. It is regular under the

following identifications

(φ,ψ)∼

(
φ+2π, ψ−2π

(
dST
3 Q3

R
+dST

3 −k3Q3

))
∼

(
φ+2π, ψ−2π

(
dST
3 Q3

R
−dST

3 +k3Q3

))
.

(4.23)
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Charges at infinity. The solution dimensionally reduced to four-dimensions is asymp-

totically flat, and its Einstein-frame metric is

ds2E = −I4
−1/2 (dt + ω)2 + I4

1/2 ds23 . (4.24)

The corresponding asymptotic charges are the mass

G4M =
Q6 + h (Q1 +QST

1 +Q2 +QST
2 +Q3 − 2m0 d

ST
3 )

4(h−m2
0)

3/4
, (4.25)

(with G4 the 4D Newton’s constant), the angular momentum

G4J = α+
dST
3

2

[
Q6 +Q3

(
h+ 2

Q6

R

)]
, (4.26)

the D6 charge

QD6 = dST
3 − k3Q3 , (4.27)

the three D4 charges

QD4
23 = Q1 +QST

1 −m0Q
D6 , QD4

13 = Q2 +QST
2 −m0Q

D6 , (4.28)

QD4
12 =

(k3m0 − 1)Q3 + dST
3 (m0 − hk3)

C
= −Q3 −

hk3 −m0

C
QD6 ,

the three D2 charges

QD2
1 =

hk3 −m0

C
QD4

13 −m0Q3 ,

QD2
2 =

hk3 −m0

C
QD4

23 −m0Q3 ,

QD2
3 = hdST

3 − k3Q6 −m0Q
D4
13 −m0Q

D4
23 −m2

0Q
D6 , (4.29)

and the D0 charge

QD0 = −Q6 −
hk3 −m0

C
QD2

3 −m2
0Q3 . (4.30)

We can see that these charges are quite different from those of the lonely black string (3.8).

This of course comes from the presence of the second center, which is a fluxed D6-brane

with nontrivial D4, D2 and D0 charges. Furthermore, the M-theory uplift has nontrivial

magnetic fields sourced by M5 branes, which give rise to extra M2 charges dissolved in

fluxes and to extra angular momentum.

Topology of the horizon. In order for this solution to describe a black ring at r = 0 it

is necessary that the ψ-fiber does not shrink, but stays finite. Since the size of this fiber is

(Ṽ+Ṽ−)−1 =
(
l3 +

Q3

r

)
−1(

k3 +
dST
3

Σ

)
−1
, (4.31)

it generically shrinks to zero as r → 0, and then the solution does not describe a black

ring, but a KK-black hole. Indeed, this is the generic behavior one expects for a solution
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constructed with an Israel-Wilson base space, and one could naively think that one cannot

construct a black ring in this class of solutions. This is not so: the effective D6 charge at

r = 0 is

QD6
eff =

(
k3 +

dST
3

R

)
Q3 (4.32)

and, because we have allowed the constant k3 to be non-zero, we can tune it to cancel this

effective D6 charge:

k3 = −
dST
3

R
. (4.33)

For this particular value of k3, the size of the fiber stays finite, and we expect to have a

black ring. Indeed, the horizon metric becomes

ds2hor=Q
2dθ2 +Q2 Q6Q

3 − α2

Q6Q3 − α2 cos2 θ
sin2 θdφ2 (4.34)

+
Q6Q

3 − α2 cos2 θ

Q4

(
dψ −

(
dST
3 +

Q3α

Q6Q3 − α2 cos2 θ
sin2 θ

)
dφ

)2

=Q2dθ2+Q2 sin2 θdφ2+
Q6Q

3−α2 cos2 θ

Q4
(dψ−dST

3 dφ)2−2
α

Q
sin2 θ(dψ−dST

3 dφ)dφ

with Q = (Q1Q2Q3)
2/3. After the redefinition

ψ̃ = ψ − dST
3 φ , (4.35)

this is exactly the metric (3.13) that we obtained for the black string, and thus has topology

S2 × S1. Here, regularity implies the identifications

(φ, ψ̃) ∼ (φ+ 2π, ψ̃) . (4.36)

Note that, using the constraint (4.33), the second of the identifications (4.23) obtained

from the asymptotic analysis becomes

(φ,ψ) ∼ (φ+ 2π, ψ + 2πdST
3 ) , (4.37)

which, given the definition of ψ̃, is exactly equivalent to the identification (4.36).

It is important to note that the condition (4.33) is very particular from the perspective

of solutions with an Israel-Wilson base space. This base space can be ambipolar5 and still

yield a physical five-dimensional solution (much like Gibbons-Hawking spaces do [28, 29,

32]). The choice (4.33) places the black ring exactly on top of the boundary between regions

of opposite signature. While one could be worried that regularity can be affected by this

very particular choice, it is easy to see that all the previously-required conditions are still

respected, and therefore the solution is perfectly fine.

The entropy of the black ring is still given by

S = 2π
√
Q1Q2Q3Q6 − α2 . (4.38)

5It can have regions where the signature alternates from (+,+,+,+) to (−,−,−,−).
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As we already discussed, because of the charges dissolved in fluxes, coming from the sec-

ond center, one does not expect this entropy to be given by the quartic invariant of the

asymptotic charges (4.27)–(4.30). For all that it’s worth, the latter is

J4(Q
D0, QD2

I , QD4
JK , Q

D6) = −(Q1 +QST
1 )(Q2 +QST

2 )Q3Q6 −
1

4
dST
3

2
(Q6 − hQ3)

2 . (4.39)

It is interesting to note that this quartic invariant is relatively simple, and does not involve

the constants k3 and m0, despite the fact that they do appear in the charges. More-

over, since the charges dissolved in flux come from the presence of the second center,

by turning off its charges, QST
1 , QST

2 and dST
3 , one recovers the usual entropy formula

S = 2π
√
J4(QD0, QD2

I , QD4
JK , Q

D6) − α2.

Having obtained a rotating black ring in Taub-NUT, it is natural to ask whether one

can choose solution parameters such that the Taub-NUT fiber decompactifies at infinity,

and the solution describes a black ring in R
4,1. While this can be done for a generic

choice of parameters, when one imposes that the topology of the horizon be S2×S1 (4.33),

this restricts the number of parameters, and the asymptotically R
4,1 solution disappears.

Hence, one can obtain a two-center five-dimensional solution with a rotating black hole,

but not a five-dimensional black ring. It would be interesting to understand the physical

intuition behind this.

Near horizon geometry. This is an interesting question to investigate, because one

would naively expect that a black string ring placed right on the boundary between regions

of the base of opposite signatures would have an unusual near-horizon metric. Amazingly

enough, this does not happen. When k3 = −dST
3 /R and r → 0

Z3∆3V 3 r→0
∼

(Q1Q2Q3)
2

r6
, I4 ∼

Q3Q6 − α2 cos2 θ

r4
,

β ∼ −dST
3 dφ , ω ∼ −α

sin2 θ

r
dφ , C̃

(1)
t ∼

Q3

Q3Q6 − α2 cos2 θ
r . (4.40)

The near horizon geometry is

ds25 = 2
r

Q
dtdψ̃+

Q3Q6−α
2 cos2 θ

Q4
dψ̃2−2

α

Q
sin2 θdψ̃dφ+Q2 dr

2

r2
+Q2(dθ2 + sin2 θdφ2) ,

(4.41)

with ψ̃ defined in (4.35). After this redefinition of ψ, the near-horizon geometry of the

black ring coincides with that of the black string given in (3.10). Much like for the black

string, the coordinate redefinition

φ̃ = φ−
α

Q3
ψ̃ (4.42)

brings the metric into the AdS3 × S2 form

ds25 = 2
r

Q
dtdψ̃ +

Q3Q6 − α2

Q4
dψ̃2 +Q2 dr

2

r2
+Q2(dθ2 + sin2 θdφ̃2) . (4.43)
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Note that the coordinate redefinition (4.42) is compatible with the periodic identifi-

cation of the angles. Indeed, in (4.36), the angle ψ̃ is kept fixed. Therefore, it directly

tranlates into

(φ̃, ψ̃) ∼ (φ̃+ 2π, ψ̃) , (4.44)

which is exactly what is needed for the regularity of the metric (4.43).

The thin ring limit The non-BPS black ring solution constructed in this section admits

a thin ring limit, in which the solution appears as a deformation of the non-BPS black string

of section 3. As it is clear from the construction of the solution, the black ring is expected

to reduce to the black string when the distance R between the two centers becomes much

larger than all the other scales. In the following we verify this expectation.

In the large R limit one has

dST
3 ≈

√
QST

1 QST
2 , k = −m ≈

hQ3 +Q6

2R

√
QST

1 QST
2 , mST ≈

h

2

√
QST

1 QST
2 . (4.45)

With the choice (4.33), the function K3 vanishes in the large R limit:

K3 = dST
3

( 1

Σ
−

1

R

)
≈

√
QST

1 QST
2

R2
r cos θ . (4.46)

This causes the various metric coefficients to either vanish or diverge in the limit:

Ṽ = K3Z3 , Ã = β ≈ −
√
QST

1 QST
2 dφ ,

Z̃1 =
Z2

K3
, Z̃2 =

Z1

K3
, Z̃3 ≈

Z1Z2

Z3

1

K3
, (4.47)

µ̃ ≈ −
Z1Z2

Z3

1

K2
3

, ω̃ = ω . (4.48)

The 11D metric, however, has a good limit, given by6

ds211 ≈
2

Z
(dt + ω)dψ̃ +

I4
Z4
dψ̃2 + Z2ds23 +

∑

I

ZI
Z
, (4.49)

where

ψ̃ = ψ −
√
QST

1 QST
2 dφ . (4.50)

As expected, this coincides with the black string metric (3.6). The terms of higher order

in the 1/R expansion of the black ring metric represent the deformation of the black string

into a thin black ring, and are thus within the range of validity of the blackfold approxi-

mation. The balancing condition for the rotating black ring does not appear explicitly in

the equations above, but is contained implicitly in the regularity conditions (4.16), (4.18),

which are solved by tweaking the parameters of the horizonless center.

6The coefficient of dψ̃2 follows from the identity

Z̃Ṽ
−1

− Z̃
−2
µ̃

2
≈

I4

Z4
.
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Local or not local? We have seen in this paper that when one transforms a two-center

solution under dualities, the local properties of the solution near one of the centers are

influenced by the presence of the other center. Thus, since applying 6 T-dualities on a

lonely spinning black hole always yields a spinning black string with horizon topology

S2 × S1, one may have naively expected that if one starts from a two-center solution,

the black hole always transforms into an object that looks locally like a spinning black

string. Our explicit calculation has shown that this only happens for a very specific choice

of parameters.

The reason for this is that the solution with a black hole and a supertube also has

a nontrivial Wilson line (more precisely a 3-form potential with two legs on a T 2 and

one along the Taub-NUT fiber, coming from a nonzero harmonic function K3). If one

applies 6 T-dualities on a single-center black hole in a background with a generic Wilson

line, the resulting solution will not be a black string. The horizon topology only becomes

S2 × S1 when the Wilson line in the original geometry is absent: this is the black string

solution presented in section 3. For the two-center solution the condition for obtaining

a black ring, (4.33), can be traced back to the vanishing of the Wilson line at the black

hole location in the original geometry. The near-ring solution then becomes exactly that

of the black string. Note moreover that the topology change produced by the presence of

a Wilson loop at the horizon does not affect the explicit value of the entropy.

5 Conclusion

In this paper we presented a new non-BPS doubly-spinning black ring solution in Taub-

NUT. This is the first black ring solution that has both dipole charges and rotation along the

S2 of the horizon. This solution has been obtained by acting with duality transformations

on a two-center configuration corresponding to a black hole and a supertube. The supertube

becomes after dualities a fluxed D6-brane, and permits to bend the second center into a

black ring. This construction has some noticeable properties that are worth recalling.

First of all, we have discovered that the presence of a tiny Wilson line near the black

hole horizon alters completely the topology of the solution obtained after six T-dualities.

Second, the final solution belongs to the class of non-BPS solutions constructed starting

from an Israel-Wilson space, in which one did not naively expect to find black ring solutions;

furthermore, the solution is regular despite the fact that from the perspective of the Israel-

Wilson base space the black ring center is located exactly at the boundary of two regions

with different signature. Third our method for constructing the solution does not allow to

decompactify the Taub-NUT space to asymptotically R
4, and to obtain a rotating black

ring in five dimensions. It would be interesting to see if this could be done by dualizing

other almost-BPS two-center solutions, where the fluxed brane is not a D4 brane but a D2

or D0 brane, or by starting with an Israel-Wilson solution where the fluxed brane is a D6

brane. It is also interesting to understand how to add angular momentum in solutions that

have an Israel-Wilson base space, or in the more general solutions found in [18].
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