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Abstract

We find a new family of non-supersymmetric numerical solutions of IIB supergrav-

ity which are dual to the N = 1 cascading “conifold” theory perturbed by certain

combinations of relevant single trace and marginal double trace operators with non

infinitesimal couplings. The SUSY is broken but the resulting ground states, and

their gravity duals, remain stable, at least perturbatively. Despite the complicated

field theory dynamics the gravity solutions have a simple structure. They feature the

Ricci-flat non-Kähler metric on the deformed conifold and the imaginary self-dual

three-form flux accompanied by a constant dilaton.ar
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1 Introduction

The problem of finding a holographic description for QCD is an outstanding chal-

lenge. Even in the strongly coupled regime, when the dual background is expected to

be weakly curved and potentially can be described by supergravity, to find the cor-

responding gravity background is beyond our reach. Partially this can be attributed

to the lack of supersymmetry. So far supersymmetry was the main vehicle to find

new solutions and to guarantee their stability. Because of supersymmetry the dual

solutions had a simple and elegant structure, but what we could learn about the dual

field theories was bounded to supersymmetric dynamics.

In this paper we want to make a step in the direction of finding a gravity back-

ground dual to a non-supersymmetric field theory. As we are aiming at a confining

theory the deformed conifold geometry of the Klebanov-Strassler (KS) background [1]

seems a natural starting point. The KS geometry admits a global SU(2)×SU(2) sym-

metry, which, although redundant from the QCD point of view, drastically simplifies

the story on the gravity side. We would have to maintain this symmetry throughout

the paper.

At the next step we would like to break supersymmetry by means of perturbing

theory by relevant operators, say, by giving mass to gauginos. This will break su-

persymmetry while preserve the global SU(2) × SU(2). The corresponding gravity

solution is straightforward to find when the gaugino mass is infinitesimally small and

SUSY is softly broken [2, 3, 4]. Conceptually to find the corresponding solutions

when the masses are large is also straightforward. Because the global SU(2)×SU(2)

symmetry is preserved the corresponding 10d IIB supergravity background can be

described by the so-called Papadopoulos-Tseytlin (PT) ansatz [5] that involves only

ten functions of radial variable. The supergravity equations of motion reduce to ten

coupled non-linear second order ODEs which one would need to solve imposing proper

boundary conditions in the IR and the UV.

In practice such a solution can be found only numerically but even in this case it

is a formidable task.1 To make the problem more manageable one needs to employ

some trick which would drastically reduce the complexity of the system. For instance

this was successfully done in [7] where a new family of gravity solutions dual to the

baryonic branch of field theory was found. Thanks to supersymmetry the problem

1This question is successfully attacked in [6].
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reduced just to two coupled first order ODEs with simple boundary conditions while

other eight functions from the PT ansatz are algebraically dependent on the first

two. Later these solutions were generalized by use of a solution generating technique

based on string theory dualities [8, 9, 10]. The resulting solutions are still attractively

simple but develop various singularities. Typically these solutions have singular met-

ric near the tip. And whenever solution is IR regular there is a deviation from the

asymptotically AdS behavior in UV signaling the presence of the irrelevant dimen-

sion eight operator. These solutions are of no use for us as we aim to find a regular

non-supersymmetric background. Moreover we want to preserve the decoupling limit

and therefore we do not allow perturbations by irrelevant operators.

A good idea would be to preserve the simplicity of the supersymmetric solution

while breaking supersymmetry explicitly. One example of such a trick in the context

of D7-brane embedded into a supersymmetric background was developed in [11]. It

was shown there that in a special case of constant dilaton background the supersym-

metry conditions for D7 can be partially relaxed. Then the supersymmetry will be

completely broken but the resulting solution for D7 will maintain the simplicity of a

fully supersymmetric one. It is interesting to note that such a trick fails if the D7-

brane is embedded into a more complicated supersymmetric background with running

dilaton [12]. In our case the situation is similar. Our trick is based on the following

observation [13, 14, 15]. The simplest version of the bulk supersymmetry condition

requires the RR four form to be related to the warp-factor C4 = h−1Vol(R3,1) and

the three-form flux to be a (2, 1) primitive form. Furthermore, in the absence of

D-branes the dilaton is constant while the unwarped 6d metric is Kähler and Ricci-

flat. A remarkable observation is that if the three-form flux is an arbitrary imaginary

self-dual (ISD) form (not necessarily (2, 1) primitive) this is enough for the fluxes to

decouple from the metric/dilaton equations. Without sources the dilaton will have

to be constant and one would end up with a Ricci-flat unwarped 6d metric which is

not necessarily Kähler. A non-Kähler metric and a generic ISD flux are both break-

ing supersymmetry. We will denote this type of solution with the ISD three-form

flux, a constant dilaton and a Ricci-flat 6d metric as the GKP (for Giddings, Kachru,

Polchinski [15]) background. These solutions are significantly simpler than the generic

ones as the fluxes completely decouple from the equations for metric.

Relaxing the SUSY condition only for the three-form flux while keeping the metric

intact in the context of the KS background does not yield any new non-singular

solution [2]. Therefore we are motivated to find a new Ricci-flat, presumably non-

3



Kähler, metric on the deformed conifold. Below we argue that the conventional

Kähler Ricci-flat metric on the deformed conifod [16] – the unwarped metric of the

KS solution – can be generalized to a one-parametric family of IR-regular Ricci-flat

metrics which asymptote to the conventional metric in the UV. These new non-

Kähler metrics can be used to construct novel gravity backgrounds which are regular

everywhere and approach the KS solution in the UV. Therefore these backgrounds

must be dual to the original N = 1 cascading “conifold” theory perturbed by some

particular combinations of SUSY-breaking relevant and/or marginal operators. We

do not expect these particular combinations of couplings to be special in any way from

the field theory point of view. Quite the opposite, there must be a larger space of

SUSY-breaking relevant deformations which lead to well-defined theories with stable

vacua.

To illustrate the point it is convenient to parameterize the family of new back-

grounds which we find below, by U – the vev of the bottom component of the

U(1)baryon multiplet. This is because the supersymmetric solution for infinitesimally

small U is of the GKP type [17]. Hence U is a good coordinate to parametrize the

new one-dimensional family of the GKP backgrounds, at least locally near U = 0.

Value of U will specify the location of the new non-SUSY vacuum on the baryonic

branch of the original SUSY theory. Let us start with the original SUSY theory in

a vacuum on the baryonic branch with some non-trivial value of U . For finite U

the dual gravity background is quite complicated: it is a SU(3)-structure solution

with running dilaton etc. [7]. Then we start turning on SUSY-breaking relevant and

marginal couplings such that the vacuum value of U stays intact. Overall there is a

large space of such combinations of couplings and the corresponding theories which

we denote by MU . Since SUSY is broken the corresponding gravity backgrounds

presumably are even more complicated than the original point of our journey – the

SU(3) structure solution of [7] with the given U . Yet, we claim, there is at least one

particular point inMU such that the gravity dual admits the simple GKP structure –

it has an ISD flux, a constant dilaton and a Ricci-flat metric. These are the theories,

and their gravity duals, we study in this paper. The schematic picture is shown in

Fig. 1.

This paper is organized as follows. In the next section we numerically construct a

one dimensional family of gravity backgrounds that corresponds to the blue line in fig.

1. We construct the novel SU(2)× SU(2) invariant Ricci-flat non-Kähler metrics on

the deformed conifold and then dress them up by the appropriate fluxes and warping.
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U

x Î MU

Figure 1: We defineMU as a space of combinations of relevant/marginal couplings –

and the corresponding theories – such that the bottom component of the U(1)baryon

multiplet has the vacuum value U . Schematically we denote x to be the coordinates

on MU (we do not specify the dimension of MU) such that x = 0 corresponds to

the unperturbed N = 1 theory. Red dashed line corresponds to the motion in the

space of theories starting from the unperturbed N = 1 theory such that vev U stays

constant. Most of these theories have complicated gravity dual. At a specific point

the gravity dual accidently becomes simpler – it is of GKP type. The one-dimensional

family of such theories forms the thin blue line. These are the theories we study.

Then in Section 3 we discuss stability of the resulting solutions and their meaning

from the dual field theory point of view. We outline our results in Section 4.

2 Supergravity solutions

2.1 Ricci-flat metric on the deformed conifold

The starting point of our journey is the observation that the Gubser-Herzog-Klebanov

(GHK) solution that corresponds to the vacua of the original N = 1 theory with the

infinitesimally small U has the GKP structure [17, 18]:

• Constant dilaton, eΦ = gs ;

• Imaginary self-dual (ISD) three-form flux, iG3 = ?6G3, where ?6 is the 6d Hodge

dual and G3 ≡ F3 + i
gs
H3 ;
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• RR four-form C4 = h−1Vol(R3,1), where h is the warp factor:

`−2
s ds2

10 = h−1/2dxµdx
µ + h1/2ds2

M6
; (2.1)

• Ricci-flat 6d unwarped metric on M6.

Beyond linear order the baryonic branch solutions of [7] do not preserve these prop-

erties. A natural question then is wether it is possible to continue the GHK solution

beyond linear order such that the Ricci-flatness of the unwarped metric and other

nice GKP properties of the solutions are preserved. We will argue that this is in-

deed possible and there is a one-dimensional family of such backgrounds which form

the blue line in Fig 1 touching the horizontal line, the baryonic branch of the SUSY

theory, at the origin.

More broadly we can pose a question of finding non-singular Ricci-flat deforma-

tions of the conventional Kähler metric on the deformed conifold. As an extra con-

dition we will require the new metric to approach the original Kähler metric in the

UV. For simplicity we also preserve the SU(2)×SU(2) symmetry. The most general

metric compatible with these symmetries is given by the PT ansatz and depends on

four functions of the radial variable τ [5]2:

ε−4/3ds2
6 =

2

3
e−8p+3q

(
dτ 2 + g2

5

)
+ e2p+3q

(
cosh(y)

(
ez(e2

1 + e2
2) + e−z(ε21 + ε22)

)
−2 sinh(y) (e1ε1 + e2ε2)

)
. (2.2)

We refer the reader to [5] for the definitions of the angular forms ei, εi, and g5. For

the KS solution one finds z(τ) = 0 and:

e10p(τ) = K3(τ) sinh(τ) , e6q(τ) =
31/2

8
K4/5(τ) sinh8/5(τ) , ey(τ) = tanh

(τ
2

)
,

where K(τ) ≡ (sinh(2τ)− 2τ)1/3

21/3 sinh(τ)
. (2.3)

This 6d metric is a solution of the 10d supergravity EOMs from [5], together with

zero three-form fluxes and Φ = const, provided we redefine some of the metric fields

2 It is possible to introduce another fifth function λ(τ) by substituting ψ → ψ + λ while keeping

dψ intact. Obviously the constant part of λ is a pure gauge associated with the action of U(1)R.

Introducing λ will not lead to any new solutions as the Ricci-flatness requires λ̇ = 0.
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in the following manner (the expression for APT ensures that the warp factor is one,

h(τ) = 1)3:(
ex, ep, e2A

)
PT

=
(
2−1/23−1/4e2p+3q, 31/4ep−q, 2−1/23−3/4e5q

)
here

,

eg =
ez

cosh(y)
, a = ez tanh(y) . (2.4)

There is a Z2 symmetry I that exchanges the two two-spheres of the conifold (and

also changes sign of the three-forms). In the coordinates zi satisfying
∑4

i z
2
i = ε2 it

acts by z4 → −z4. This symmetry leaves the variables p(τ), q(τ) and y(τ) invariant

and flips the sign of z(τ). In the z = 0 case the geometry is I invariant as in [1] (see

also [2], [19]).

For the metric (2.2) to be Ricci-flat the functions p(τ), q(τ), y(τ) and z(τ) have to

satisfy four second order ODEs and a first order constraint (the zero energy condition).

Hence the full space of SU(2)×SU(2) invariant Ricci-flat metrics on conifold is seven-

dimensional. Obviously the shift τ → τ + const is a symmetry which we can fix by

choosing the tip of the geometry to be at τ = 0. Another simple parameter is the

overall re-scaling of the metric given by q → q+const. Alternatively, this shift controls

the size of the three-sphere at the tip of the conifold which can be identified with the

deformation parameter ε. Thus we are left with only five non-trivial parameters and

ε.

The counting above agrees with the linearized analysis in the vicinity of the sin-

gular conifold
∑
z2
i = 0. The warped product of singular conifold and the Minkowski

space is a gravity dual to a particular CFT [20]. Therefore all small Ricci-flat pertur-

bations of the unwarped metric are in one-to-one correspondence with couplings and

vevs of certain operators in field theory. There are three such operators in this case

[21, 22, 23]:

1. The gaugino bilinear λ1λ1 − λ2λ2 ,

2. The bottom component of (W 2W̄ 2)+ ,

3. The bottom component of the U(1)baryon multiplet U ∼ Tr(|A2| − |B2|) .

We will denote these operators by their dimensions: 3, 6 and 2 respectively. The first

two operators are even, while the last one is odd under I. Three operators correspond

3Our z(τ) coincides with the one used in [17] only at the linear order. Also, for z = 0 our

notations reduce to those of [2]. This is the reason for using p in the new notations.
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to six small Ricci-flat perturbations of metric on the singular conifold. This is not in

contradiction with our previous finding because in the singular conifold case the shift

of τ = ln(r3/ε2) and an overall rescaling of conic metric dr2 +r2ds2
T 1,1 coincide. Hence

we are left with six independent linear modes that correspond to the three operators

in the dual field theory.

The analysis of small Ricci-flat perturbations around the deformed conifold should

give similar results simply because in the UV region the deformed conifold approaches

the singular one, up to 1/r corrections. Indeed there are six infinitesimal Ricci flat

perturbations, two I odd and four I even. The I odd perturbations correspond to

the coupling and the vev of U . The four I even perturbations correspond to the

couplings and vevs of the operators of dimension 6 and 3. Because there are two

different dimension three operators in this theory – two combinations of gauginos

λ1λ1 ± λ2λ2 – which mix in the deformed conifold case (but not in the singular

conifold case) we will not be able to explicitly identify the operator responsible for

this metric perturbation. In what follows we will simply denote this operator as λλ

and call the corresponding coupling the gaugino mass mλλ. Four I even modes plus

two I odd modes give six in total, but this is not in contradiction with five non-trivial

parameters we found above. This is because one of the six modes is actually the shift

of τ i.e. the τ -derivative of the background solution.

These six infinitesimal Ricci-flat perturbations around the conventional conifold

metric have been found explicitly. Unfortunately the full description is quite tech-

nical. We briefly mention it below but a detailed knowledge of these modes is not

necessary to follow our logic. An uninterested reader can skip until the next para-

graph. The I-odd Ricci-flat perturbations were found by GHK in [17]. The I-even

ones can be found using the formalism to study linear I even SU(2) × SU(2) in-

variant perturbations around the KS solution proposed by Borokhov and Gubser [24]

and later developed in [25]. The full space of solutions is parameterized by sixteen

constants X1, . . . , X8, Y1, . . . , Y8. To find the Ricci-flat perturbations of the conifold

metric one can impose that full background is of the GKP type, i.e. the dilaton is

constant, three-form flux is ISD etc. Then ignoring an overall rescaling one recov-

ers exactly four modes. In the notations of [4] these modes are parameterized by

X3, X4, Y2, Y3 while X2 = −2X3/3, Y1 = −5Y2/3 and all other Xi and Yi are zero.

Only three modes are truly non-trivial as the mode Y2 = const, Y3 = X3 = X4 = 0 is

the derivative of the background with respect to τ . It can be attributed to the vev

of an operator of dimension 3 in a sense that the linear mode asymptotes to 1/r3 at
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infinity. Then X4 corresponds to the coupling mλλ while X3, Y3 correspond to the

coupling and the vev of the dimension six operator correspondingly.

Since we know the linear Ricci-flat perturbations explicitly we can analyze their

behavior in the UV and IR. There is only one UV divergent mode which corresponds

to turning on the coupling of the irrelevant dimension six operator in the dual field

theory. To keep the UV asymptotic the same as in the conventional case and hence the

field theory well defined in the UV we want to keep this mode “turned off”. In the IR

there are two regular modes. One is I odd and corresponds to the infinitesimal motion

along the baryonic branch. The other is the I even mode that turns on the dimension

six coupling – the same mode we discussed above. So there is no Ricci-flat IR and UV

regular I invariant infinitesimal deformation of the conventional deformed conifold

metric. To find a new Ricci-flat background one has to consider the I breaking modes

as well.

The two IR regular linearized modes can be extended into two-parameter family of

IR regular Ricci-flat metrics on the conifold. With vanishing fluxes, constant dilaton

and h = 1 the IIB supergravity action of [5] reduces to the 6d Hilbert-Einstein

action, and so we can read from it the four Ricci flatness equations. We relegated

these equations to Appendix A. The two-parameter family of the IR regular solutions

is given4 by:

e10p(τ) =
2

3
τ +

(
− 4

45
+ ζ2

)
τ 3 + . . . ,

1

q̇(τ)
=

15

4
τ +

(
−7

8
+

45

26
· ζ2

)
τ 3 + . . . ,

ey(τ) =
1

2
τ +

(
− 1

24
− 15

52
· ζ2 −

1

2
· ζ2

1

)
τ 3 + . . . ,

z(τ) = ζ1τ
2 +

(
− 7

15
· ζ1 −

4

5
· ζ3

1 −
15

13
· ζ2ζ1

)
τ 3 + . . . . (2.5)

We write here only the result for q̇(τ) since adding constant to q(τ) corresponds to

the overall rescaling of the metric (2.2). This rescaling can be in turn absorbed in

a redefinition of the deformation parameter ε. Fixing of ε in the new solution is an

important issue and we will specifically address it in the end of this section.

4We choose the field parametrization here (e10p(τ) instead of p(τ), q̇−1(τ) instead of q̇(τ) etc) so

that all the expressions will be regular both at the origin and for large τ .
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Figure 2: The red points show the values of ζ1 and ζ2 for which the Ricci-flat metric

is regular in both the IR and the UV. Notice that the points near the origin lie on the

parabola (the blue line). The deviation of the points with larger ζ1 from the parabola

most likely indicates the contribution of the ζ4
1 term in (2.7).

We introduced here two parameters ζ1 and ζ2 such that the I symmetry flips the

sign of ζ1 while keeping ζ2 invariant. The point (ζ1, ζ2) = (0, 0) is the conventional

deformed conifold metric, i.e. the unwarped metric of the KS solution, while the

infinitesimal ζ2 and ζ1 correspond to “turning on” the dimension six mode and the

GHK mode respectively. Notice that both ζ1 and ζ2 appear in the sub-leading order

in p(τ), q(τ) and y(τ) and so the solution is indeed regular at τ = 0 for any ζ2 and

ζ1 exactly as the original KS background.

Let us stress again that we solve the full-nonlinear Ricci-flatness equations and

ζ2, ζ1 are not assumed to be infinitesimally small in (2.5).

Regularity in the UV provides only one constraint on ζ1,2 and therefore we expect

to find a one-parameter family of non-singular Ricci-flat metrics on the deformed

conifold, which approach the conventional metric at large radius. The boundary

conditions at τ =∞ should coincide with the deformed conifold values (2.3):

e10p(τ) ≈ 1 ,
1

q̇(τ)
≈ 9

2
, ey(τ) ≈ 1 , z(τ) ≈ 0 . (2.6)
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Figure 3: The four lines show numerical solutions for e10p(τ), 1/q̇(τ), ey(τ) and z(τ) for

(ζ1, ζ2) = (0.193(9), 0.009) (the last point on the previous plot).

In Appendix A we study the subleading terms and show that the modes of dimension

2, 3 and 6 indeed appear in the large τ expansion as expected.

Near the origin the leading perturbation (see the z(τ) expansion in (2.3)) is pro-

portional to ζ1 (meaning it is I odd) and therefore at least for small ζ2 and ζ1 is it

convenient to parameterize the family of new Ricci-flat metrics by ζ1:

ζ2(ζ1) ∼ ζ2
1 +O(ζ4

1 ) , (2.7)

where the ζ3
1 term is ruled out because of the I-parity. We found the function ζ2 =

ζ2(ζ1) numerically using the shooting technique and confirm a generic prediction that

the expansion (2.7) starts with ζ2
1 (see Figure 2). We also present a numerical solution

for the functions e10p(τ), 1/q̇(τ), ey(τ), z(τ) for some particular values of ζ1 and ζ2, see

Figure 3. Finally, on Figure 4 we compare our numerical results for ey(τ) with its

analytical conventional (KS) counterpart of [16].

It would be interesting to know how far one can move along this new family of

solutions and if there is any limit on the resulting value of U . These questions would

require careful numerical studies which we leave for the future.
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Figure 4: The blue solid line show the numerical result for ey(τ) with (ζ1, ζ2) =

(0.193(9), 0.009), while the red dashed line corresponds to ey0(τ) = tanh( τ
2
) of the

conventional deformed conifold of [16]. Notice that red line converges to the asymp-

totic faster than the blue line. This is so because for large τ the function 1 − ey(τ)

goes like e−τ for the the deformed conifold, and as e−τ/3 for our solution.

Ricci-flat metric on deformed conifold: a summary

The construction of the novel family of Ricci-flat metrics on deformed conifold pre-

sented above constitutes a mathematical result which could be of interest in its own

right, with no connection to the ten dimensional supergravity or dual gauge theory.

To make this aspect of our work more accessible to reader less familiar with the holo-

graphic context we briefly outline here main steps of section 2.1. Our goal was to

construct novel Ricci-flat metrics on the deformed conifold – the complex three-fold

described by the equation
∑4

i z
2
i = ε2. We construct the Ricci-flat metric by help

of the ansatz (2.2). This ansatz is by no means general. In particular it explicitly

preserves the SU(2) × SU(2) symmetry. Since all functions p, q, y, z depend only

on the radial coordinate τ the Ricci-flatness condition Rµν = 0 reduces to a set of

coupled ordinary differential equations (A.1). Our ansatz (2.2) is invariant under the

shift τ → τ + const. We choose this freedom to set τ = 0 as the origin – the tip of

he conifold. That would be reflected in the appropriate behavior of the metric there

i.e. particular boundary conditions for p, q, y, z at τ = 0. We find a two-parameter

family of solutions regular at τ = 0, i.e. satisfying these boundary conditions, by ex-

12



panding in power series in τ for small τ . The result is given by (2.5). Two integration

constants ζ1,2 are free parameters at this point. We want the metric to approach the

usual conical form at large radius τ →∞. Here by usual we mean the canonical form

of the metric on the cone over T 1,1. There is one Ricci-flat metric on the deformed

conifold, found by Candelas and de la Ossa [16], which does just that. This particular

metric is captured by our ansatz. At the next step we study the behavior of linear

fluctuations around this metric, all within our ansatz of choice. The system of linear

equations reveals that there is only one mode which tends to grow at large τ . All

other modes actually vanish in this limit. On general grounds we expect that by

choosing appropriate infinitesimal ζ1, ζ2 one can fine-tune the behavior of the metric

near τ → 0 such that the growing linear mode will not be present at large τ . Hence

the behavior at large τ would be the same as in the solution of [16], as well as the

linear analysis around it: there is still only one growing mode at large τ . In this way

we find that there must be a line in the ζ1, ζ2 plane such that for each point on this

line the resulting metric has the same asymptotic behavior at large τ . These metrics

are Ricci-flat by construction, as well as regular everywhere including appropriate

behavior at the tip τ = 0 and at infinity τ →∞.

2.2 Adding fluxes and warping

In the previous subsection we outlined the way to find a regular Ricci-flat metric

on the deformed conifold such that it approaches the conventional metric at large

radius. The next step is to supplement such a metric with a smooth ISD three-form

flux which would approach the KS asymptotic in the UV. Below we give an argument

why this is possible for any metric found in the previous section.

We start with the PT ansatz for the three-form flux which automatically includes

M units of RR flux through the three sphere at the tip and write down the ISD

condition:

ḟ = (cosh(y) cosh(z) + sinh(y))2 − F ·
(

cosh(2y) + sinh(2y) cosh(z)
)

k̇ = cosh2(y) sinh2(z) + F ·
(

cosh(2y)− sinh(2y) cosh(z)
)

Ḟ =
1

2
(k − f) (2.8)

χ̇ = − cosh(y) sinh(z)
(

(cosh(y) cosh(z) + sinh(y))− 2F · sinh(y)
)
.
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These functions are related to the functions used in [5] in the following way:

(h1, h2, b, χ)PT = (−Pgs(k + f),−Pgs(k − f), 2F − 1, 2Pχ)here , (2.9)

where P is a constant proportional to M , P = −M`2
s/4. It is easy to verify that for

ey(τ) = tanh(τ/2) and z(τ) = 0 this system of equations reduces to the one discussed

originally in [1].

Näıvely the solutions are parameterized by four integration constants. One of the

constants is a shift of χ → χ + const which corresponds to a gauge transformation

B → B + const · dg5 and hence is unphysical. Another constant is a shift (f, k) →
(f + b, k + b) for a constant b which corresponds to a “large gauge transformation”

B → B + b · w2, where w2 is a Betti form on the base of the conifold. This shift

introduces extra Page D3-brane charge to the system. This symmetry will be fixed

by the requirement that the Page D3-charge vanishes at the origin, namely that

B ∧ F3 = 0 at τ = 0. Therefore there are only two non-trivial parameters left.

In the UV the metric and fluxes should approach the KS values. Linear analysis

around the KS background shows that apart from the simultaneous shift of f and

k there are indeed two modes [2]: one is UV regular and the other is UV singular

diverging as eτ . The former is related to the ∆ = 3 operator, while the latter is the

(0, 3) flux dual to the ∆ = 7 operator
∫
d2θ(W 2W̄ 2)+. Eventually we would like to

“turn off” this irrelevant operator “killing” one of the two free parameters.

It seems like we get a one-parameter family of UV-regular solutions of the ISD

equations (2.8). This is not the end of the story, however, as we have yet to address

the IR regularity. Differentiating f(τ) and k(τ) we can arrive at a second order PDE

for F (τ) only. Using (2.5) we see that, exactly as in the KS case, near τ = 0 the two

solutions of this equation are τ−1 and τ 2. Plugging the latter into the equations for

f(τ) and k(τ) one finds that these functions have the same regular behavior in the

IR like in [1]. This in turn implies that |F 2
3 | = |H2

3 | does not diverge at τ = 0 and

so the background is IR regular. To be more specific, requiring that f(τ) and k(τ)

vanish at τ = 0 we derive from (2.8) and (2.5) that there is a one dimensional family

of IR regular ISD fluxes parametrized by ζ3:

F (τ) ≈ (1 + ζ3) · τ
2

12
, f(τ) ≈ τ 3

12
, k(τ) ≈ (1 + ζ3) · τ

3
, χ̇ ≈ −1

6
ζ1 (4 + ζ3) · τ 2 .

(2.10)

In particular ζ1, ζ3 = 0 for the KS background.
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Figure 5: The solid blue and the dashed red lines correspond to the numeric solution

for F (τ) with ζ1 = 0.193(9) and the same function in the KS geometry, respectively.

We now have to find ζ3 so that the divergent ∆ = 7 mode is “turned off” in the

UV. Then for large τ we have F (τ) ≈ 1/2, while both f(τ) and k(τ) go like τ/2,

reproducing the UV behavior of the KS solution. Employing the shooting technique

once again we found that ζ3 = 0.186(8) for ζ1 = 0.193(9) (the last point in Figure

2). The corresponding numeric solution for F (τ) is shown in Figure 5. With F (τ) at

hand, we can easily calculate the remaining three functions. In Figure 6 we provide

a plot for χ(τ). As a matter of convenience, we fixed the integration constant so that

χ(τ) vanishes for large τ , see Figure 6.

To complete our discussion of the ten dimensional supergravity background we

need to accompany our solution by the warp factor of the 10d metric (2.1). The

equation for h(τ):

h(τ) =

√
3

8
α

∫ ∞
τ

dx e−4p(x)−6q(x)
(
(1− F (x))f(x) + F (x)k(x)

)
, (2.11)

where:

α ≡ 4
(
gsM`2

s

)2 · ε−8/3 . (2.12)

This equation immediately reveals that h(τ) is regular5 at the tip and approaches the

5We fixed the integration constant in the equation for h(τ) by requiring that the warp function
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Figure 6: The numerical solution for χ(τ) with ζ1 = 0.193(9).

KS behavior at large τ .

The last touch is to fix the deformation parameter ε (as we have already mentioned

below (2.5) this is equivalent to adding a constant to the field q(τ)).

Since ε is the only dimensional parameter of the solution we can only talk about

fixing it in the context of comparing ε for two different solutions. We want to fix ε(ζ1)

such that the corresponding family of gravity backgrounds would correspond to the

same dual field theory perturbed by some relevant operators in the UV. In particular,

this would require running of the Maxwell D3-charge6 QD3 with the scale to be the

same at large radius r for all ζ1. A convenient reference point is ζ1 = 0, i.e. the KS

solution. Thus, to match the KS theory in the UV we require:

QD3(rc) = QKS
D3 (rc) (2.13)

at a sufficiently large cutoff radius rc. Here the Maxwell D3-charge is (see, for example,

vanishes at infinity exactly like in the unperturbed KS background.
6To be more precise, one has to compare the running of the Page charges, since unlike the Maxwell

charge it is quantized and so has the proper interpretation as the gravity dual of the cascading gauge

theory rank. It turns out, however, that the matching of the Maxwell charges yields exactly the

same result for ε.
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[4]):

QD3(τ) =
gs
π
M2((1− F (τ))f(τ) + F (τ)k(τ)) . (2.14)

It seems that this expression is completely independent of ε. Notice, however, that

τ = ln(r3/ε2) and so requiring that the two Maxwell charges in (2.13) coincide for

the same r = rc (but different τ ’s) we can read from (2.13) the ratio between the KS

parameter εKS and the parameter of the perturbed theory, ε. For instance, for the

theory corresponding to the last point on Figure 2 (the one with ζ1 = 0.193(9)) we

have QD3(τ = 11.866(2)) = QKS
D3 (τ = 12) which implies ε/εKS = 1.069. It is worth

emphasizing here that for large enough rc (or equivalently τ) the value of ε/εKS is

not sensitive to the variation of the cut-off, since asymptotically QD3(τ) ∼ τ + const.

A more detailed discussion of the condition (2.13) and the resulting constraint on

ε in the context of SUSY and non-SUSY vacua of the KS theory can be found in [4].

3 Dual field theory and stability

In this section we discuss the field theories dual to our gravity backgrounds. We

suggest that these non-supersymmetric theories correspond to the KS theory per-

turbed by both a single and a double-trace operators. We also argue that, at least for

large M , these theories are long-lived both perturbatively and non-perturbatively.

3.1 The dual field theory interpretation

Once we outlined the way to find the gravity backgrounds we want to analyze their

meaning from the dual field theory point of view. As we require the backgrounds to

approach the KS solution in the UV the resulting field theory must be the original

cascading N = 1 “conifold” theory perturbed by some relevant and/or marginal

operators. In the single trace sector these are the I-odd bottom component of the

U(1)baryon multiplet U and the gaugino bilinears. It is easy to see that the marginal

top components of W 2
± are not turned on: the value of dilaton and running of the

Maxwell D3-charge are the same for large r as in the KS case. (In any way adding

top components of W 2
± would only result in the renormalization of gauge couplings).

Hence the solutions in question are dual to the vacua described by the N = 1 KS

theory perturbed by some, not necessary small, combination of the gaugino masses
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mλ1λ1 ± mλ2λ2 and the operator U . We will not be able to identify the particular

combination of mλ1λ1 ± mλ2λ2 that is getting turned on (see our discussion in the

previous section) and in what follows will refer to this combinations simply as mλλ.

The vacuum solutions also acquire a non-trivial vev of U , as well as vevs of other

relevant and irrelevant operators.

For most operators it is straightforward to distinguish the vev from the coupling

as the two modes have different powers of 1/r where the radial coordinate

r = ε2/3eτ/3 . (3.1)

The operator U , however, has dimension two and therefore the two modes mix. The

corresponding wave-function, which for large radius can be defined through:

δds2 =
√
h(r)(e2

1 + e2
2 − ε21 − ε22)ΨU (3.2)

has the following asymptotic [17]:

ΨU = β ln

(
r

r0

)
+ α . (3.3)

Here r0 is some IR scale which we choose such that, in the absence of multi-trace

deformations, the coefficient β corresponds to the vev of U while α corresponds to

its coupling. In general r0 may depend on various couplings of the theory, such as

mλλ. In the KS case, when all relevant couplings (including mλλ), are turned off,

r0 = ε2/3e1/3 [17].

We do not know r0(mλλ), although this can be established in principle. Therefore

even if we find our solutions numerically with a very high precision, we will not know

α(ζ1).7 Nevertheless, on general grounds we expect:

α ∼ ζ3
1 +O(ζ5

1 ) , β ∼ ζ1 +O(ζ3
1 ) . (3.4)

This scaling is easy to explain. β corresponds to the vev of U which, by definition

of ζ1, scales as ζ1. Moreover at the linear order in ζ1 the solution coincides with the

GHK background, i.e. has zero coupling α. Since α is odd under I symmetry, as well

7In practice the main difficulty here is to find the solutions numerically with enough precision

to distinguish small α which appears only in the ζ31 order from the large logarithmic contribution

β ln(r/r0) ∼ ζ1τ .
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as ζ1, it can only start with a cubic term. Let us demonstrate that the same scaling

is compatible with (3.3). From the fact that mλλ is I-even we find that:

mλλ ∼ ζ2
1 +O(ζ4

1 ) . (3.5)

Now, we generally expect r0 to be mλλ-dependent such that ∂r0/∂mλλ 6= 0. The

change in r0 can be reabsorbed into α which indeed indicates that α ∼ ζ3
1 .

A non-zero value of α implies that besides the gaugino mass the dual field theory

is perturbed by the dimension two operator U . Definitely this can not be the full

story: the theory perturbed by the potential V = aU does not have a vacuum at

small U . We find a consistent interpretation only at the next order in U – at least for

small ζ1 the gravity solutions in question can be interpreted as a dual to the theory

perturbed by the marginal double-trace8 operator cU2/2. The coupling c will alter

the boundary conditions in the UV and hence the dual field theory interpretation of

α. More precisely, when the field theory perturbed by a potential:

V = aU + c
U2

2
, (3.6)

the boundary condition for ΨU becomes [26, 27]:

α = a+ cβ . (3.7)

When c = 0 we get the usual relation α = a, i.e. in this case α is the coupling of

U . Since the theory with the V = aU potential has no vacuum state there should

be no IR regular solution with α = a 6= 0. In the general c 6= 0 case the resulting

field theory has a unique vacuum at U = −a/c. The corresponding gravity dual

background should have α and β such that they satisfy (3.7) and the geometry is

regular in the IR. Since the IR regularity requires α = 0, we see that β = −a/c, in

full agreement with β = U and dV/dU = 0.

It is important to note that the gravity solution itself can not distinguish between

different combinations of a, c which result in the same vev of U .9 In fact the same

gravity solution admits interpretation as both being dual to a field theory with and

without the double trace deformation (see [28, 29] and [30] correspondingly). Using

this freedom we would like to interpret our solutions as the gravity dual of the field

theory perturbed by certain single trace relevant operators and also the marginal

8The dimension of the double trace operator U2 is twice the dimension of U up to 1/N corrections.
9We thank I. Klebanov and J. Maldacena for discussing this point.
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double-trace operator U2. Our logic here was to show that it is a consistent interpre-

tation when in the dual field theory a ∼ ζ1 and c ∼ ζ2
1 .

Strictly speaking, the consideration above and the equivalence between vacuum

value of U in the field theory and in the bulk is only valid as long as the theory with

a = c = 0 has a flat direction for VEV of U . This is indeed true for infinitesimal ζ1

as it it can be shown (using the charges under R-symmetry) that the gaugino masses

can only contribute to the potential for U at the subleading order m2
λλ ∼ ζ4

1 . But

we believe that our interpretation – that the solutions we found are dual to the KS

theory perturbed by gaugino masses and the potential V = aU + cU2/2 – should be

correct beyond the infinitesimal order in ζ1. In this case the gaugino masses induce a

potential for U (on top of V = aU + cU2/2 which we add “by hands” in the UV) and

the calculation of vacuum value of U is obscured on the field theory side. Similarly

on the supergravity side (3.7) still holds but we do not know which combination of

α, β corresponds to the IR regular background. Thus we can not easily compare field

theory and gravity to prove our point. At the same time the fact that we included

all relevant/marginal operators (allowed by symmetries) into consideration and the

fact that this interpretation works for small ζ1, suggests that the same interpretation

should be correct beyond the infinitesimal order in ζ1.

3.2 Stability

The field theory interpretation suggested above ensures the perturbative stability for

infinitesimally small ζ1 as long as c > 0 (see (3.6)). There are many field theories

dual to the same gravity background and we choose the one with positive c: for any

theory with a, c dual to a given background the theory with −a,−c is dual to the

same background as well. Indeed when α = 0 this flipping will not modify β, as one

can see from (3.7), and so the gravity solution will be the same.

On the gravity side the stability would follow from the analysis of small pertur-

bations around the classical solutions in question with the boundary conditions:

δα = c δβ . (3.8)

Clearly the sign of the perturbation mass squared will be sensitive to the sign of

c. More specifically, in solving the equations for massive modes, the sign of the 4d

dimensional mass squared will be sensitive to the relative sign of δα and δβ, which

in turn is fixed by c.
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By interpreting the gravity solutions as being dual to the field theory perturbed by

the double-trace operator we ensured perturbative stability, at least for the solutions

with infinitesimally small ζ1. For larger ζ1 we would need to calculate the mass-squre

m2
U of small perturbations of U to check that is it positive. For infinitesimally small

ζ1, m2
U ∼ c and the next correction appears in the ζ4

1 order

m2
U ∼ ζ2

1 +O(ζ4
1 ) . (3.9)

Since the coefficient in front of the first term is positive, m2
U is positive at least for some

finite range of ζ1 . 1. Hence the vacuum states, and the dual gravity backgrounds,

are perturbatively stable for ζ1 . 1.

Besides the perturbative stability, one may also worry about possible tunneling

between the 2M vacua of the original KS theory with different phases of Λ3. When

ζ1 is small, i.e. when mλλ is small, one can estimate the shift of vacuum energy in

each of those vacua as [2]:

V 'MRe
(
mλλΛ

3
)
. (3.10)

Our solutions correspond to mλλ aligned with Λ3 – they have the opposite phase

such that their product is real. This is so since we have not included in our setup

the mode λ(τ) mentioned briefly in footnote 2 and its counterpart in the fluxes. It

remains unclear, though, whether mλλΛ
3 is positive or not. Hence our solutions may

be unstable non-perturbatively.

Let us show that in any case the theories in question are long-lived, if we do not

depart too far from the KS solution. At the leading order the tension of the domain

wall separating various vacua remains the same as in the supersymmetric case [31]:

Tn = M |Λ|3
∣∣1− eiπn/M ∣∣ , n = 1, . . . , 2M . (3.11)

When mλλ is small enough we can use the thin wall approximation and estimate the

size of a new vacuum bubble by minimizing the following effective action:

Sbubble ∼ ∆V R4 − T∆nR
3 . (3.12)

For the adjacent vacua with ∆n = 1 we have T ∼ |Λ|3 while ∆V is 1/M suppressed.

For a one leap transition into the true vacuum ∆n = M we get T ∼ MΛ3 and

∆V ∼MmλλΛ
3. The decay rate for tunneling into a new vacuum with Λ3 → Λ3eiπ/M
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is smaller than the decay rate for tunneling into the true vacuum in one leap. The

latter is suppressed by:

e−Sbubble ∼ e−M(Λ/mλλ)3 . (3.13)

Because of large M for mλλ . Λ i.e. ζ1 . 1 the solutions in question are metastable.

This analysis of stability may be too conservative. In fact it may be that the signs

of mλλ and Λ3 are aligned such that the solutions we find correspond to the true

vacuum.

4 Outline

We constructed a one-dimensional family of IIB supergravity solutions which are

dual to the N = 1 gauge theory perturbed by some combination of relevant single

trace and marginal double-trace operators. Thus the family of solutions corresponds

to a line in the space of couplings gi(ζ1). The origin of the line gi(0) = 0 corresponds

to the original N = 1 theory [1]. Except for the small region near the origin ζ1 → 0

the couplings are not infinitesimally small and the corresponding operators explicitly

break supersymmetry. Hence our solutions are gravity duals for non-supersymmetric

field theories.

The original N = 1 theory has only one massless mode which acquires a positive

mass, at least for the theories within a range ζ1 . 1. Therefore the solutions in

question are perturbatively stable. There is a possible non-perturbative instability

associated with tunneling into a vacuum with Λ3
new = −Λ3. But at least for ζ1 . 1

the decay rate is exponentially suppressed.

The geometry of the solutions is extremely simple. The unwarped metric on the

deformed conifold is Ricci-flat but not Kähler for ζ1 6= 0. The three-form fluxes are

ISD and the dilaton is constant. There is also a warp-factor which has a similar

behavior to its KS counterpart. The solutions are regular and all fields approach

their KS values in UV, up to 1/r corrections.

The apparent simplicity of the solutions makes them a natural arena to study

strongly coupled dynamics of the non-SUSY confining gauge theories. Similarly to

the KS background, which was a playground for numerous phenomenological models,

our solutions can be used for model-building with an advantage that the resulting

models are not supersymmetric. Because of the GKP structure of the solutions the
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probe D3-brane in such backgrounds experiences no force. Hence our solutions can be

a natural starting place for the models of stringy inflation based on the dynamics of a

mobile D3-brane [32, 33, 34, 35, 36, 23]. In a similar way the GKP structure makes it

possible to use the trick of [11] in its original form and embed the U-shaped D7-branes

inside the conifold. Eventually one arrives at a holographic model of baryonic matter

with the SUSY broken explicitly by the relevant operators in the gauge sector, and

not only by the flavor sector. Moreover because of the KS asymptotic at infinity the

resulting baryons will develop a realistic attractive potential at least in some range of

parameters [37]. Finally, it would be interesting to understand the appearance of the

flat moduli associated with the mobile D3-branes from the point of view of the dual

non-supersymmetric field theory (see [38] for a similar situation in a 3d dimensional

theory).
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Appendix A A. The Ricci flatness equations

Here we summarize the Ricci-flatness equations for the 6d metric (2.2)

p̈+ ṗ(4ṗ+ 6q̇) = − 2

15
e−20p

(
1 + 2 cosh2 y sinh2 z

)
(A.1)

+
2

15
e−10p cosh y cosh z +

1

5
sinh2 y

q̈ + q̇(4ṗ+ 6q̇) = − 8

135
e−20p

(
1 + 2 cosh2 y sinh2 z

)
+

16

45
e−10p cosh y cosh z − 2

15
sinh2 y

ÿ + ẏ(4ṗ+ 6q̇) = cosh y sinh y

(
8

9
e−20p sinh2 z − 4

3
e−10p cosh z

cosh y
+
(
1 + ż2

))
,

and:

z̈ + ż(4ṗ+ 6q̇ + 2ẏ tanh y) = sinh z

(
8

9
e−20p cosh z − 4

3
e−10p 1

cosh y

)
. (A.2)

These equations can be derived from the SU(2)× SU(2) action of [5] with vanishing

fluxes and the relations (2.4):

S ∼ −
∫

dτe4p+6q

[(
15ṗ2 − 135

4
q̇2 +

3

4

(
ẏ2 + cosh2(y)ż2

))
(A.3)

+

(
1

3
e−20p(1 + 2 cosh2(y) sinh2(z))− 2e−10p cosh(y) cosh(z) +

3

4
sinh2(y)

)]
.

The solutions of these EOM are also subject to the zero energy (zero Hamiltonian)

condition following from the action. This condition can be used to find q̇(τ), and so

we are left only with the equations for p(τ), y(τ) and z(τ).

To study the large τ behavior we have to expand the equations linearly around

(2.4). The equations for δy(τ) and δz(τ) are both homogenous. The δz(τ) equation

is solved by e−2τ/3 and τe−2τ/3, as expected for the the ∆ = 2 operator. The two

solutions for δy(τ) are e−τ and e−τ/3 corresponding to ∆ = 3. Finally, the homogenous

part of the equation for δp(τ) gives two modes, e−2τ and e2τ/3, implying that the mode

has dimension ∆ = 6.
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