Iosif Bena 
email: iosif.bena@cea.fr
  
Hagen Triendl 
email: hagen.triendl@cea.fr
  
Bert Vercnocke 
email: bert.vercnocke@cea.fr
  
Camouflaged Supersymmetry

We establish a relation between certain classes of flux compactifications and certain families of black hole microstate solutions. This connection reveals a rather unexpected result: there exist supersymmetric solutions of N = 8 supergravity that live inside many N = 2 truncations, but are not supersymmetric inside any of them. If this phenomenon is generic, it indicates the possible existence of much larger families of supersymmetric black rings and black hole microstates than previously thought.

Introduction

There is an extensive body of work on obtaining supersymmetric and non-supersymmetric vacua for flux compactifications of string theory and studying their phenomenology, and a parallel extensive body of work on constructing supersymmetric and non-supersymmetric black hole microstate solutions to understand black hole physics in string theory. While the physical motivations are different, the technical tools are rather close. In particular, the equations underlying supersymmetric solutions are well-understood and classified: On the flux compactification side (see for example [START_REF] Grana | Supersymmetric three form flux perturbations on AdS(5)[END_REF][START_REF] Giddings | Hierarchies from fluxes in string compactifications[END_REF][START_REF] Grana | Supersymmetric backgrounds from generalized Calabi-Yau manifolds[END_REF]) in ten dimensions, on the black hole microstate side for the underlying supergravity in five dimensions [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF][START_REF] Gutowski | General supersymmetric AdS(5) black holes[END_REF][START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF]. Furthermore, some of the methods for constructing non-supersymmetric solutions from supersymmetric ones are strikingly similar. These methods include slightly deforming the supersymmetric solution by additional fluxes [START_REF] Grana | Supersymmetric three form flux perturbations on AdS(5)[END_REF][START_REF] Giddings | Hierarchies from fluxes in string compactifications[END_REF], flipping some signs [START_REF] Goldstein | Almost BPS black holes[END_REF], or writing some effective Lagrangian as a sum of squares for black holes [START_REF] Ferrara | Black holes and critical points in moduli space[END_REF][START_REF] Denef | Supergravity flows and D-brane stability[END_REF][START_REF] Ceresole | Flow equations for non-BPS extremal black holes[END_REF][START_REF] Andrianopoli | First Order Description of Black Holes in Moduli Space[END_REF][START_REF] Cardoso | First-order flow equations for extremal black holes in very special geometry[END_REF] or flux backgrounds [START_REF] Lust | Generalized non-supersymmetric flux vacua[END_REF][START_REF] Held | DWSB in heterotic flux compactifications[END_REF].

It is therefore not surprising that one can find a relation between certain types of solutions on the two sides. Indeed, as we will show below, certain supersymmetric flux backgrounds of the type [START_REF] Becker | M theory on eight manifolds[END_REF] where the "internal" (non-compact) manifold contains a hyper-Kähler factor can be interpreted as certain non-rotating solutions in the classification of [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF][START_REF] Gutowski | General supersymmetric AdS(5) black holes[END_REF][START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF]. (One can similarly relate non-supersymmetric solutions. The story is more intriguing and will be alluded to in this letter, but we leave the details for a companion publication [16].) The main purpose of this letter is to show that there are other supersymmetric solutions of the same class of flux compactifications which, when interpreted as black hole microstates in N = 2 supergravity, do not fall into the classification of supersymmetric solutions [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF][START_REF] Gutowski | General supersymmetric AdS(5) black holes[END_REF][START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF]. 1 Hence, from the point of view of N = 2 supergravity, these solutions should be non-supersymmetric. However, they are supersymmetric inside N = 8 supergravity! As we will explain below, these solutions have the right field content to fit into many possible N = 2 truncations, and hence they will always be solutions of these N = 2 theories. However, the unbroken supercharges are projected out in all possible N = 2 truncations and hence from the point of view of N = 2 supergravity none of these solutions are supersymmetric2 . A simple way to understand this is to recall that all N = 2 supersymmetric solutions in the class [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF][START_REF] Gutowski | General supersymmetric AdS(5) black holes[END_REF][START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF] have (in our conventions) anti-self-dual fields on a hyper-Kähler base, while our solutions have both anti-self-dual and self-dual fields.

Our results have quite a few unexpected implications. First, it is widely believed that all supersymmetric microstate geometries of three-charge black holes in five dimensions are described by the equations of [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF][START_REF] Gutowski | General supersymmetric AdS(5) black holes[END_REF][START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF]. Our results indicate that many solutions that are not described by these equations are also supersymmetric in the parent N = 8 theory. This implies that beside the classes of microstate solutions constructed so far there may exist many more supersymmetric microstates, which would contribute to the entropy count.

Second, it has been conjectured [START_REF] Ferrara | Magic supergravities, N= 8 and black hole composites[END_REF] and argued [START_REF] Bossard | 1/8 BPS Black Hole Composites[END_REF] that all multicenter supersymmetric solutions of N = 8 supergravity must live inside an N = 2 truncation, and one may believe that this implies that the solutions of [START_REF] Denef | Supergravity flows and D-brane stability[END_REF][START_REF] Bates | Exact solutions for supersymmetric stationary black hole composites[END_REF] capture all supersymmetric multicenter N = 8 solutions. Our results show that this is not so.

Third, it is well-known that the supersymmetric black ring in five dimensions [START_REF] Elvang | A supersymmetric black ring[END_REF][START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF][START_REF] Elvang | Supersymmetric black rings and three-charge supertubes[END_REF][START_REF] Gauntlett | General concentric black rings[END_REF]] is part of a truncation to N = 2 ungauged supergravity and belongs to the class of solutions [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF][START_REF] Gutowski | General supersymmetric AdS(5) black holes[END_REF][START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF]. Our results indicate that there may exist a new, more general supersymmetric black ring with more dipole charges (coming from the extra self-dual fluxes). Besides its interest as a new solution, if this black ring existed, it may also help to account for the missing entropy between the D1-D5 CFT and the dual bulk in the moulting black hole phase [START_REF] Bena | Moulting Black Holes[END_REF].

More generally, the relation between black hole microstates and flux compactifications that we outline will likely prove fruitful in both directions. There exists a whole methodology for constructing flux compactifications by writing the effective Lagrangian governing these compactifications as a sum of squares of calibrations [START_REF] Lust | Generalized non-supersymmetric flux vacua[END_REF][START_REF] Held | DWSB in heterotic flux compactifications[END_REF]. Under the guise of "floating branes", calibrations have also been used to find non-supersymmetric black hole microstates [START_REF] Bena | Supergravity Solutions from Floating Branes[END_REF], and relating the two approaches is likely to yield novel classes of solutions on both sides. We plan to report on this relation in an upcoming companion paper [16]. Furthermore, it has been recently discovered that even some non-extremal cohomogeneity-two black holes, black rings and microstates are calibrated [START_REF] Bena | Imaginary Soaring Branes: A Hidden Feature of Non-Extremal Solutions[END_REF]. If one could use this to write down a new decomposition of the effective Lagrangian (similar to the one of non-extremal cohomogeneity-one solutions [START_REF] Gibbons | Antigravitating Black Hole Solitons with Scalar Hair in N=4 Supergravity[END_REF][START_REF] Miller | Nonextremal black holes are BPS[END_REF][START_REF] Perz | First-order flow equations for extremal and non-extremal black holes[END_REF][START_REF] Galli | Non-extremal black holes of N=2, d=4 supergravity[END_REF]) one would obtain a systematic method to construct new highly-non-trivial and physically-interesting solutions.

The Solution

We focus on a class of solutions to five-dimensional N = 8 supergravity that arises as the lowenergy limit of a T 6 compactification of eleven-dimensional supergravity. The spatial part of the five-dimensional spacetime is given by a hyper-Kähler space M 4 , and the warp factor A depends only on the M 4 coordinates. The full eleven-dimensional metric is

ds 2 11 = -e -2A dt 2 + e A ds 2 (M 4 ) + e A (dx 2 5 + dx 2 6 + dx 2 7 + dx 2 8 ) + e -2A (dx 2 9 + dx 2 10 ) , (1) 
with coordinates x 5 . . . x 10 on T 6 . The four-form field strength is

F mag 4 = d(e -3A ) ∧ dt ∧ dx 9 ∧ dx 10 + [Θ + -Θ -] ∧ dx 5 ∧ dx 8 + [Θ + + Θ -] ∧ dx 6 ∧ dx 7 + Θ+ ∧ (dx 6 ∧ dx 8 -dx 5 ∧ dx 7 ) (2) 
where Θ + , Θ+ are self-dual two-forms on M 4 and Θ -is an anti-self-dual one. With hindsight, we focus on a solution whose self-dual forms obey the relation

(Θ + + i Θ+ ) ∧ (Θ + + i Θ+ ) = 0 , (3) 
which implies that Θ + + i Θ+ defines a complex structure on M 4 under which it is a holomorphic two-form. As we will see in Section 2.1, this ensures that the solution is supersymmetric. Finally, the warp factor is determined by

∆ 4 e 3A = (Θ 2 + + Θ2 + + Θ 2 -) + ρ M 2 , (4) 
where ∆ 4 is the Laplacian on M 4 and ρ M 2 the M2 brane density. This solution has the electric charge of a set of M2 branes extended along the x 9 and x 10 directions and smeared on the other compact directions of T 6 . The magnetic component of the four-form can be thought of as being sourced by four types of M5 branes on the corresponding Poincaré dual cycles. We summarize that in Table 1.

0 9 10 5 6 7 8 M 4 M2 × × × M5 × × × × × γ 1 M5 × × × × × γ 2 M5 × × × × × γ 3 M5 × × × × × γ 4
Table 1: The brane charges for our configurations along the T 6 directions x 5 . . . x 10 . A brane is localized in directions marked "×" and smeared in the other ones. The M5 branes each wrap a 1-cycle γ i in the hyper-Kähler space M 4 , determined by the (anti)-selfdual fields Θ ± , Θ+ .

Interpretation as a flux compactification

We now argue that this solution is a supersymmetric solution of 11-dimensional supergravity. By swapping the roles of M 4 and T 2 9,10 as external and internal spaces, we see that the above solution is actually an eight-dimensional Calabi-Yau 'compactification' of M-theory, of the type discussed first in [START_REF] Becker | M theory on eight manifolds[END_REF]. The eleven-dimensional spacetime has the form M 1,10 = M 1,2 × X 8 , where X 8 = M 4 × T 4 5,6,7,8 . The metric and the gauge field preserve three-dimensional Poincaré invariance, as can be seen by rewriting (1) and (2) as ds 2 11 = e -2A (-dt 2 + dx 2 9 + dx 2 10 ) + e A ds 2 (X 8 ) ,

F 4 = d(e -3A vol 3 ) + Im [(Θ + -i Θ+ ) ∧ dz ∧ dw + Θ -∧ dz ∧ d w] , (5) 
where vol 3 = dt∧dx 9 ∧dx 10 is the volume form of three-dimensional spacetime and A only depends on the coordinates of the internal manifold X 8 . Furthermore, we defined the holomorphic oneforms dz = dx 5 + i dx 6 , dw = dx 7 + i dx 8 .

The supersymmetry conditions require ds 2 (X 8 ) to be a Calabi-Yau metric for X 8 and the internal components of F 4 to be a primitive (2, 2)-form. The first two requirements are fulfilled since (1) and ( 2) give a Calabi-Yau metric ds 2 (X 8 ) = ds 2 (M 4 ) + dzdz + dwd w .

Since the anti-self-dual two-forms on hyper-Kähler manifolds are (1, 1), eq. ( 5) implies that the internal components of F 4 indeed make up a primitive (2, 2)-form if (Θ + + i Θ+ ) ∧ dz ∧ dw is the holomorphic four-form of X 8 (such that (Θ + -i Θ+ ) is antiholomorphic on M 4 ). This in turn can only be realized if condition (3) holds. The equation of motion for the gauge field then determines the warp factor in general as

d * 8 d A = 1 6 F mag 4 ∧ F mag 4 , (8) 
which reduces to (4) when X 8 = M 4 × T 4 5,6,7,8 . Note that the described background is dual to a supersymmetric flux background of IIB string theory in the GKP class [START_REF] Grana | Supersymmetric three form flux perturbations on AdS(5)[END_REF][START_REF] Giddings | Hierarchies from fluxes in string compactifications[END_REF].

Relation to five-dimensional STU solutions

Finally, we can interpret our supersymmetric solution in eleven-dimensional supergravity compactified on a six-torus (T 6 (5,6,7,8,9,10) ) which descends to five-dimensional N = 8 supergravity. There exists a very large class of solutions to this theory, that fit inside an N = 2 truncation with two vector multiplets: they describe black rings, black holes as well as microstate solutions that have the same charges as these objects but no horizon.

All supersymmetric solutions of this truncation are known [START_REF] Gutowski | General supersymmetric AdS(5) black holes[END_REF][START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF], and are given by:

ds 2 11 = -Z -2 (dt + k) 2 + Z ds 2 4 + Z 3 I=1 ds 2 I Z I , F 4 = dA (I) ∧ ω I = 3 I=1 -d dt + k Z I + Θ (I) ∧ ω I , (9) 
where Z ≡ (Z 1 Z 2 Z 3 ) 1/3 , ds 2 I and ω I are respectively a unit metric and a unit volume form on the three T 2 's inside T 6 and ds 2 4 is a four-dimensional hyper-Kähler metric. When this metric has a translational U(1) isometry it becomes a Gibbons-Hawking metric; if one then compactifies along the Gibbons-Hawking fiber, one obtains a solution of the four-dimensional STU model. Note that we work in a convention in which the three curvature two-forms of the hyper-Kähler base are self-dual, and hence the Θ (I) of a supersymmetric solution are anti-self-dual.

The metric and the timelike (electric) components of the four-form of our solution (1,2) are of the form (9) with Z 1 = Z 2 = 1 and k = 0. However, the spacelike (magnetic) four-form field strengths have more components, and only reduce to the N = 2 truncation above when Θ + = Θ+ = 0. Hence, despite having the right electric charges, the supersymmetric N = 8 solution we found does not fit into the standard "STU" N = 2 truncation. In the next section we discuss the supersymmetry of this solution, and how it fits into a larger N = 2 truncation.

3 Supersymmetry in N = 8 and N = 2

We have shown already in Section 2.1 that the solution (1, 2) is a Calabi-Yau four-fold flux background, and hence preserves at least four supercharges [START_REF] Becker | M theory on eight manifolds[END_REF]. We first analyze the supersymmetry in detail and then discuss whether the solution and its supercharges fit inside the largest N = 2 truncation of the N = 8 theory.

1/8 BPS solutions in N = 8 supergravity

Clearly, the hyper-Kähler background breaks half of the supersymmetry, as it admits only a covariant spinor of (say) positive chirality. This corresponds to the projection Γ 1234 η = -η, where η is a spinor on the internal eight-dimensional manifold. Furthermore, the flux F 4 breaks more supersymmetry. Its electric component (corresponding to an M2-brane charge along the 9, 10 directions) breaks another half of supersymmetry, by the projection Γ 12345678 η = η.

To understand how the magnetic components of F 4 affect the supersymmetry, it is best to choose an appropriate vierbein e i , i = 1, . . . , 4, on the hyper-Kähler space M 4 , such that ( 3) is fulfilled and we can identify the self-dual two-forms of (2) as

Θ + = θ + (e 1 ∧ e 3 + e 4 ∧ e 2 ) , Θ+ = θ + (e 1 ∧ e 4 + e 2 ∧ e 3 ) . (10) 
The supersymmetry conditions / F η = 0 and / F m η = 0 [START_REF] Becker | M theory on eight manifolds[END_REF] will now contain an additional projector, which further halves the amount of supersymmetry. More precisely:

0 = 1 4! F ijkl Γ ijkl η = 1 4 [(Θ + ) ij Γ ij58 + ( Θ+ ) ij Γ ij68 ](1 -Γ 5678 )(1 -Γ 1234 )η -1 4 (Θ -) ij Γ ij58 (1 + Γ 5678 )(1 + Γ 1234 )η , (11) 
where we have inserted the projectors 1 2 (1 ± Γ 1234 ) by making use of the (anti-)self-duality of Θ ∓ . The term containing the anti-self-dual flux Θ -vanishes on the Killing spinors annihilated by the two earlier projectors 1 2 (1 + Γ 1234 ) and 1 2 (1 -Γ 12345678 ), and this agrees with the known structure of BPS three-charge solutions, in which turning on an anti-self-dual field strength on the base does not affect supersymmetry.

For arbitrary self-dual forms Θ + , Θ+ , the first line is not zero and supersymmetry is broken. However, for the specific choice [START_REF] Ceresole | Flow equations for non-BPS extremal black holes[END_REF] this term contains a new projector:

0 = 2θ + Γ 1358 (1 + Γ 3456 )η , (12) 
which is compatible with the first two. More generally, under the condition (3) we always find such a projector and the solution has four supercharges. It is not hard to see that the equations / F m η = 0 do not impose any extra conditions on the remaining Killing spinors, essentially because the flux pieces that are self-dual on the hyper-Kähler manifold always combine into the projector 1 2 (1 + Γ 3456 ), while the anti-self-dual components always give either 1 2 (1 + Γ 1234 ) or 1 2 (1 + Γ 5678 ), depending on the index m. Therefore, the solution is 1/8 BPS, and its 4 Killing spinors are annihilated by the projectors:

1 2 (1 + Γ 1234 ) , 1 2 (1 + Γ 3456 ) and 1 2 (1 + Γ 5678 ) . ( 13 
)

A puzzle

The 1/8 BPS solution we gave in (1,2) has not been found in the literature. Moreover, its magnetic field strength (2) has both self-dual and anti-self-dual components on the hyper-Kähler space. This is surprising since all 1/2 BPS solutions in N = 2 supergravity in five dimensions have only anti-self-dual fluxes on the hyper-Kähler space, as shown in [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF][START_REF] Gutowski | General supersymmetric AdS(5) black holes[END_REF]. This indicates that our solution cannot be a 1/2 BPS solution of N = 2 supergravity. In the following we want to discuss what happens to the 1/8 BPS solution (1,2) when mapped to the maximal N = 2 truncation of N = 8 supergravity.

N = 2 truncations and supersymmetry

In order to find a supergravity with eight supercharges in five dimensions, we have to perform a truncation of N = 8 supergravity. The field content of these truncated theories (also called 'magical supergravities') has been discussed for instance in [START_REF] Gunaydin | Exceptional Supergravity Theories and the MAGIC Square[END_REF][START_REF] Gunaydin | The Geometry of N=2 Maxwell-Einstein Supergravity and Jordan Algebras[END_REF]. The N = 2 truncation with the maximal field content (and only vector multiplets) is the magical supergravity related to the Jordan algebra over the quaternions and it admits the global symmetry group SU * (6). It has the same bosonic field content as five-dimensional N = 6 supergravity. As we show in a more detailed work [16], the projection to this N = 2 supergravity in five dimensions corresponds to fixing a complex structure I on T 6 and projecting out some representations of the related SL(3, C). The surviving vector fields of the N = 2 projection contain all gauge fields coming from the eleven-dimensional three-form potential with two legs on T 6 that are (1, 1) with respect to I. Note that I does not have to be related to the complex structure under which dz and dw are holomorphic, as long as the metric given in (1) respects it. If we choose a complex structure I on T 6 such that dz 1 = dx 8 + i dx 5 , dz 2 = dx 6 + i dx 7 and dz 3 = dx 9 + i dx 10

are holomorphic one-forms under I, then the flux given in ( 2) is (1, 1) on T 6 , and we see that our solution indeed gives a solution to N = 2 supergravity. Now let us understand the amount of supersymmetry of the solution in N = 2 supergravity. The complex structure above is different from the complex structure chosen in [START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF], and under the new complex structure the flux F 4 (5) has a piece that is (3, 1) ⊕ (1, 3) and therefore the configuration is not supersymmetric in N = 2 supergravity. More precisely, the projection to N = 2 breaks the N = 8 R-symmetry group USp(8) to USp(6)×SU [START_REF] Giddings | Hierarchies from fluxes in string compactifications[END_REF], where the latter factor is the R-symmetry of the N = 2 theory. The action of USp(6) on the spinors defines the projection to N = 2. The generator C ≡ 1 2 (Γ 85 -Γ 67 ) [START_REF] Becker | M theory on eight manifolds[END_REF] commutes with the complex structure I, the Cartan generator of SU(2), and hence is a generator of USp [START_REF] Bena | One ring to rule them all ... and in the darkness bind them?[END_REF]. In particular, the requirement Cη = 0 implies

1 2 (1 -Γ 5678 )η = 0 . ( 16 
)
This projects out all four Killing spinors of the 1/8 BPS solution, cf. [START_REF] Lust | Generalized non-supersymmetric flux vacua[END_REF]. Hence, when we projected to the N = 2 SU * (6) supergravity, we projected out all supercharges which remain unbroken in the solution [START_REF] Grana | Supersymmetric three form flux perturbations on AdS(5)[END_REF][START_REF] Giddings | Hierarchies from fluxes in string compactifications[END_REF]. Therefore, the solution is non-BPS in N = 2 supergravity.

We use four-dimensional supersymmetry conventions. For instance, all N =

theories, regardless of dimension, have 8 supercharges.[START_REF] Giddings | Hierarchies from fluxes in string compactifications[END_REF] The fact that a non-supersymmetric solution of an N = 2 or an N = 4 theory can become supersymmetric when embedded in N = 8 has been know for quite a while[START_REF] Ferrara | N=8 non-BPS Attractors, Fixed Scalars and Magic Supergravities[END_REF][START_REF] Khuri | A Nonsupersymmetric dyonic extreme Reissner-Nordstrom black hole[END_REF]. However, in all these examples, there always exists an N = 2 or N = 4 truncation in which the N = 8 solution is supersymmetric. In our example no such truncation exists, and the supersymmetry of the solution cannot be captured in any daughter N = 2 theory.
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