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Abstract

We establish the relation between the structure governing supersymmetric and non-
supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-
Yau flux compactifications of M-theory and type IIB string theory. We find that the known
BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compact-
ifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general
GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We
explore how these solutions fit into N = 2 truncations, and elucidate how supersymmetry
becomes camouflaged. As a necessary tool in our exploration we show how the fields in
the largest N = 2 truncation fit inside the six-torus compactification of eleven-dimensional
supergravity.

ar
X

iv
:1

20
6.

23
49

v1
  [

he
p-

th
] 

 1
1 

Ju
n 

20
12



Contents

1 Introduction 1

2 M-theory on T 6 3
2.1 Maximal supergravity in five dimensions . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The largest N = 2 truncation in five dimensions and SU∗(6) supergravity . . . . . 5
2.3 Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Black holes and flux compactifications 10
3.1 Flux compactifications on hyper-Kähler spaces . . . . . . . . . . . . . . . . . . . . 11
3.2 BPS and almost-BPS black hole geometries . . . . . . . . . . . . . . . . . . . . . 14

4 New solutions 17
4.1 The eleven-dimensional solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Interpretation as N = 2 truncation and supersymmetry . . . . . . . . . . . . . . . 19

5 Single-center example 20

A Hyper-Kähler geometry 22

1 Introduction

There is an extensive literature on constructing supersymmetric and non-supersymmetric
flux compactifications and a parallel extensive literature on finding supersymmetric and non-
supersymmetric multicenter solutions that have the same charges as black holes. While the
physical motivations are different, the technical tools are rather close. In particular, the equa-
tions underlying supersymmetric solutions are well-understood and classified, both on the flux
compactification side (see for example [1, 2, 3]) in ten dimensions, and on the black hole mi-
crostate side for the underlying supergravity in five dimensions [4, 5, 6]. Furthermore, some of the
methods for constructing non-supersymmetric solutions from supersymmetric ones are strikingly
similar. These methods include slightly deforming the supersymmetric solution by additional
fluxes [1, 2], flipping some signs [7], or writing some effective Lagrangian as a sum of squares for
black holes [8, 9, 10, 11, 12, 13, 14, 15, 16] or flux backgrounds [17, 18].

A first step towards relating these two research currents has been taken in [19], where we
found that certain supersymmetric flux backgrounds of the type [20] whose “internal” manifold
contains a hyper-Kähler factor are related to non-rotating solutions in the classification of [4, 5, 6].
A very intriguing revelation of this relation has been the existence of so-called “camouflaged su-
persymmetry”: certain supersymmetric solutions of N = 8 supergravity are non-supersymmetric
in all N = 2 truncations in which they fit. Hence, their supersymmetry is camouflaged in N = 2
supergravity.

The first purpose of this paper is to deepen the relation between supersymmetric flux com-
pactifications and multicenter solutions found in [19], and to show that this relation extends to
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non-supersymmetric solutions: some of the non-supersymmetric IIB and M-theory flux compact-
ifications of [1, 2, 21] can be reinterpreted as almost-BPS multicenter solutions [7, 22, 23, 24],
while some others give new solutions that lie outside of the almost-BPS class and in general have
more dipole charges.

The second purpose of this paper is to blow the cover of camouflaged supersymmetry, by
investigating how the field content and supersymmetries of the T 6 compactification of M-theory
(which gives N = 8 supergravity) can be truncated to N = 2. It has been long known that
the largest such truncation (with only vector multiplets) is one of the so-called “Magic Square
Supergravities,” constructed from the Jordan algebra over the quaternions [25, 26]. Any N = 2
truncation (without hypermultiplets) of the N = 8 supergravity should therefore fit into the
quaternionic magic supergravity. Therefore, understanding how supersymmetry is camouflaged
in the truncations to this supergravity is enough to clarify how this mechanism works in general.

We therefore begin in Section 2 by working out in detail how the fields of eleven-dimensional
supergravity compactified on a six-torus project to the multiplets of the N = 2 quaternionic
magic supergravity. This truncation has an SU∗(6) global symmetry group that is completely
determined by a complex structure on T 6. The transformation behavior under this complex
structure determines the fate of the massless fields coming from the eleven-dimensional metric
and three-form potential, and gives the projection of the N = 8 supersymmetry generators.

We then proceed in Section 3 to link five-dimensional multicenter solutions to M-theory flux
backgrounds on fourfolds that are products of two hyper-Kähler spaces. The five-dimensional
BPS solutions with a hyper-Kähler base [4, 5, 6] correspond to fourfold flux backgrounds with
primitive (2,2) flux [27, 20], while almost-BPS solutions [7, 22] come from fourfolds with self-dual
but supersymmetry-breaking fluxes [21]. When one of the hyper-Kähler spaces is T 4 the fourfold
flux backgrounds are dual to GKP solutions [2], and the almost-BPS five-dimensional solutions
correspond to backgrounds with (0,3) flux [28].

However, a few surprises are in store. First, there are supersymmetric flux backgrounds
that give solutions that are neither in the five-dimensional BPS [4, 5, 6] or almost-BPS classes
[7, 22]. Those are the solutions with camouflaged supersymmetry. Second, there exist new non-
supersymmetric five-dimensional solutions that have a hyper-Kähler base space, and that have
many species of both self-dual and anti-self-dual fluxes on this base. The third, and perhaps the
most striking result, is that some supersymmetric flux compactifications give supersymmetric
solutions of five-dimensional gauged supergravity with a time-dependent axion (but constant
axion field strength). Unlike any other known supersymmetric solutions of five-dimensional
gauged supergravity [5, 29, 30], the solutions we find have a hyper-Kähler base space!

In Section 4 we apply our formalism to a flux compactification of M-theory for which one
of the hyper-Kähler factors in the internal manifold is a T 4. We first use the results of Sec-
tion 3 to display which fields enter in the BPS, almost-BPS and camouflaged-supersymmetry
solutions, and to give the explicit form of the novel BPS gauged supergravity solutions with
a time-dependent axion. We then use the results of Section 2 to show how the solutions with
camouflaged supersymmetry fit inside N = 2 truncations of N = 8 five-dimensional supergravity,
and how their Killing spinors do not.

In Section 5 we construct a simple explicit example of a solution with camouflaged supersym-
metry. The parameters of the general solutions with camouflaged supersymmetry are functions
that depend on four variables, and hence these solutions are generically rather complicated. If
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one assumes that the base hyper-Kähler space is a Gibbons-Hawking or a Taub-NUT space, then
the solution is completely determined by specifying several harmonic functions on the R3 base
of Taub-NUT. We work out a simple single-center solution in R4 and in Taub-NUT, and find
that it describes a black hole in five dimensions that has a finite horizon area, but whose scalars
diverge at the horizon.

Outlook

Before beginning our investigation it would be useful to remind ourselves what one hopes to obtain
by relating the technologies of flux compactifications to the technologies of multicenter black holes
and microstates. The main hope is to apply flux-compactification technology to find new black
hole multicenter and microstate solutions with interesting physics, as we have began doing in
[19], and to construct new flux compactifications or holographically-useful asymptotically-AdS
solutions by using black-hole multicenter technology.

The most promising technology on the flux compactification side is the writing of effective
Lagrangians as sums of squares of calibrations [17, 18], which allows one to construct non-
supersymmetric backgrounds that depend on functions of several variables by solving first-order
equations. This has also been done for multicenter black holes and microstates by finding the first-
order system underlying all five-dimensional solutions that admit three kinds of M2 calibrations,
or M2 “floating branes” [31]. However, there exist more exotic types of calibrations [32] that
appear to underly general non-extremal solutions like the five-dimensional dipole black ring [33]
or the so-called JMaRT solution [34]. If one found a way to use these calibrations to obtain
a first-order system of equations governing these solutions one would be able to find a simple
way of constructing multiple dipole black rings, or multi-bubble JMaRT solutions, which would
be very interesting in establishing how the so-called fuzzball proposal1 applies to non-extremal
black holes.

From the black hole side, there are two technologies that allow one to construct non-
supersymmetric solutions governed by a set of first-order equations. The first is to dualize
solutions that have floating branes [7, 31] and to obtain the most general non-BPS solution
in their duality orbit [41]. The second is to use nilpotent orbits to construct interacting-non-
BPS solutions [42]. These classes of solutions can have rather unexpected physics2, and if one
could extract new flux compactifications from the classes of solutions above, their physics would
certainly be interesting.

2 M-theory on T 6

In this paper we mainly consider M-theory compactified on a six-dimensional torus T 6. This leads
to a five-dimensional “maximal” supergravity, (with 32 supercharges), which we will denote by
N = 8 supergravity. The purpose of this section is to discuss the “largest” truncation of this

1See [35, 36, 37, 38, 39, 40] for reviews.
2For example the near-horizon-extremal-Kerr metric can be found [43] in the infrared of certain solutions

obtained in [41]

3



five-dimensional N = 8 supergravity to N = 2 supergravity (with 8 supercharges), in terms of
the eleven-dimensional fields and the geometry of the internal space.3

2.1 Maximal supergravity in five dimensions

We review the reduction to five dimensions of the eleven-dimensional bosonic fields, namely the
metric components GMN and the three-form potential A3. We consider a Kaluza-Klein reduction
on T 6 and keep only the massless modes. The fields of the five-dimensional theory naturally
form representations of the SL(6,R) group of reparameterizations of the six-torus. We expect
the reduced theory to have (at least) this SL(6,R) global symmetry, as well as an R dilaton shift
symmetry related to the scaling of the torus volume or ‘breathing mode.’ However, because of
supersymmetry the fields assemble in representations of an even larger symmetry group, E6(6),
that contains the geometric symmetries SL(6,R)× R as a subgroup. As a result, we obtain the
bosonic field content of five-dimensional N = 8 supergravity with global symmetry group E6(6).
As we explain below, the 42 scalars of the theory parameterize the coset E6(6)/USp(8), while the
27 vectors form an irreducible representation of the global symmetry group E6(6).

We denote by xM the eleven-dimensional spacetime coordinates, by xµ the five-dimensional
spacetime directions and by yi the internal directions. The eleven-dimensional metric GMN de-
composes into the five-dimensional metric Gµν , six Kaluza-Klein vectors Ai corresponding to the
components Gµi and 21 scalar fields corresponding to the internal metric Gij. The Kaluza-Klein
vectors Ai transform in the fundamental representation 6 of SL(6,R), the internal components
Gij decompose into a 20 (symmetric traceless) and a singlet φ (the trace). The latter measures
the overall size of the torus and is usually called the dilaton. In a conventional KK ansatz, we
would write:

ds2
11 = e2αφds2

5 + e2βφMij(dy
i + Ai)⊗ (dyj + Aj) , (1)

where α, β are constants and Mij = Gij/(detGkl)
1/6 has determinant one and contains the 20

remaining scalars. The latter form the coset SL(6,R)/SO(6), which describes the deformations
of the internal metric.

The three-form potential AMNP gives four different kinds of five-dimensional fields. First,
there are 15 vectors Aµij and 20 scalars Aijk. Furthermore, there are the components Aµνρ and
Aµνi, which are anti-symmetric three- and two-forms in five dimensions. We wish to consider
their proper Hodge dualization to a scalar and a vector potential respectively, because we want
a five-dimensional theory with only vector and scalar fields. By choosing notation Ã6 for the
dual field in eleven dimensions we find 6 additional vectors Ãµijklm and one more scalar Ãijklmn,
giving a total of 15 + 6 vectors and 20 + 1 scalars.4 Traditionally, the five-dimensional scalar
Ãijklmn arising as the Hodge dual of Aµνρ is called the axion.

In summary, the five-dimensional vectors AIµ form the 27 representation of E6(6) which de-
composes as

27 → 15 + 6 + 6 ,

AIµ = {Aµij, Aµijklm, Gµi} .
(2)

3The notion “largest” here refers to the number of vector multiplets in the N = 2 theory.
4The A3 equation of motion can be written as 0 = d ?11 dF4 + 1

2F4 ∧ F4 ≡ dF7 and we can locally define

F7 = dÃ6.
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under E6(6) → SL(6,R). Furthermore, the 42 scalars φa = {Mij, φ, Aijk, Ãijklmn} of the theory
arrange into the coset E6(6)/USp(8).

For later use, we consider the branching of the E6(6) representations in terms of the subgroup
SL(6,R)× SL(2,R). The SL(6,R), the internal torus symmetry, corresponds to the global sym-
metry of the coset parameterized by the internal metric components M. The SL(2,R) is the

global symmetry of the axion-dilaton Ãijklmn+i e−2φ. Those two cosets combine to SL(6,R)
SO(6)

× SL(2,R)
SO(2)

and they can be seen as the submanifold of the scalar geometry E6(6)/USp(8) where the scalars
Aijk are set to zero. We find the following picture for the scalar fields

E6(6)

USp(8)
→ SL(6,R)

SO(6)
× SL(2,R)

SO(2)

Aijk = 0

φa → {Mij, Ãijklmn + i e−2φ} .

(3)

where φa = {Mij, φ, Aijk, Ãijklmn}. Under the breaking E6(6) → SL(6,R) × SL(2,R) the 27
representation for the vectors branches as

27→ (6,2) + (15,1) . (4)

2.2 The largest N = 2 truncation in five dimensions and SU∗(6) su-
pergravity

For many applications, it is important to understand supergravity theories with a lower amount of
supersymmetry. Of particular interest are N = 2 theories, which arise for instance as Calabi-Yau
compactifications of M-theory (to five dimensions) and type II string theory (to four dimensions).
Another way to find N = 2 supergravities is to truncate a theory with more supersymmetry, for
instance the N = 8 supergravity originating from the M-theory compactification we discussed
above. It has been shown that the largest possible consistent N = 2 truncation of maximal five-
dimensional supergravity (without hypermultiplets) is the so-called ‘magical’ supergravity of [25],
whose construction can be given in terms of the Jordan algebra over the quaternions. This theory
has an SU∗(6) global symmetry. There are 15 vectors filling out the 15 representation of SU∗(6)
and 14 scalars parametrizing the coset SU∗(6)/USp(6). To our knowledge, the interpretation
of the SU∗(6) theory in terms of the M-theory torus compactification has not been discussed in
detail in the literature so far.5 The purpose of this section is to write down explicitly the relation
between the SU∗(6) fields in five dimensions and the parent eleven-dimensional fields, and to
close this gap. Anticipating a bit, we will see that the truncation to N = 2 corresponds to a
choice of complex structure on the T 6.

2.2.1 Maximal N = 2 truncations and SU∗(6)

As the reader might not be very familiar with SU∗(6), a certain real form of SL(6,R), we first give
some more details on this group. SU∗(2n) consists of those complex matrices M ∈ GL(2n,C),

5The truncation involves breaking the N = 8 supermultiplet up into N = 2 supermultiplets and discarding
the N = 2 spin 3/2 and the spin ≤ 1/2 multiplets. The SU∗(6) theory was shown to be the largest consistent
truncation in [26]. For the reduction of type II to four dimensional supergravity, see [44, 45].
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commuting with the operator IK:
IKM = MIK , (5)

where K is the complex conjugation operator and I2 = − . From this operational definition,
it is clear that I has the interpretation of giving a complex structure to R2n. If we perform a
change of basis bringing I to the canonical form I = n×n ⊗ iσ2, where σ2 is the second Pauli
matrix, then an element of the Lie algebra m ∈ su∗(2n) has the form:6

m =

(
A B
−B∗ A∗

)
(6)

where B ∈ gl(n,C) and A ∈ sl(n,C). See for example [46] for more details.
Let us return to the truncation of maximal supergravity. Similar to the breaking to the

geometric subgroup, the vectors in the representation 27 of the N = 8 symmetry group E6(6)

decompose in representations of the subgroup SU∗(6)× SU(2) as:

E6(6) → SU ∗(6)× SU(2) : 27→ (6,2) + (15,1) . (7)

Similarly, the 42 scalars of the coset E6(6)/USp(8) split into 14 vector multiplet scalars param-
eterizing SU∗(6)/USp(6) and 28 hypermultiplet scalars parameterizing F4/(USp(6) × SU(2)).
These two submanifolds of E6(6)/USp(8) are not compatible with each other as SU∗(6) and F4

do not commute as subgroups of E6(6), and this indicates that they are not decoupled. If we want
to keep all vector multiplets in the N = 2 truncation, all hypermultiplets are truncated away. In
the following we consider only the vector multiplets.

We see that only the 15 in (7) can survive the truncation to N = 2, as only these are
accompanied by the 14 scalars.7 In the next paragraph, we identify the 15 vectors and the 14
scalars of the maximal N = 2 truncation in terms of the T 6 geometry.

2.2.2 Internal geometry

The choice of complex structure on the torus is crucial in treating the geometric interpretation of
SU∗(6) supergravity. The choice of complex structure corresponds to choosing complex coordi-
nates zα, z̄β̄ in terms of a set of real coordinates yi, or more precisely, of choosing the embedding
of an SL(3,C) subgroup in the SL(6,R) group of torus reparameterizations. The choice of com-
plex structure fixes a preferred matrix I and through (5) it singles out an SU∗(6) subgroup of
E(6)6.

Let us now understand the decomposition for the vectors in (7) and for the scalars into
SU∗(6)/USp(6) and F4/(USp(6) × SU(2)) by considering the largest common subgroup of
SL(6,R) × SL(2,R) and SU∗(6) × SU(2).8 This group is SL(3,C) × U(1) × U(1) as can be
seen in the following way. Consider first the SU∗(2n) Lie algebra element m in (6) and choose

6We define Lie algebra elements as M = exp(m), without an ‘i’ in the exponent.
7Note that one vector, the graviphoton, sits in the gravity multiplet and does not have a scalar in its multiplet.

Therefore, the number of scalars is one lower than the number of vectors.
8We thank Sergio Ferrara very much for proposing this strategy.
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coordinates such that I has the canonical form. For m to be an element of the Lie algebra
sl(2n,R) as well, it must be a real and traceless matrix. This restricts its elements:

m = A⊗ 2×2 +B ⊗ iσ2 , A ∈ sl(n,R) , B ∈ gl(n,R) . (8)

We conclude that the largest common subgroup is9

SL(n,R) ∩ SU∗(2n) ∼= SL(n,C)× U(1) . (9)

The U(1) is generated by ( ⊗ iσ2) and corresponds in our case (for n = 3) to I, the complex
structure on T 6. The group SL(3,C) are the reparametrizations that do no affect the complex
structure. Furthermore, the common subgroup of the factors SL(2,R) and SU(2) is given by

SL(2,R) ∩ SU(2) ∼= U(1) . (10)

We arrive at the full breaking pattern of E6(6) into its subgroups in Table 1. Similarly, one can
work out the breaking of the maximal compact subgroup USp(8), as given in Table 2.

E6(6) → SL(6,R)× SL(2,R)
↓ ↓

SU∗(6)× SU(2) → SL(3,C)× U(1)× U(1)

Table 1: The breaking of E6(6) into its subgroups. In vertical direction the breaking to N = 2 is displayed, in
horizontal direction the breaking to the geometric subgroup.

USp(8) → SU(4)× U(1)
↓ ↓

USp(6)× SU(2) → SU(3)× U(1)× U(1)

Table 2: The breaking of USp(8) into its subgroups. In vertical direction the breaking to N = 2 is displayed, in
horizontal direction the breaking to the geometric subgroup.

With the data of Table 1 and 2 we are now able to determine how the components of the
ten-dimensional fields arrange into representations of SU∗(6)× SU(2). We can identify the field
content of the SU∗(6)×SU(2) representations by using their decompositions under the ‘geometric’
subgroup SL(3,C)× U(1)× U(1). First we decompose the gauge fields and scalars that we got
from the dimensional reduction into representations of SL(3,C) using that the torus one-forms
split into holomorphic (3 of SL(3,C)) and antiholomorphic (3̄ of SL(3,C)) one-forms. The result
of the decomposition can be found in Table 3.

It is then crucial to understand the relations between the U(1)’s coming from SU∗(6)×SU(2)
and from SL(6,R)× SL(2,R), cf. Table 1 and 2. Let us denote the generator for the U(1) inside

9This latter isomorphism can be made concrete by considering the mapping: 2×2 ↔ 1 , σ ↔ i, such that the
Lie algebra element is mapped into m→ {A+ iB̃ ∈ sl(n,C) ,Tr iB ∈ u(1) ≡ so(2)} where B̃ denotes the traceless
part of the matrix B.
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Field content: SL(6,R) SL(3,C)× U(1)ρ6
Vectors: Aµij = {Aµαβ̄, Aµᾱβ̄, Aµαβ} 15 (80 + 10) + 3−2 + 3̄+2

Gµi = {Gµα, Gµᾱ} 6 3+1 + 3̄−1
Ãµijklm = {Ãµᾱβ̄γδε, Ãµαβγ̄δ̄ε̄} 6 3+1 + 3̄−1

Scalars: Aijk = {Aαβγ, Aᾱβ̄γ̄, Aᾱβγ, Aαβ̄γ̄} 20 1+3 + 1−3 + (3+1 + 6̄+1)
+(3̄−1 + 6−1)

Gij = {Gᾱβ̄, Gαβ, Gαβ̄} 20′ + 1 6̄−2 + 6+2 + (80 + 10)

Ãijklmn = Aαβγδ̄ε̄σ̄ 1 10

Table 3: Higher-dimensional origin of the five-dimensional vectors and scalars, their SL(6,R) representations
and branching under the SL(3,C)× U(1) subgroup. The 3, 3̄ and the 6, 6̄ appearing in the vector sector are the
irreducible (anti-)symmetric parts of the two-tensor representations.

SU∗(6) by u6 and the one coming from SU(2) by u2. Similarly, ρ2 and ρ6 denote the U(1)’s
coming from SL(2,R) and SL(6,R). Then we can derive from Table 2 that

u6 =1
2
(3ρ2 + ρ6) , ρ6 = 1

2
(u6 − 3u2) ,

u2 =1
2
(ρ2 − ρ6) , ρ2 = 1

2
(u6 + u2) .

(11)

where the overall signs are just conventional.
We start with the vector multiplets, where the breaking is given by (7). In terms of SL(3,C)×

U(1)u6 × U(1)u2 representations, this becomes

(15,1)→80,0 ⊕ 10,0 ⊕ 3+2,0 ⊕ 3̄−2,0 ,

(6,2)→3̄+1,+1 ⊕ 3−1,+1 ⊕ 3̄+1,−1 ⊕ 3−1,−1 .
(12)

From (11) we see that the representations under SL(3,C)× U(1)ρ6 × U(1)ρ2 are

(15,1)→80,0 ⊕ 10,0 ⊕ 3+1,+1 ⊕ 3̄−1,−1 ,

(6,2)→3̄−1,+1 ⊕ 3−2,0 ⊕ 3̄+2,+0 ⊕ 3+1,−1 .
(13)

The representations on the right-hand side can be identified with the representations appearing
in Table 3. For instance, the representation 3+1,+1 is given by Gµα + i(∗6Ãµ)α, while the 3+1,−1
is given by Gµα − i(∗6Ãµ)α. Therefore we identify the components of the (15,1) representation
of SU∗(6) × SU(2) as {Aµij + Iki I

l
jAµkl, Gµi − Iji (∗6Ãµ)j}. These are the vectors that remain in

the N = 2 supergravity, while the others are projected out. The result is displayed in Table 4.

SU∗(6) E6(6)

Aµij + Iki I
l
jAµkl, Gµi − Iji (∗6Ãµ)j 15 }

Gµi + Iji (∗6Ãµ)j 6 27
Aµij − Iki I ljAµkl 6

Table 4: Vectors in five-dimensional supergravity with their higher-dimensional origin (first column) and repre-
sentations under SU∗(6) and E6(6).
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Now let us turn to the scalars. In N = 8 supergravity, the scalars form the coset E6(6)/USp(8)
which corresponds to the 42 representation of USp(8). The N = 2 truncation breaks USp(8)→
USp(6)× SU(2). The scalars split accordingly into

42→ (14,1)⊕ (14′,2) . (14)

The first term gives the vector scalars that survive the N = 2 projection and form the coset
SU∗(6)/USp(6). The second term would be hyper scalars but they do not survive the projection.
In terms of the geometric subgroup SL(3,C)× U(1), the 14 breaks into

14→ 80 ⊕ 3+2 ⊕ 3̄−2 . (15)

These representations are identified with the scalars {Mαβ̄, Aαγγ̄δ
γγ̄, Aᾱγ̄γδ

γ̄γ}, as can be read
off from Table 3. All other scalars are projected out of the N = 2 theory. Note that only those
components of the internal metric that preserve the complex structure I survive.

2.3 Spinors

We now study the effects of the N = 2 truncation on the eleven-dimensional Killing spinors. In
N = 8 the internal components of the Killing spinors transform under USp(8) in the fundamental
representation given by

η =

(
η+

Cη−

)
, (16)

where η± are the chiral components of the internal spinor and C is the six-dimensional charge
conjugation matrix.

For this, we consider the breaking of the R-symmetry group USp(8) of the N = 8 theory in
five dimensions to the N = 2-supersymmetric truncation. Following Table 2, it is broken as

USp(8)→ USp(6)× SU(2) . (17)

This breaking of the R-symmetry group corresponds to a projection on the space of internal
Killing spinors. The N = 2 Killing spinors are singlets under the action of the USp(6) factor and
the SU(2) factor comprises the N = 2 R-symmetry. This means that the action of the USp(6)
generators vanishes on the N = 2 spinors. This gives us the projection operators for mapping
the N = 8 spinors to the N = 2 subspace. In general it is sufficient to consider only a set of
Cartan generators gi, i = 1, 2, 3, of USp(6) as projection operators. Then the projection onto
the N = 2 spinors is given by

giη = 0 , i = 1, 2, 3 . (18)

In order to find a convenient set of Cartan generators gi of USp(6), we consider the geometric
subgroup Spin(6) ≡ SU(4) of the R-symmetry group, which acts on the components η± in (16)
separately. It breaks accordingly as

Spin(6) ≡ SU(4)→ SU(3)× U(1) , (19)
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cf. Table 2. In Section 2.2.2, we denoted the generator of the U(1) factor as ρ6. On the spinors
it just acts as ρ6 = /J , where J is the Kähler two-form related to I. Furthermore, for the Cartan
generators of SU(3) we can choose any two elements of Spin(6) that commute with each other
and with ρ6. Since SU(3) is a subgroup of USp(6), these two Cartan generators give appropriate
g1 and g2. A generator of USp(6) that is obviously commuting with SU(3) is u6. Therefore,
g3 = u6 is our third Cartan generator of USp(6). Utilizing (11) we see that g3 is given by
1
2
(3ρ2 + ρ6). Here, ρ2 acts as the matrix

ρ2 =

(
0 1

−1 0

)
⊗ 1 (20)

on (16).
To visualize these conditions, we specify a complex coordinate system z1, z2, z3 on T 6. The

Kähler form on T 6 has the form
J =

∑
i

i
2
dzi ∧ dz̄i . (21)

With real coordinates as in Section 4 (z1 = y5 + i y8, z2 = y6 + i y7, z3 = x9 + ix10), we then
have

/J = Γ85 + Γ67 + Γ9,10 . (22)

We find that g1 = Γ85− Γ67 and g2 = Γ67− Γ9,10 both commute with /J and hence they span the
SU(3) Cartan algebra. This gives us the projection conditions:

(1− Γ5678) η± = 0 , (1− Γ679,10) η± = 0 , (Γ85 + Γ67 + Γ9,10)η± + 3Cη∓ = 0 . (23)

3 Black holes and flux compactifications

In this section we investigate the relation between black hole solutions and flux compactifica-
tions. On the black hole side, we wish to consider compactifications of string/M-theory to five
dimensional solutions that can describe black holes, black rings and their microstate geometries.
In M-theory, such geometries are of the type

M1,10 = Rt ×M4 × M̃6 . (24)

The geometry depends on the four-dimensional base space M4; the compact space M̃6 and the
time direction are non-trivially fibered over M4. For supersymmetric solutions, M4 is hyper-
Kähler and M̃6 is Calabi-Yau.

We can interpret this geometry as a flux compactification to Minkowski space in d = 1 (only a
time direction), where M4×M̃6 is the internal space and the black hole redshift factor (gtt metric
component) acts as the warp factor. Of course M4 describes the four-dimensional space of the
black hole spacetime and is non-compact. However, all techniques in the flux compactification
literature are still largely applicable, as they mostly concern local properties of the solution, such
as supersymmetry and solving the equations of motion.

From this crude picture we see that a black hole geometry can be interpreted as a one-
dimensional flux vacuum. There is however no real technical gain in the study of black hole
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solutions from this analogy, as for obvious reasons one-dimensional flux vacua have not received
much attention in the literature.10 Flux compactifications of M-theory to three dimensions on
the other hand have been studied in great detail, starting with the class of Minkowski vacuum
solutions of [20, 21]. Therefore we keep to black hole solutions that have a three-dimensional
Poincaré invariance and fall into this class. In particular this happens when M̃6 factorizes as
M̃6 = M̃4×T 2 and we demand (local) Poincaré invariance in the three-dimensional space Rt×T 2.
In this section, we focus on black hole solutions of this type, which can be interpreted as a flux
compactification with geometry

M1,10 = Rt × T 2 × (M4 × M̃4) . (25)

A special situation is M̃4 = T 4, which we discuss in more detail in Section 4.
In Section 3.1, we review flux compactification of M-theory to three dimensions with internal

space X8 = M4× M̃4, where M4 and M̃4 are both hyper-Kähler.11 This is a special example of a
“compactification” on a Calabi-Yau fourfold X8 as discussed in [20, 21]. We pay special attention
to the supersymmetry conditions in terms of fluxes. We also discuss the relation to the GKP class
of Minkowski vacua [2]. In Section 3.2, we review black hole, black ring and their microstate
solutions in the STU truncation of M-theory. We discuss both the supersymmetric solutions
and the ‘almost-BPS’ ones, and show under which conditions they have an interpretation as
three-dimensional flux vacuua in M-theory.

3.1 Flux compactifications on hyper-Kähler spaces

3.1.1 Calabi-Yau fourfolds in M-theory

We discuss flux backgrounds of M-theory on a Calabi-Yau fourfoldX8 times three-dimensional flat
spacetime. In the absence of flux (and D-branes/orientifold planes) these backgrounds preserve
four supercharges. For backgrounds of the form (25) the number of preserved supercharges is
at least eight, as X8 = M4 × M̃4 has more Killing spinors.12 A natural scenario to (partially or
completely) break the remaining supersymmetry for such backgrounds by non-trivial fluxes has
been established in [20, 21]. In this setup, there is the possibility of a warp factor induced by an
electric flux in the background. The solution is

ds2
11 = e−2Ads2

1,2 + eAds2
CY (X8) ,

G4 = d(e−3A vol3) +Gmag
4 .

(26)

The equations of motion dictate that the internal four-form flux Gmag
4 on X8 is self-dual. A

generic self-dual Gmag
4 breaks all supersymmetries. However, when the four-form flux on X8 is

of cohomology type (2, 2) and primitive (orthogonal to the Kähler form of X8), the background
still preserves 1/2 of the supercharges.

10A first attempt to understand such backgrounds better can be found in [47].
11Since M̃4 is compact, it is therefore either K3 or T 4.
12For M̃4 = T 4 there are sixteen unbroken supercharges.

11



Let us try to understand this in more detail. The most general self-dual flux on X8 = M4×M̃4

is

Gmag
4 = f(vol4(M4) + vol4(M̃4)) +

3∑
a=1

3∑
b=1

fabJa ∧ J̃b +
N∑
α=1

Ñ∑
α̃=1

fαα̃Lα ∧ L̃α̃ , (27)

where vol4 denotes the volume forms of each hyper-Kähler space, Ja (J̃ã) are a basis of self-dual
two-forms on the hyper-Kähler space M4(M̃4). Furthermore, N (Ñ) denotes the number of the
anti-self-dual two-cycles Lα (L̃α̃) on M4(M̃4), which is (b2 − 3) in terms of the second Betti
number of M4(M̃4). The coefficients f, faã, fαα̃ parameterize the flux turned on.

Now let us discuss the supersymmetry conditions. The hyper-Kähler manifolds M4, M̃4 each
have three self-dual two-forms Ja, J̃a, a = 1, 2, 3, related to the metric by the triplets of complex
structures Ia and Ĩa, cf. Appendix A. The manifold X8 = M4 × M̃4 admits an S3 × S3 family of
Calabi-Yau structures

J = ρaJa + ρ̃bJ̃b , Ω = cac̃bJa ∧ J̃b , (28)

where ρa and ρ̃a are real and the ca and c̃a are complex vectors obeying the conditions

ρaca = ρ̃ac̃a = 0 , caca = c̃ac̃a = 0 . (29)

In order for Gmag
4 to be supersymmetric with respect to (J,Ω), we must have

J ∧Gmag
4 = 0 , Ω ∧Gmag

4 = 0 . (30)

Comparing this with (27), this means for Gmag
4 to be of the form

GBPS
4 = A

(
vol4(M4) + vol4(M̃4)− ρaρ̃bJa ∧ J̃b

)
+ Re(B c̄a c̃b)Ja ∧ J̃b + fαα̃Lα ∧ L̃α̃ , (31)

where A is real and B is complex. This gives the general supersymmetric solution for the
background (25). Note that there is no restriction on the anti-self-dual two-forms (fαα̃ is uncon-
strained). The flux GBPS

4 is primitive (2, 2) with respect to the complex structure

I ≡

(
ρ̂aIa 0

0 ˆ̃ρaĨa

)
, (32)

where the hat indicates that the vector is normalized to one.
Let us now concentrate on when M̃4 = T 4. We can choose

JT 4 = ρ̃aJ̃a = i
2
dz1 ∧ dz̄1 + i

2
dz2 ∧ dz̄2 , (33)

and
ΩT 4 = c̃aJa = dz1 ∧ dz2 , (34)

where dz1 and dz2 are Ĩ3-holomorphic one-forms. Inserting this into (31) gives

GBPS
4 =f0

(
vol4(M4) + 1

2
dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2 − i

2
ρaJa ∧ (dz1 ∧ dz̄1 + dz2 ∧ dz̄2)

)
+ Re(C c̄aJa ∧ dz1 ∧ dz2) + i fαα̃Lα ∧ (σα̃)ijdz

i ∧ dz̄j ,
(35)
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where σα̃ are the standard Pauli matrices so that the two-forms i(σα̃)ijdz
i∧dz̄j are anti-self-dual

on the four-torus.
In the remainder of this work we want to analyze (35) and, after giving its relation to type

IIB flux compactifications, reinterpret it in terms of a solution of five-dimensional supergravity
which arises from compactifying on T 6. The term in (35) proportional to f0 plays a special role
from this point of view, as it contains a flux piece residing completely on T 4. This piece gives
rise to a gauging of the axion dual to C3 in the five-dimensional theory, making it a gauged
supergravity. On the other hand, the four-form flux on M4 will give a timelike profile for the
axion as well, together with some self-dual fluxes. These self-dual fluxes arise in the almost-BPS
solutions of [7, 22], but here they combine with the gauging and the axion profile into a BPS
configuration.

In the following we restrict to ungauged supergravity in five dimensions: we set f0 = 0 and
study the remaining fluxes. It might however be interesting to further consider the effect of
gaugings on the supersymmetry of a solution. Furthermore, we will for simplicity redefine c̄a to
absorb C so that (35) becomes

GBPS
4 = Re(c̄aJa ∧ dz1 ∧ dz2) + i fαα̃Lα ∧ (σα̃)ijdz

i ∧ dz̄j . (36)

3.1.2 Interpretation as a type IIB compactification

The above solutions can be straightforwardly dualized into type IIB flux solutions. We write
the four-torus as a product of a two-torus and two circles T 4 = T 2 × S1 × S2. If we make
both circles very small, we can perform a dimensional reduction on S1 to weakly coupled type
IIA and T-dualize along S2 to IIB. If we take the decompactification limit for S2, the geometry
can be interpreted as a flux compactification on M4 × T 2 to four-dimensional flat spacetime.
The spacetime-filling M2-branes become spacetime-filling D3-branes in this chain of dualities,
and the solution belongs to the class of solutions described by [1, 48, 49] (see also [2]). These
solutions are type IIB Calabi-Yau compactifications with a constant dilaton, and the three-form
flux G3 = F3− τH3 must be imaginary self dual (ISD) in order to fulfill the equations of motion.
This implies that G3 consists of a primitive (2, 1) piece, a (0, 3) piece and a piece that is equal
to a (0, 1)-form wedge J . In order for the vacuum to be supersymmetric, G3 must be primitive
(2, 1). Supersymmetry can be broken if G3 has a (0, 3) component or a component which is
a (0, 1)-form wedge J .13 Note that for this supersymmetry-breaking flux G3 the equations of
motion are still satisfied. Dualizing the four-form in (36) gives a three-form flux G3

G3 = caJ
a ∧ dz̄ + F− ∧ dz , (37)

where we set F− = fα1Lα + i fα2Lα and we ensured four-dimensional Lorentz invariance by
setting fα3 = 0.

The above solution breaks the supersymmetry of type IIB supergravity as follows: The hyper-
Kähler-times-torus background and the presence of D3-branes each break half of supersymmetry
so that we have 8 supercharges in the theory, before considering fluxes. The gravitino variation

13Note that on a proper Calabi-Yau there are no harmonic one- or five-forms and primitivity is granted for any
harmonic three-form.
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with respect to these supercharges gives a mass matrix Pij = P aσaij for the two corresponding
gravitini in terms of the so-called N = 2 prepotentials P a, which are parameterized here by the
flux G3.14 These prepotentials can be understood as the N = 2 generalization of the superpo-
tential in an N = 1 background, which is given in type IIB Calabi-Yau compactifications with
D3-branes or O3-planes by the Gukov-Vafa-Witten (GVW) superpotential [50]

W =

∫
G3 ∧ Ω . (38)

If G3 has a (0, 3) component, this induces a contribution for the F-term of the Calabi-Yau Kähler
moduli. The natural N = 2 generalization of the GVW superpotential for hyper-Kähler-times-
torus backgrounds is

P a =

∫
G3 ∧ Ja ∧ dz . (39)

This gives us a first handle on the amount of supersymmetry preserved by the flux background.
An N = 2 vacuum can only arise if all P a and their first derivatives with respect to the moduli
vanish. This means that G3 preserves eight supercharges if G3 is of the form given in (37), but
with ca = 0. N = 2 → N = 1 supersymmetry breaking can only arise if P aP a = 0 [51].15 This
forces G3 to be of the form (37) with caca = 0, cf. (29). We conclude that the anti-self-dual
flux component F− on M4 does not break any supercharges, while the self-dual flux component
breaks half of the supercharges if caca = 0 holds and all supercharges otherwise.

3.2 BPS and almost-BPS black hole geometries

We give a short review of five-dimensional black hole, black ring and their microstate solutions,
considered as T 6 compactifications of M-theory. We also discuss the relation to flux compactifi-
cations of the type given above.

The solutions we focus on fit inside an N = 2 truncation of N = 8 supergravity in five
dimensions known as the STU model. The most general BPS solutions of this trunctation are
known [5, 6] and have the form

ds2
11 = −(Z1Z2Z3)−2/3(dt+ k)2 + (Z1Z2Z3)1/3 ds2

4 + (Z1Z2Z3)1/3

3∑
I=1

ds2
I

ZI
,

G4 ≡ dA(I) ∧ ωI =
3∑
I=1

[−d
(

dt+ k

ZI

)
+ Θ(I)] ∧ ωI ,

(40)

where ds2
I and ωI are unit metrics and unit volume forms on the three T 2’s inside T 6 and ds2

4 is
a four-dimensional hyper-Kähler metric. The one-form k is supported on this four-dimensional
base space and all functions appearing in the solution only depend on the base coordinates. The
Θ(I) are three two-forms on the hyper-Kähler base. Note that the ansatz for the gauge fields

14Here, σa
ij are the symmetrized Pauli matrices, which are obtained from the standard Pauli matrices via

σa
ij = εik(σa)kj .
15For more details on N = 2→ N = 1 breaking see [51, 52].
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relates the warp functions ZI appearing in the metric to the electric potentials which couple to
three types of M2-branes. The Θ(I) are magnetic fields on the hyper-Kähler base coupling to
M5-branes.

3.2.1 Supersymmetric three-charge solutions

For a supersymmetric solution, the equations of motion for the ansatz (40) reduce to

Θ(I) = − ?4 Θ(I) ,

∆4ZI = 1
2
CIJK ?4 (Θ(J) ∧Θ(K)) ,

dk − ?4dk = ZIΘ
(I) .

(41)

The three two-forms Θ(I) are anti-self-dual and they determine the warp factor and the rotation
vector k. Any solution to these equations is a 1/8 BPS solution of M-theory and a 1/2 BPS
solution in N = 2 supergravity in five dimensions. When the hyper-Kähler base is of Gibbons-
Hawking form, one can find a solution in closed form in terms of 8 harmonic functions [53, 54],
corresponding to 8 charges: the three M2 branes, three M5 brane dipole charges, and two
geometric charges – the Kaluza-Klein monopole and gravitational wave charges of the Gibbons-
Hawking base. In this class we find black holes, black rings and their microstate geometries
[36], and these solutions when compactified to four dimensions descend to multicenter BPS black
holes [55].

3.2.2 ‘Almost-BPS’ three-charge solutions

There exist non-BPS, extremal three-charge solutions, for which the metric and four-form still
fit in the ansatz (40).16 Because of there similarities to the BPS solutions discussed earlier, these
are dubbed ‘almost-BPS’ solutions [7, 22]. These have equations of motion that are formally
very similar to the BPS ones. In the language of [31], we have

Θ(I) = + ?4 Θ(I)

∆4ZI = 1
2
CIJK ?4 (Θ(J) ∧Θ(K))

dk + ?4dk = ZIΘ
(I);

(42)

We see that the magnetic fluxes Θ(I) on the hyper-Kähler base space are self-dual for these
solutions. When the hyper-Kähler base is Gibbons-Hawking, one can again construct explicit
solutions. However, one cannot find a general solution in closed form in terms of only harmonic
function, and the solutions are more messy than the BPS ones. See for instance [22, 23, 24].

3.2.3 Interplay with flux compactifications

The equations of motion have similarities to those for a flux compactification of the type discussed
above. As for those solutions, the magnetic fluxes obey a self-duality condition, and their square

16These are extremal in the sense that the asymptotic charges are those of an extremal, non-BPS black hole or
black ring.
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gives the Laplacian of the warp factors. In particular, we can interpret this solution as a flux
compactification in the Becker-Becker class [20] when the solution has only one electric charge
(Z1 6= 1) and we take

Z2 = Z3 = 1 , Θ(1) = 0 , k = 0 , (43)

and we make the identification
Θ(2) = Θ(3) ≡ Θ± . (44)

where ± denotes the Hodge duality eigenvalue on the hyper-Kähler space (− for BPS solutions,
+ for almost-BPS solutions). The metric can be interpreted as a ‘compactification’ to three
dimensions:

ds2
11 = −Z−2/3

1 (dt2 + dx2 + dy2) + Z
1/3
1 (ds2

4 + ds̃2
4) , (45)

with x, y coordinates on the first T 2 inside T 6, ds̃2
4 a unit metric on the complementary T 4.

BPS solutions. For the BPS solutions (42), the four-form flux is (2, 2) and primitive and
hence of the form (36). Comparing to (36), the first term is absent (c̄a = 0) and the four-form is
the wedge product of a (1, 1)-form on M4 and another (1,1) form on T 4:

Θ− ∧ (ω2 + ω3) = i fαα̃Lα ∧ (σα̃)ijdz
i ∧ dz̄j . (46)

Almost-BPS solutions. The four-form flux of the almost BPS-solutions is a supersymmetry-
breaking flux also in N = 8. Comparing to Eq. (36), only the first term is present. We can write
the supersymmetry breaking flux as

Θ+ ∧ (ω2 + ω3) = caJa ∧ Re(dz1 ∧ dz2) , (47)

where now ca are real coefficients. Note that the supersymmetry condition (29) in particular says∑
(ca)2 = 0, which for real ca implies ca = 0. Thus, the class of almost-BPS solutions breaks all

32 supercharges, as expected.
This gives a different view-point on almost-BPS solutions. So far they have been viewed as

coming from flipping some signs in the three-charge solution. From the flux compactification
perspective we see that all such self-dual fluxes fulfill the equations of motion, while supersym-
metry imposes the additional condition (29) which is not fulfilled for almost-BPS solution (in
contrast to solutions with anti-self-dual fluxes, that are always supersymmetric).

Summary. We give an overview of the relation of BPS and almost-BPS solutions in the STU
model to flux compactifications in Figure 1. Note that we do not have an interpretation of
supersymmetric solution with a four-form flux (36) with the self-dual two-form c̄aJ

a 6= 0.17 In
the following section, we explore such flux solutions and how to interpret them as black-hole
solutions.

17Note that supersymmetry requires
∑

a c
2
a = 0
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4 New solutions

In this section we want to treat in detail the class of supersymmetric flux vacua of the previous
section that do not correspond to known classes of black hole solutions of the STU model. We
have seen that the BPS solutions of the STU model have real, anti-self-dual fluxes on the hyper-
Kähler space, and the almost-BPS ones have real, self-dual ones that break the supersymmetry
in eleven dimensions as well. We investigate the properties of the supersymmetric flux solutions
in the class (36) that have both self-dual and anti-symmetric fluxes, and we discuss how they
fit inside an N = 2 truncation of five-dimensional supergravity. We will see that these solutions
break supersymmetry in the N = 2 truncation, even though they are supersymmetric in eleven-
dimensions and as N = 8 supergravity solutions in five dimensions. See Figure 1.

Figure 1: Summary of the mapping of flux compactifications to black hole-type solutions. Any combination
of G4 components from the “SUSY” side results in a supersymmetric background. We also list the relation to
the black hole BPS and almost-BPS solutions discussed in section 3.2. The flux (27) can give solutions of any
type in this diagram. This suggests that there are (interesting) flux compactification solutions, that we do not
understand from the black hole side. We give the most general solution of this type in section 4.

4.1 The eleven-dimensional solution

This solution is an extension of the solution described in the authors’ recent work [19]. We
consider the metric and four-form:

ds2
11 = e−2A(−dt2 + dx2

9 + dx2
10) + eAds2(X8) ,

F4 = d(e−3A vol3) + Im [(Θ+ − i Θ̃+) ∧ dz1 ∧ dz2 + (Θ− − i Θ̃−) ∧ dz1 ∧ dz̄2]

+
i

2
Θ̄−(dz1 ∧ dz̄1 − dz2 ∧ dz̄2) ,

(48)

Again, the subscripts denote the (anti-)self-duality properties. The anti-self-dual contributions
do not break any supersymmetry. The self-dual pieces might break supersymmetry completely
unless they obey an extra condition. Following the reasoning of the previous section (in particular
considering (29) and (36)), this gives the condition:

(Θ+ − i Θ̃+) ∧ (Θ+ − i Θ̃+) = 0 . (49)
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Hence, this solution describes a supersymmetric flux compactification in the class [20]. When
we keep one anti-self-dual flux Θ− and put the other fluxes on the hyper-Kähler space to zero,
the solution is a one-charge BPS solution as in section 3.2.3. If one tried to keep instead one
self-dual flux, to obtain a one-charge almost-BPS solution (of the type discussed in section 3.2.3)
the condition (49) would then force this flux to be zero. Hence, an almost-BPS solution cannot
be supersymmetric even if it only has one electric charge.

We can make the supersymmetry more visible, through the specific projections to the pre-
served Killing spinors. Take coordinates y1 . . . y4 on M4 and y5 . . . y8 on T 4. The hyper-Kähler
background breaks half of the supersymmetry, as it admits only a covariant spinor of (let us say)
positive chirality. This corresponds to the projection Γ1234η = −η. Furthermore, the flux F4

might break more supersymmetry. Its electric component (corresponding to an M2-brane charge
along the 9, 10 directions) breaks another half of supersymmetry, by the projection Γ12345678η = η.
The internal components of the flux can break additional supersymmetries. We prove there is
one additional projector. Following [20], the internal components of the Killing spinors obey
/Fη = 0 and /Fmη = 0. The first condition gives:

0 = 1
4!
FijklΓ

ijklη = 1
4
[(Θ+)ij Γij58 + (Θ̃+)ij Γij68](1− Γ5678)(1− Γ1234)η (50)

−1
4
[(Θ−)ij Γij58 + (Θ̃−)ij Γij68 + (Θ̄−)ij Γij56](1 + Γ5678)(1 + Γ1234)η ,

where we have inserted the projectors (1 ± Γ1234)/2 by making use of the (anti-)self-duality of
Θ∓.

The terms containing the anti-self-dual components Θ−, Θ̃− vanish on the Killing spinors
annihilated by the two two earlier projectors 1 + Γ1234 and 1 − Γ12345678, and this agrees with
the known structure of BPS three-charge solutions, in which turning on an anti-self-dual field
strength on the base does not affect the supersymmetry.

For arbitrary self-dual forms Θ+, Θ̃+, the first line is not zero and supersymmetry is broken.
However, for the specific choice

Θ+ = θ+(e1 ∧ e3 + e4 ∧ e2) ,

Θ̃+ = θ+(e1 ∧ e4 + e2 ∧ e3) ,
(51)

this term contains a new projector:

0 = 2θ+Γ1358(1 + Γ3456)η , (52)

which is compatible to the first two. More generally, under the condition (49) we always find
such a projector and the solution has four supercharges.

It is not hard to see that the equations /Fmη = 0 do not impose any extra conditions on
the remaining Killing spinors, essentially because the flux pieces that are self-dual on the hyper-
Kähler manifold always combine into the projector 1+Γ3456, while the anti-self-dual components
always give either 1 + Γ1234 or 1 + Γ5678, depending on the index m. Therefore, the solution is
1/8 BPS, and its 4 Killing spinors are annihilated by the projectors:

(1 + Γ1234) , (1 + Γ3456) and (1 + Γ5678) . (53)
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4.2 Interpretation as N = 2 truncation and supersymmetry

We now analyze whether and how the solution (48) fits inside an N = 2 truncation of five-
dimensional supergravity.

Following the arguments of section 2.2, we know that our solution is naturally interpreted
as a BPS solution of N = 8 supergravity in five dimensions. When does it fit into an N = 2
truncation of this theory? We discussed the condition in Table 4: we need to find a complex
structure on the torus, such that the four-form legs on T 6 are of type (1,1). The solution (48)
only has legs on T 4, so we restrict the problem to finding an appropriate complex structure on T 4.
In general, we can always expand the four-form in the three self-dual and the three anti-self-dual
two-forms on T 4. Of these 6 components, a maximum of four can be turned into (1,1) forms
by an appropriate choice of complex structure, while the remaining two form the holomorphic
two-form. We now have two option:

• Either we keep three anti-self-dual forms and one self-dual form. Because of the constraint
(49), the self-dual component must be zero, and we are left with a BPS solution in the
N = 2 truncation of the type BPS black hole type (41). This solution has already been
discussed before [4, 5, 6].

• The other possibility is that we keep three self-dual forms and one anti-self-dual form. In
fact, in our solution (48) only two self-dual two forms on T 4 are allowed because of the
demand of supersymmetry in N = 8. Keeping one anti-self-dual two-form comes down to
choosing two combinations out of the triple Θ−, Θ̃−, Θ̄− to be zero. These are the solutions
with camouflaged supersymmetry.

Let us discuss the new second possibility. We choose Θ− to be the only non-zero anti-self-dual
two-form, such that Θ̃− = Θ̄− = 0. If we take a complex structure such that the holomorphic
one-forms on T 4 are

dz ≡ dy8 + idy5 , dw ≡ dy6 + idy7 , (54)

then the four-form flux components on T 6 are all of type (1, 1):

F4 = 1
2

Im [(Θ+ − i Θ̃+) ∧ (dz ∧ dz̄ − dw ∧ dw̄)−Θ− ∧ (dz ∧ dz̄ + dw ∧ dw̄)]

+ d(e−3A vol3) .
(55)

By the arguments of Section 2.2, the solution then fits in an N = 2 truncation of five-dimensional
N = 8 supergravity.

The question remains if the solution preserves any of the supersymmetries in this truncation.
Even though the solution is 1/8 BPS in N = 8 supergravity, it is not guaranteed that the
truncation to N = 2 keeps the unbroken supersymmetries. The projection conditions on the
spinor for an 1/8 BPS solution of N = 8 were given in equation (53). In Section 2.3 we also
discussed the projection conditions on the eleven-dimensional spinor following from the N = 2
truncation. In particular, the first condition in (23):

(1− Γ3456) η = 0 , (56)

is incompatible with the second condition in (53). We find that the unbroken supersymmetries
are projected out by the N = 2 truncation: the four-form flux (55) gives a solution that is
supersymmetric in N = 8, but cannot be a supersymmetric solution of any N = 2 truncation.
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5 Single-center example

We discuss a specific solution of the form (48) with one source. We choose a solution as in
the previous subsection, whose supersymmetry gets camouflaged in any N = 2 truncation, with
non-vanishing fluxes Θ+, Θ̃+,Θ−. We choose the HK metric to be Taub-NUT:

ds2
4 = V −1(σ3)2 + V (dr2 + r2((σ1)2 + (σ2)2) , (57)

where V is a harmonic function
V = h+

q

r
, (58)

and σi are right-invariant one-forms on SU(2):

σ1 = sinψ dθ − cosψ sin θ dφ ,

σ2 = cosψ dθ + sinψ sin θ dφ ,

σ3 = dψ + cos θ dφ .

(59)

We take the vielbeins

e1 =
√
V dr , e2 = r

√
V σ1 , e3 = r

√
V σ2 , e4 =

1√
V
σ3 , (60)

The self-dual fluxes are as in eq. (51):

Θ+ = r θ+(r)(V dr ∧ σ1 + σ2 ∧ σ3) ,

Θ̃+ = r θ+(r)(V dr ∧ σ2 + σ3 ∧ σ1) .
(61)

For Θ+, Θ̃+ to be closed, we must have

θ+ =
k+

r
, (62)

with k+ a constant.
The anti-self-dual flux is (see for instance [36])

Θ− =
3∑

a=1

∂a

(
K

V

)
Ω

(a)
− , (63)

where Ω
(a)
− a basis of anti-self-dual fluxes

Ω
(a)
− = e4 ∧ ea − 1

2
εabce

b ∧ ec , a, b, c = 1, 2, 3 , (64)

and K is an arbitrary harmonic function. Since we focus on a single-center solution, we choose
it to be

K =
k−
r
. (65)
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The equation of motion for the warp factor Z ≡ e3A is:

∆4Z = Θ2
+ + Θ̃2

+ + Θ2
− (66)

With our choice of fluxes, this becomes

23Z = 2V23θ
2
+ + 23

K2

V
, (67)

where 23 is the Laplacian on the three-dimensional flat base. The solution is given by:

Z = L+
K2

V
+ 2

hk2
+

r2
+

2

3

qk2
+

r3
, (68)

where L is another harmonic function describing an M2-brane source:

L = 1 +
qM2

r
. (69)

Note that this warp factor now contains a mixture of BPS and almost-BPS looking terms.
We discuss the physics of the solution. Asymptotically, the solution carries only charge of

M2-branes wrapped on directions x1, x2:

QM2 = qM2 +
k2
−

q
. (70)

We investigate the near-horizon region r → 0. After a rescaling of the time coordinate, it can
be brought into the form of an AdS4 × S3 times a T 4 factor whose size runs with the radial
coordinate of AdS4:

ds2
11 =

r2

R2
(−dt2 + dx2

1 + dx2
2) +R2 dr2

r2
+
R2

q2
ds2(S3) +

R2

qr
ds2(T 4) (71)

with
R =

(
2
3
q4k2

)1/6
. (72)

One can alternatively interpret this solution in five dimensions, where the near horizon ge-
ometry is AdS2 × S3 and the metric is that of a black hole with a finite horizon area AH ∝ R3

q3
.

However, unlike usual three-charge black hole solutions, this solution is singular because the
scalars blow up at the horizon: the two-torus with coordinates x1, x2 shrinks to zero size at the
horizon, while the T 4 volume blows up. This is expected from the fact that this solution only
has one charge, and there is no five-dimensional BPS black hole with only one charge. It would
be interesting to further explore the solutions of the type (48) to see what other solutions one
can construct in this class.
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A Hyper-Kähler geometry

A four-dimensional hyper-Kähler manifold has by definition the holonomy group Sp(1) ≡ SU(2),
which is equivalent to the existence of o6ne covariantly constant spinor η, i.e. ∇η = 0. This
spinor η and its charge conjugate ηc define a triple of harmonic two-forms Ja, a = 1, 2, 3, by18

J1 + i J2 = η̄cγmnηdxm ∧ dxn , J3 = i η̄γmnηdxm ∧ dxn . (73)

With the help of Fierz identities one can show that they obey

Ja ∧ J b = δabvol4 . (74)

In particular, all Ja have positive norm. The choice of these three harmonic two-forms is equiv-
alent to the choice of η and determines the geometry completely. Moreover, there is an SU(2)
gauge freedom to rotate η and ηc into each other, which translates into SO(3) rotations of the
Ja. In a heterotic (type II) string compactification this SU(2) forms (part of) the R-symmetry
group.

In general, the space of harmonic two-forms on a hyper-Kähler manifold is of signature
(3, n), where the Ja form the basis for a maximal subspace of positive signature.19 If we denote
an orthonormal base (with respect to the wedge product) of harmonic two-forms by {Ja, Lα},
α = 1, . . . , n, the Hodge star operator ?4 can be defined via

?4 J
a = Ja , ?4L

α = −Lα . (75)

This means that the Ja (Lα) are (anti-)self-dual. On the hyper-Kähler manifold exists a triplet of
complex structures Ia, which are constructed from the hyper-Kähler two-forms Ja by contraction
with the inverse metric. If we choose one complex structure, let us say I3, the n + 1 two-forms
J3 and Lα are (1, 1) while J1 + i J2 defines a holomorphic two-form.

References

[1] M. Grana and J. Polchinski, Supersymmetric three form flux perturbations on AdS(5),
Phys.Rev. D63 (2001) 026001, hep-th/0009211

[2] S. B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string
compactifications, Phys.Rev. D66 (2002) 106006, hep-th/0105097

[3] M. Grana, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from
generalized Calabi-Yau manifolds, JHEP 0408 (2004) 046, hep-th/0406137

[4] J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis and H. S. Reall, All supersymmetric
solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003)
4587–4634, hep-th/0209114

18Note that charge conjugation in four Euclidean dimensions preserves chirality.
19If the manifold is compact, it is K3 and n = 19.

22

http://www.arXiv.org/abs/hep-th/0009211
http://www.arXiv.org/abs/hep-th/0105097
http://www.arXiv.org/abs/hep-th/0406137
http://www.arXiv.org/abs/hep-th/0209114


[5] J. B. Gutowski and H. S. Reall, General supersymmetric AdS(5) black holes, JHEP 04
(2004) 048, hep-th/0401129

[6] I. Bena and N. P. Warner, One ring to rule them all ... and in the darkness bind them?,
Adv. Theor. Math. Phys. 9 (2005) 667–701, hep-th/0408106

[7] K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 0905 (2009) 058,
0812.4183

[8] S. Ferrara, G. W. Gibbons and R. Kallosh, Black holes and critical points in moduli space,
Nucl. Phys. B500 (1997) 75–93, hep-th/9702103

[9] F. Denef, Supergravity flows and D-brane stability, JHEP 0008 (2000) 050,
hep-th/0005049

[10] A. Ceresole and G. Dall’Agata, Flow equations for non-BPS extremal black holes, JHEP
03 (2007) 110, hep-th/0702088

[11] L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First Order Description of Black
Holes in Moduli Space, arXiv:0706.0712 [hep-th]

[12] G. L. Cardoso, A. Ceresole, G. Dall’Agata, J. M. Oberreuter and J. Perz, First-order flow
equations for extremal black holes in very special geometry, JHEP 10 (2007) 063,
0706.3373

[13] B. Janssen, P. Smyth, T. Van Riet and B. Vercnocke, A First-order formalism for timelike
and spacelike brane solutions, JHEP 0804 (2008) 007, 0712.2808

[14] J. Perz, P. Smyth, T. Van Riet and B. Vercnocke, First-order flow equations for extremal
and non-extremal black holes, JHEP 03 (2009) 150, 0810.1528

[15] P. Galli and J. Perz, Non-supersymmetric extremal multicenter black holes with
superpotentials, JHEP 1002 (2010) 102, 0909.5185

[16] P. Galli, K. Goldstein, S. Katmadas and J. Perz, First-order flows and stabilisation
equations for non-BPS extremal black holes, JHEP 1106 (2011) 070, 1012.4020

[17] D. Lust, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric
flux vacua, JHEP 0811 (2008) 021, 0807.4540

[18] J. Held, D. Lust, F. Marchesano and L. Martucci, DWSB in heterotic flux
compactifications, JHEP 1006 (2010) 090, 1004.0867

[19] I. Bena, H. Triendl and B. Vercnocke, Camouflaged Supersymmetry, 1111.2601

[20] K. Becker and M. Becker, M theory on eight manifolds, Nucl.Phys. B477 (1996) 155–167,
hep-th/9605053

23

http://www.arXiv.org/abs/hep-th/0401129
http://www.arXiv.org/abs/hep-th/0408106
http://www.arXiv.org/abs/0812.4183
http://www.arXiv.org/abs/hep-th/9702103
http://www.arXiv.org/abs/hep-th/0005049
http://www.arXiv.org/abs/hep-th/0702088
http://www.arXiv.org/abs/arXiv:0706.0712 [hep-th]
http://www.arXiv.org/abs/0706.3373
http://www.arXiv.org/abs/0712.2808
http://www.arXiv.org/abs/0810.1528
http://www.arXiv.org/abs/0909.5185
http://www.arXiv.org/abs/1012.4020
http://www.arXiv.org/abs/0807.4540
http://www.arXiv.org/abs/1004.0867
http://www.arXiv.org/abs/1111.2601
http://www.arXiv.org/abs/hep-th/9605053


[21] K. Becker and M. Becker, Supersymmetry breaking, M theory and fluxes, JHEP 0107
(2001) 038, hep-th/0107044

[22] I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N. P. Warner, Non-BPS Black Rings and
Black Holes in Taub-NUT, JHEP 0906 (2009) 015, 0902.4526

[23] I. Bena, S. Giusto, C. Ruef and N. P. Warner, Multi-Center non-BPS Black Holes: the
Solution, JHEP 0911 (2009) 032, 0908.2121

[24] G. Bossard, Octonionic black holes, JHEP 1205 (2012) 113, 1203.0530

[25] M. Gunaydin, G. Sierra and P. K. Townsend, The Geometry of N=2 Maxwell-Einstein
Supergravity and Jordan Algebras, Nucl. Phys. B242 (1984) 244

[26] M. Gunaydin, G. Sierra and P. K. Townsend, Exceptional Supergravity Theories and the
MAGIC Square, Phys. Lett. B133 (1983) 72

[27] K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative
string theory, Nucl.Phys. B456 (1995) 130–152, hep-th/9507158

[28] M. Grana, Flux compactifications in string theory: A Comprehensive review, Phys.Rept.
423 (2006) 91–158, hep-th/0509003

[29] D. Klemm and W. Sabra, General (anti-)de Sitter black holes in five-dimensions, JHEP
0102 (2001) 031, hep-th/0011016

[30] D. Klemm and W. Sabra, Supersymmetry of black strings in D = 5 gauged supergravities,
Phys.Rev. D62 (2000) 024003, hep-th/0001131

[31] I. Bena, S. Giusto, C. Ruef and N. P. Warner, Supergravity Solutions from Floating
Branes, JHEP 1003 (2010) 047, 0910.1860

[32] I. Bena, C. Ruef and N. P. Warner, Imaginary Soaring Branes: A Hidden Feature of
Non-Extremal Solutions, 1105.6255

[33] H. Elvang, R. Emparan and P. Figueras, Non-supersymmetric black rings as thermally
excited supertubes, JHEP 0502 (2005) 031, hep-th/0412130

[34] V. Jejjala, O. Madden, S. F. Ross and G. Titchener, Non-supersymmetric smooth
geometries and D1-D5-P bound states, Phys.Rev. D71 (2005) 124030, hep-th/0504181

[35] S. D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys.
53 (2005) 793–827, hep-th/0502050

[36] I. Bena and N. P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.
755 (2008) 1–92, hep-th/0701216

[37] S. D. Mathur, Fuzzballs and the information paradox: a summary and conjectures,
0810.4525

24

http://www.arXiv.org/abs/hep-th/0107044
http://www.arXiv.org/abs/0902.4526
http://www.arXiv.org/abs/0908.2121
http://www.arXiv.org/abs/1203.0530
http://www.arXiv.org/abs/hep-th/9507158
http://www.arXiv.org/abs/hep-th/0509003
http://www.arXiv.org/abs/hep-th/0011016
http://www.arXiv.org/abs/hep-th/0001131
http://www.arXiv.org/abs/0910.1860
http://www.arXiv.org/abs/1105.6255
http://www.arXiv.org/abs/hep-th/0412130
http://www.arXiv.org/abs/hep-th/0504181
http://www.arXiv.org/abs/hep-th/0502050
http://www.arXiv.org/abs/hep-th/0701216
http://www.arXiv.org/abs/0810.4525


[38] V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective
Geometries, Class. Quant. Grav. 25 (2008) 214004, 0811.0263

[39] K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008)
117–171, 0804.0552

[40] B. D. Chowdhury and A. Virmani, Modave Lectures on Fuzzballs and Emission from the
D1-D5 System, 1001.1444

[41] G. Dall’Agata, S. Giusto and C. Ruef, U-duality and non-BPS solutions, JHEP 1102
(2011) 074, 1012.4803

[42] G. Bossard and C. Ruef, Interacting non-BPS black holes, Gen.Rel.Grav. 44 (2012) 21–66,
1106.5806

[43] I. Bena, M. Guica and W. Song, Un-twisting the NHEK with spectral flows, 1203.4227, 53
pages, LaTeX

[44] A. Sen and C. Vafa, Dual pairs of type II string compactification, Nucl.Phys. B455 (1995)
165–187, hep-th/9508064

[45] M. Gunaydin, Lectures on Spectrum Generating Symmetries and U-duality in Supergravity,
Extremal Black Holes, Quantum Attractors and Harmonic Superspace, 0908.0374

[46] R. Gilmore, Lie groups, physics, and geometry: An introduction for physicists, engineers
and chemists, Cambridge, UK: Univ. Pr. (2008) 319 p

[47] A. Tomasiello, Generalized structures of ten-dimensional supersymmetric solutions,
1109.2603

[48] S. S. Gubser, Supersymmetry and F theory realization of the deformed conifold with three
form flux, hep-th/0010010

[49] M. Grana and J. Polchinski, Gauge / gravity duals with holomorphic dilaton, Phys.Rev.
D65 (2002) 126005, hep-th/0106014

[50] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl.Phys. B584
(2000) 69–108, hep-th/9906070

[51] J. Louis, P. Smyth and H. Triendl, Spontaneous N=2 to N=1 Supersymmetry Breaking in
Supergravity and Type II String Theory, JHEP 1002 (2010) 103, 0911.5077

[52] J. Louis, P. Smyth and H. Triendl, The N=1 Low-Energy Effective Action of Spontaneously
Broken N=2 Supergravities, JHEP 1010 (2010) 017, 1008.1214

[53] J. P. Gauntlett and J. B. Gutowski, General concentric black rings, Phys. Rev. D71
(2005) 045002, hep-th/0408122

25

http://www.arXiv.org/abs/0811.0263
http://www.arXiv.org/abs/0804.0552
http://www.arXiv.org/abs/1001.1444
http://www.arXiv.org/abs/1012.4803
http://www.arXiv.org/abs/1106.5806
http://www.arXiv.org/abs/1203.4227
http://www.arXiv.org/abs/hep-th/9508064
http://www.arXiv.org/abs/0908.0374
http://www.arXiv.org/abs/1109.2603
http://www.arXiv.org/abs/hep-th/0010010
http://www.arXiv.org/abs/hep-th/0106014
http://www.arXiv.org/abs/hep-th/9906070
http://www.arXiv.org/abs/0911.5077
http://www.arXiv.org/abs/1008.1214
http://www.arXiv.org/abs/hep-th/0408122


[54] I. Bena, P. Kraus and N. P. Warner, Black rings in Taub-NUT, Phys.Rev. D72 (2005)
084019, hep-th/0504142

[55] B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole
composites, hep-th/0304094

26

http://www.arXiv.org/abs/hep-th/0504142
http://www.arXiv.org/abs/hep-th/0304094

	1 Introduction
	2 M-theory on  
	2.1 Maximal supergravity in five dimensions
	2.2 The largest   truncation in five dimensions and   supergravity
	2.3 Spinors

	3 Black holes and flux compactifications
	3.1 Flux compactifications on hyper-Kähler spaces
	3.2 BPS and almost-BPS black hole geometries

	4 New solutions
	4.1 The eleven-dimensional solution
	4.2 Interpretation as truncation and supersymmetry

	5 Single-center example
	A Hyper-Kähler geometry

