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scopically at the horizon scale, and for certain probes the fluctuations between various
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solved all the way to the outer horizon and this “backwards in time” singularity resolution

can shed light on the resolution of spacelike cosmological singularities.
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1 Introduction

According to the fuzzball proposal [1–6], black holes are a coarse grained-description of an

ensemble of horizonless microstate configurations that have the same mass, charges and

angular momenta as the classical black hole, but differ from it at the scale of the horizon.

One has by now succeeded to construct very large classes of microstate geometries [7–13]

for supersymmetric black holes, as well as for non-supersymmetric extremal black holes [14,

15, 15–19], and these geometries can be thought of as describing the various channels for

the resolution of the timelike singularity inside the horizon of these extremal black holes.
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(a) Extremal black holes. (b) Non-extremal black holes.

Figure 1. Singularity resolution scale.

These resolution channels modify the singular geometry to a large distance away from the

singularity, exactly as it happens in other well-understood string-theoretic resolutions of

timelike singularities, like Polchinski-Strassler [20], Klebanov-Strassler [21] or LLM [22, 23].

This picture is also supported by analyzing the physics of instabilities [24–28] inside the

horizon of extremal black holes.

On the other hand, the scale of the resolution of the singularity of non-extremal black

holes is much harder to estimate. The fuzzball proposal and the yearning to solve the black

hole information paradox (see [29] for recent work) would have the black hole singularity

resolved all the way to the outer horizon, backwards in time from the singularity. The

recent “firewall” arguments of [30, 31] appear to lead in the same direction.1

However, if one is to simply extrapolate the extended evidence for extremal black

hole fuzzballs to non-extremal ones, it is well-possible that the timelike singularity of non-

extremal black holes is only resolved to the scale of the inner horizon, and that the region

between the inner and the outer horizon is still described by the classical black hole solution.

This second possibility would not solve the information paradox, but since it does not

involves backwards-in-time singularity resolutions it is much easier to the palate than the

fuzzball/firewall proposals. An illustration of the two possibilities is given in figure 1.

To address the question at which scale the singularity resolution happens, one needs to

attack the formidable task of constructing non-extremal black hole microstate geometries,

which is highly nontrivial. Only two solutions are known: JMaRT [37–39] and the running-

Bolt [40, 41]; they are very non-generic, and their generalization is nowhere in sight. In [42]

we argued for a way to bypass these limitations, and construct instead microstates of near-

extremal black holes by adding probes to extremal BPS geometries. We have found that

supertubes placed in generic bubbling solutions can have metastable vacua, that can decay

1For other related works see [32–36].
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into the supersymmetric ones by brane-flux annihilation, exactly as it happens when one

places antibranes [43] in the Klebanov-Strassler geometry [21].

In this paper we want to take this technology one step further, and to use metastable

supertubes to systematically construct microstates of near-extremal black holes. We start

from supersymmetric microstate geometries that have the same mass, charges and angular

momentum as a supersymmetric three-charge black hole, and have a very long throat

(hence they correspond to a scaling solution from the perspective of 4D supergravity [9,

11, 44]). We construct near-extremal black hole microstate solutions by placing metastable

supertubes in these supersymmetric microstate geometries.

There are two ways to obtain such long-throat supersymmetric solutions. The first

is to consider a general scaling multicenter solution and tune the length of the throat by

moving the centers near each other [11, 44, 45]. The other is to keep the centers aligned

on an axis, and to bring them closer and closer by tuning their charges by hand [9].2

The advantage of the second approach is that it produces five-dimensional solutions with

U(1)×U(1) invariance, and in these solutions the physics of metastable supertubes is under

much better control than in scaling solutions with less symmetry.

As we discussed in [42], the supersymmetry of solutions with metastable supertubes is

broken by the relative orientation of the electric charges of the supertube with respect to the

solution. Furthermore, we will consider supertubes whose charges are much smaller than

those of the background, so we expect generically that their backreaction will give smooth

solutions with long throats, that have more mass than charge, and hence are microstates

of non-extremal black holes.

Indeed, it was shown in [46] that in the 6D duality frame where the supertube charges

correspond to D1 and D5 branes, a supertube in a bubbling solution backreacts into a

smooth supergravity solution. The smoothness is ensured by certain conditions near the

supertube, which are identical to those coming from minimizing the DBI probe supertube

action; thus we expect that the backreaction of a probe supertube at its minimum, su-

persymmetric or not, will always give a smooth solution. Another way of seeing this is

to recall that the supertube is an object that locally preserves 16 supersymmetries, and

all these objects can be dualized into fluxed D6 branes, whose eleven-dimensional uplift is

smooth [10]; for metastable supertubes all these supersymmetries are incompatible with

those of the background, but this is not something that is visible in the near-supertube

region, and hence does not affect the smoothness.

One can worry that the extra supertube charges, though small, may disturb the delicate

balance of charges needed to create a long throat. Indeed, in a long throat the leading

contributions to the bubble equations cancel, and the supertube contributions may end

up being of the same order or larger than the subleading leftovers. However, this is not a

problem; even if a supertube changes significantly the length of a throat, one can always

tune the flux between cycles by a tiny amount to change this length back to the original

one, and this gives a very small correction to the overall charges of the solution.

2This method has also been used to obtain extremal non-supersymmetric scaling solutions [19].
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Having obtained large classes of microstates of near-extremal black holes, we can go on

and attack the much harder problem of figuring out what is the physics of these microstates.

Indeed, according to the fuzzball proposal one expects the microstates to have the same size

as the black hole, but there are various scenarios of how this can happen. It is possible that

microstates extend only microscopically away from the horizon, and hence, as suggested

in [30], they could give nothing more than a realization of a stretched horizon. Alternatively,

the fuzzballs can differ from the black hole on a scale comparable to that of the horizon,

and hence give very different physics.

These questions do not make sense for BPS and extremal black holes, and cannot be

answered using the BPS black hole microstates constructed so far. Indeed, the thickness of

BPS throats is completely determined by the charges, and hence a fuzzball and a black hole

that have the same charges automatically have throats of equal thickness. Furthermore,

the length of the throat of the black hole is infinite, while the length of the throat of

the fuzzballs is always very large but finite,3 which does not allow for a meaningful size

comparison. On the other hand, near-extremal black holes have throats of finite length,

which one can compare with the throat lengths of the family of fuzzballs we construct. The

thicknesses of the throats are still automatically equal, because they are mostly controlled

by the charges in the near-extremal limit.

As we will see, we are able to construct microstates whose throat has the same length

as that of a non-extremal black hole, but we can also obtain with equal ease microstate

geometries that have the same mass and charges as the non-extremal black hole, but whose

throats are longer or shorter. As far as our construction is concerned, there appears to be

no dynamical reason why throats of the same length as the black hole are preferred over

longer or shorter ones, and this indicates that the fuzzballs of non-extremal black holes

will not differ from the black hole only at microscopic distances from the horizon.4

The fuzzball geometries we construct can be used to extract other pieces of physics that

have been inaccessible until now. For example, one can use a KKLMMT-type argument [49]

to find the forces with which our fuzzballs attract various D-branes, and compare these

forces to those of the corresponding black hole. One can also compute the tunneling proba-

bilities of the metastable supertube to the supersymmetric minimum, and compare this to

the Hawking radiation rate of the near-extremal black hole; we leave this for future work.

This paper is organized as follows. In section 2 we recall the Hamiltonian of supertubes

in three-charge backgrounds. We then focus on a scaling solution with seven centers in

section 3 and plot the potential of a typical probe supertube in this background. In

section 4 we discuss the interpretation of our configurations as microstates (or fuzzballs)

of non-extremal black holes, and compare their properties to those of black holes. In

section 5 we discuss whether the fuzzballs we construct appear as fuzzballs of fuzz or as

fuzzballs of fire to incoming observers, we speculate on the implication of this work for

3The only way to figure out whether a long BPS microstate is typical is to compare its length to the mass

gap of the typical microstate in the dual CFT, and this comparison indicates that long microstates whose

angular momentum is of order one belong indeed the sector where the typical microstates live [9, 11, 47].
4Most likely there will be a distribution of fuzzballs of various lengths, and the length of the typical ones

will come out to be same as the length of a black hole by some entropy enhancement reason [48].
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our understanding of the resolution of spacelike singularities in String Theory, and discuss

possible future directions. In appendix A we review the construction and the physics of

smooth BPS black hole microstate solutions, in appendix B, we recall the geometry of the

non-extremal black hole, and in appendix C we present an approximation that allows us

to compare very easily the lengths of a black-hole throat and of a fuzzball throat.

2 Supertubes in scaling backgrounds

In this section, we review the potential for supertubes in a supersymmetric three-charge

background. We focus on deep supersymmetric microstate geometries (smooth, horizon-

less three-charge solutions with scaling behavior) and explain how the scaling effects the

supertube potential.

2.1 Supertubes in three-charge backgrounds

Consider a supersymmetric background geometry with three charges and three dipole

charges, of the type that describes black holes, black rings and their microstate geome-

tries. The metric in the M-theory duality frame in which the three charges correspond to

M2 branes wrapping orthogonal T 2’s inside T 6 is [50, 51]:

ds2
11 = −(Z1Z2Z3)−2/3(dt+ k)2 + (Z1Z2Z3)1/3ds2

4 + (Z1Z2Z3)1/3
3∑
I=1

ds2
I

ZI
(2.1)

F4 =

3∑
I=1

dA(I) ∧ ωI , dA(I) = −d[Z−1
I (dt+ k)] + Θ(I) . (2.2)

where ds2
I and ωI are unit metrics and volume forms on the three orthogonal T 2’s and ds2

4

is the metric of a hyper-Kähler base space. Supersymmetry requires the two-forms Θ(I)

to be self-dual on the base. When the hyper-Kähler space is Gibbons-Hawking (GH) or

Taub-NUT:

ds2
4 = V −1(dψ +A)2 + V ds2

3 with dA = ?3dV, (2.3)

where ds2
3 is the flat metric on R3, the solution is completely determined by specifying 8

harmonic functions V,KI , LI ,M in the GH base [52, 53]. The harmonic functions can have

sources on an arbitrary number of positions in R3. The warp factors and rotation one-form

are given by

ZI = LI +
1

2
CIJKV

−1KJKK , (2.4)

k = µ(dψ +A) + ω , (2.5)

with CIJK = |εIJK | and

µ =
1

6
CIJKV

−2KIKJKK +
1

2
LIK

I +M ,

~∇× ~ω = V ~∇M −M~∇V +
1

2

(
KI ~∇LI − LI ~∇KI

)
. (2.6)

– 5 –



J
H
E
P
1
2
(
2
0
1
2
)
0
1
4

Note that the inverse of the warp factors ZI are also the electric potentials for the four-form

and hence they determine the M2 charges at each background center.

In [42] we found the Hamiltonian of a two-charge supertube in such a multicenter

three-charge background with a Gibbons-Hawking base. The two charges q1 and q2 of the

supertube are parallel to those of the background and correspond to M2 branes along the

first and second T 2. The dipole charge, d3, corresponds to an M5 brane extended along

those two tori wrapping the fiber of the Gibbons-Hawking space. The Hamiltonian is:

H =

√
Z1Z2Z3/V

d3R2

√(
q̃2

1 + d2
3

R2

Z2
2

)(
q̃2

2 + d2
3

R2

Z2
1

)
+
µV 2

d3R2
q̃1q̃2 −

1

Z1
q̃1 −

1

Z2
q̃2 −

d3µ

Z1Z2

+ q1 + q2 ,

(2.7)

where we have introduced

q̃1 ≡ q1 + d3(K2/V − µ/Z2) , q̃2 ≡ q2 + d3(K1/V − µ/Z1) , (2.8)

and R is proportional to the size of the Gibbons-Hawking fiber

R2 ≡ Z1Z2Z3/V − µ2 . (2.9)

The harmonic functions K1 and K2 encode two of the three dipole moments of the back-

ground. The minima of the potential determine the position on the GH base of (meta)stable

supertubes in a given three-charge background. Depending on the relative orientation of

the M2 charges of supertube and the background, the minima of the potential will be

supersymmetric (with energy VBPS = q1 + q2) or non-supersymmetric.

2.1.1 Supertubes in scaling backgrounds

A scaling background is a bubbling configuration that has a set of GH points that can

approach each other arbitrarily close, see figure 2 for a cartoon. As the points get closer

together, the solution develops an ever deeper throat and looks more and more like the

black hole with the same asymptotic charges. See appendix A. Deep scaling solutions are

dual to states that belong to the same CFT sector as the typical microstates, that give the

leading contribution to the black hole entropy [9, 11, 47].

For a given set of charges, a scaling limit exists if we can find a solution to the bubble

equations (A.7) or (A.8) for

rij = ε r̃ij with ε→ 0. (2.10)

When such a solution can be found, all distances in the GH base scale to zero, but the

physical size of the bubbles and ratios between distances are preserved throughout the

scaling ε→ 0, because the warp factors along the bubbles diverge appropriately.

When we focus on scaling backgrounds we find that the Hamiltonian has a similar

scaling. By rescaling the coordinates on the 3d base as ~r = ε ~̃r, and taking the limit ε→ 0,

the Hamiltonian scales as

H
(
ε ~̃r
)

= εH
(
~̃r
)

+O(ε2) (2.11)

– 6 –
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Figure 2. Heuristic picture of scaling microstate geometries.

As mentioned in the Introduction, there exist two ways of obtaining a scaling solution.

The first is to consider a set of N centers whose charges allow for scaling behavior; they

satisfy N−1 bubble equations, and their 2N−2 dimensional moduli has a region where the

points come together, and the fully backreacted solution develops a long throat [11, 44]. The

second way is to insist that the centers be collinear — their positions are now parameterized

by N − 1 variables that are completely determined by the N − 1 bubble equations — and

force the centers to scale by tuning by hand some of the flux parameters on the centers or

some of the moduli of the solution [9].

We will use the second approach, essentially because it gives much more control on

the dynamics of the supertube. If one adds a supertube to a scaling solution whose centers

are not collinear, the energy of the supertube depends on the length of the throat, and

can change as the centers move in the moduli space. On the other hand, in a U(1)×U(1)

invariant solution the centers are collinear and hence frozen, and if the supertube charges

are smaller than those of the other centers, the physics of the metastable supertube is

expected to be captured by its probe action in the background.

Thus, in the examples in the next section, we focus on scaling solutions where all the

GH points are collinear and we will ‘turn the knob’ of the scaling control parameter ε by

tuning one of the charges kIi .

3 A seven-center scaling solution

In this section, we analyze the minima the probe supertubes in a “pincer” supersymmetric

scaling background (inspired from [9]) whose centers are colinear in R3 and have JL = 0.

This pincer solution contains a central ‘blob’ of total GH charge one, as well as two sym-

metric satellite blobs of GH charge zero. For computational ease, we take a configuration

that is made up out of a total of seven points on the GH base: a central blob made from

three points, of GH charges −n, 2n + 1,−n, and two satellites with two points that have

GH charges −Q and +Q. The configuration, depicted in figure 3, is Z2 symmetric, and

hence has JL = 0 by construction.

One can then choose fluxes between the various GH centers such that the total config-

uration has the charges of a BPS black hole with a macroscopically-large horizon area. The

particular choice of fluxes that ensures that a five-point solution has no CTC’s was obtained

– 7 –
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Figure 3. Our setup consists of a central blob of three centers and two satellite blobs of two centers

each, with the GH charges as given in the figure.

in [9] by tediously analyzing blob mergers, and our choice is simply the Z2 symmetrization

of that choice.

3.1 Background data

We choose a cylindrical coordinate system (ρ, z, θ) in three dimensions, where z runs along

the axis through the centers and ρ, θ are polar coordinates in the orthogonal plane. Since

we have cylindrical symmetry, the solution only depends on the coordinates z and ρ. The

seven centers are put on the z-axis and are numbered z1 . . . z7 as in figure 4. We choose

the GH charges to be

v1 = 20, v2 = −20, v3 = −12, v4 = 25, v5 = −12, v6 = −20, v7 = 20. (3.1)

The flux parameters of the central blob are chosen as

k1
i =

5

2
|vi|, k2

i = k̂|vi|, k3
i =

1

3
|vi| , i = 3, 4, 5 , (3.2)

and those of the satellites are

k1
1 = 1375 , k2

1 = −1835

2
+ 980k̂ , k3

1 = −8360

3
,

k1
2 = −1325 , k2

2 =
1965

2
− 980k̂ , k3

2 =
8380

3
, (3.3)

and their mirror image kI7 = kI1, k
I
6 = kI2.

The charges of the harmonic functions are then a function of k̂ only. For every value of

k̂, the bubble equations (A.8) fix the position of the seven centers. One can approximate

the size of the microstate by z6 ≈ r0 as in [9]:

r0 =
ĴL

8
∑

I(k
I
6 + kI7)

, (3.4)

where ĴL is the angular momentum contained in the centers z3, . . . z7. In the given back-

ground, this is linear in k̂ as:

r0 =
56

31
× 103|k̂ − k̂?| , k? ≈ 3.17975 . (3.5)

We will tune k̂ such that r0 → 0 and the configuration scales down into a deep throat.

In table 1 we list the relevant distances and ratios of distances for various values of the

flux parameter k̂. Starting from one set of inter-center distances the bubble equations (A.8)

successively determine the equilibrium distance for every value of k̂ during the scaling.

– 8 –
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Figure 4. Schematic picture of our microstate configuration.

Background k̂ z6
z6
r0

∆3

∆1

∆2

∆1

1 3.08333 176.088 1.011 1.5464 6730.9

2 3.16667 23.91 1.01166 1.61449 6664.58

3 3.175 8.69039 1.01279 1.6215 6657.94

4 3.1775 4.12444 1.01474 1.62362 6655.95

5 3.178 3.21125 1.0158 1.62404 6655.55

6 3.17833 2.60246 1.01693 1.62432 6655.29

7 3.17867 1.99366 1.01874 1.6246 6655.02

8 3.1795 0.471667 1.04441 1.62531 6654.36

9 3.17967 0.167268 1.11114 1.62545 6654.22

Table 1. Distances between the points throughout the scaling process. The distances ∆i and z6
are as in figure 4. The parameter k̂ is tuned for the scaling, all the other charges are kept fixed

at their values (3.1) and (3.2). It is clear that the relative distances stay approximately the same

during the scaling. Also the total charges QI and angular momentum JR stay approximately the

same throughout the scaling.

Charges and angular momenta. The values of the electric charges and the right-

moving angular momentum as defined in (A.10) and (A.12) stay approximately constant

throughout the scaling

Q1 ≈ 1.476×105 , Q2 = 1.196×105 , Q3 ≈ 1.76×105 , and JR ≈ 1.018×108 . (3.6)

Note that Q2 is independent of k̂. Since the configuration is symmetric (the charges of

opposite centers are the same), the left-moving angular momentum is exactly zero through-

out the whole merger process.5 Since the charges and angular momenta all stay nearly

constant throughout the scaling these microstates have the charges of a black hole of non-

zero entropy in all regimes: when they are shallow (before the scaling), when they are very

deep (in the scaling limit) and in the whole intermediate regime.

3.2 The supertube potential

We plot the potential for a probe supertube in this background, with supertube charges

(q1, q2, d3) = (10,−50, 1) . (3.7)

5For configurations with only one satellite this symmetry is broken and JL 6= 0. Then JL goes to zero

as the solution gets deeper and deeper. The end-point of such a merger is a BMPV black hole microstate

with JL = 0. Only in this deep-throat limit the microstates have the charges of a black hole of non-zero

entropy, while our background has the charges of a BMPV black hole throughout the scaling.

– 9 –
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The potential is normalized to zero for a supersymmetric minimum:

H̃ ≡ H − (q1 + q2) (3.8)

and we will omit the tilde in the following. For illustrative purposes, we plot the potential

of the supertube in the background ‘2’ of table 1 as a function of z and perform a Contour

plot around the minima in a plane through the z-axis, see figure 5. The positions of the

seven centers in background 2 are

z1 = −23.9136, z2 = −23.91, z3 = −0.00579078, z4 = 0, z5 = |z3|, z6 = |z2|, z7 = |z1|.
(3.9)

The potential has several supersymmetric minima: two lie inside the central blob, two lie

just outside and there are two more minima in between the central blob and the satellite

centers at z ≈ ±10. There are two metastable minima close to the satellites, near z2 and

z6. Since the setup is symmetric, we focus on the metastable minimum at zms . z6:

zms = 23.8729 , z6 = 23.91 . (3.10)

The supertube in that minimum can tunnel to the supersymmetric state at z ' 10 via

brane-flux annihilation as explained in [42]. Note that the additional non-supersymmetric

minima near z = ±50 as seen from figure 5 are in fact saddle points and they have a

runaway behavior off the axis.

In order to stay well in the probe approximation one needs to make sure that the

charges of the supertube are small compared to the charges of the background (as measured

by the poles of LI). In particular, the metastable minimum at zms sits close to the centers

z6 and z7 of the background, and we have to make sure that the charges at that position

are large compared to the ones of the supertube. For the charges and flux parameters as

fixed in (3.1) and (3.2) the background electric charges at the black ring centers are of the

order 3× 105 and hence our supertube is well in the probe regime.

As explained before, the supertube potential scales down linearly with the coordinate

distance between the background centers, see eq. (2.11). As an illustration, we compare

the potential for two scaling backgrounds, 2 and 9 of table 1 in figure 6. One clearly sees

the self-similarity of the potentials. Also the supertube position zms scales down with the

throat: its relative position to the other centers stays unchanged.

4 Non-extremal microstate throats

Upon backreaction, metastable supertubes in scaling backgrounds should become mi-

crostates of a non-extremal black hole. In this section we want to compare the size of

these microstates to the size of the corresponding black hole, and understand the scale at

which non-extremal fuzzballs differ from the black hole.

4.1 The idea

One can estimate the depth of a black hole or of a fuzzball throat by integrating the radial

metric component:

L =

∫ rneck

rbottom

√
grrdr , (4.1)

– 10 –



J
H
E
P
1
2
(
2
0
1
2
)
0
1
4

Figure 5. Zoom on the supertube potential for charges (q1, q2, d3) = (10,−50, 1) in background

2. Note the metastable minimum near z6 = 23.91 (and its mirror near z2 = −23.91). The contour

plot shows that this minimum is of “Mexican hat — type” in the z − ρ plane around the center

z6 (z2); darker colors mean lower energy. On can see that this minimum has no runaway behavior

in the ρ direction and hence is truly metastable. The supertube in that minimum can tunnel to

a supersymmetric state. Note also that the minima near the central blob are in fact two mirror

copies of a Mexican hat-type circular band of minima, as the contour plot in the bottom left corner

shows.

-20 -10 10 20
z

0.02

0.04

0.06

0.08

H

(a) Potential in background 2, z6 = 23.91

-0.2 -0.1 0.1 0.2
z

0.0001

0.0002

0.0003

0.0004

0.0005

H

(b) Potential in background 9, z6 =

0.167268

Figure 6. The supertube potential for charges (q1, q2, d3) = (10,−50, 1) in two scaling backgrounds.

The energy scales down linearly with the coordinate size between the centers.
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Figure 7. The scaling of the background determines the size of the metastable black hole mi-

crostates. For a BPS background of a fixed depth, adding heavy supertubes gives a microstate of a

black hole that has shorter throat, while adding light supertubes gives a microstate of a black hole

with a longer throat.

between the bottom and the neck of the throat. To get the depth of the non-extremal

microstate, we can evaluate this integral in the supersymmetric background geometry since

the probe supertube will not affect the geometry too much. We then compare this to the

depth of the throat of the non-extremal black hole (a Cvetic-Youm black hole [54], see

appendix B) that has the same charges.

The main result of this paper is that we, indeed, find microstates that are of the same

depth as the non-extremal black hole, but we also find deeper ones and shallower ones.

This is not surprising: Supertube probes placed in deep scaling solutions will not affect

the background geometry too much upon backreaction and the resulting non-extremal

microstate will, hence, be of the same size as the supersymmetric background. The size of

the corresponding non-extremal black hole, however, depends on the extremality parameter

which is set by the charges of the supertube. Small supertube charges correspond to deep

black holes; increasing the tube charges takes the black hole further away from extremality

and thus makes the throat more shallow. Hence, by tuning the supertube charges we can

always find the throat of the non-extremal black hole to be of a size comparable to that of

its microstates. This intuition is summarized in Figure 7.

In the remainder of this section we make this intuitive picture more precise. First,

we determine the data of the non-extremal black hole with the charges of the metastable

bound states in section 4.2. We give the depths of the black hole and microstate throats

in section 4.3. Since the resulting integrals are quite complicated, we make an insightful

approximation in appendix C.
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Figure 8. The metastable supertube brings in an excess energy ∆M = MBH
ADM −

∑
I Q

BH
I .

4.2 Non-extremal black hole parameters

We begin with a supersymmetric fuzzball solution that has the charges of a supersymmetric

rotating BMPV black hole, and its mass is hence

M = Q1 +Q2 +Q3 . (4.2)

Adding a supertube with charges q1, q2 increases the mass by the value of the supertube

potential at the minimum Hmin = q1 + q2 + ∆M (see also figure 8). When the minimum is

supersymmetric ∆M = 0, and the resulting configuration is a BPS microstate. When the

supertube minimum is metastable, the mass is:

M = Q1 +Q2 +Q3 + q1 + q2 + ∆M , (4.3)

and the charges are

Qtot
1 = Q1 + q1 , Qtot

2 = Q2 + q2 Qtot
3 = Q3 . (4.4)

Since, MADM >
∑

I QI , the configuration with a metastable supertube has the charges

and mass of a non-extremal black hole. The energy above extremality is exactly given by

∆M :

∆M = M −
∑
I

Qtot
I . (4.5)

In appendix B, we review the non-extremal rotating M2-M2-M2 black hole geometry.

The solution depends on six parameters: a mass parameter m, three ‘boosts’ δI and angular

momentum parameters a1, a2 which are related to the ADM mass, charges and angular

momenta

MBH
ADM =

∑
I

m

4
(e2δI + e−2δI ) , JBH

1 = m(a1c1c2c3 − a2s1s2s3) ,

QBH
I =

m

4
(e2δI − e−2δI ) , JBH

2 = −m(a2c1c2c3 − a1s1s2s3) ,

(4.6)

where cI = cosh δI and sI = sinh δI . We determine the parameters δI , ai,m of the

metastable state. The parameters δI are given by the charges and parameter m as

m

2
e2δI = QBH

I +

√
(QBH

I )2 +
m2

4
. (4.7)
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The parameter m is determined by the energy of the metastable supertube as follows.

With (4.6) the energy above extremality (4.5) can be written in terms of m and δI as

∆M =
∑
I

m

2
e−2δI . (4.8)

In the probe approximation, the supertube charges are small compared to those of the

background. Then the non-extremal black hole is close to the supersymmetric limit

(m/QBH
I � 1) and the black hole charges are approximately those of the background

and (4.7) becomes
m

4
e2δI = QI . (4.9)

The non-extremality parameter is then given by the charges and energy of the metastable

state

m =

√
8∆M∑
I 1/QI

. (4.10)

In this approximation, the angular momentum parameters a1, a2 are:

JBH
L ≡ JBH

1 − JBH
2 =

√
m

2
(a1 + a2)

√
Q1Q2Q3

(
1

Q1
+

1

Q2
+

1

Q3

)
,

JBH
R ≡ JBH

1 + JBH
2 =

2√
m

(a1 − a2)
√
Q1Q2Q3 . (4.11)

4.3 Comparing the microstates and the black hole

As we explained in the Introduction, extremal black holes have an infinite throat, and

comparing the length of this throat to that of the fuzzballs is meaningless. Comparing

the thicknesses of the throats on the other hand gives automatically the same result: the

thickness is only controlled by the charges. For near-extremal black holes the thickness is

also largely controlled by the charges, so it will automatically be the same for fuzzballs and

black holes. On the other hand, non-extremal black holes have a finite throat, and hence

comparing the lengths of the throats is now meaningful, and can indicate which fuzzballs

are expected to be more typical than the others, and whether fuzzballs differ from the black

hole away from the horizon microscopically or macroscopically.

We denote the difference in the length of the non-extremal black hole throat and that

of its microstates by

∆L ≡ LBH − LMS . (4.12)

Although we have not backreacted the metastable bound state, we have argued above that

a small probe supertube will not significantly change the geometry and hence LMS will

be the length of the supersymmetric microstate throat given by (2.1). We can estimate

the throat length by integrating along the z-axis, from the outermost center zMS ≡ z7 up

to a suitable cutoff scale zneck. The depth of the black hole throat is the metric distance

from the horizon at ρ = ρ+ to the end of the throat at ρ = ρneck with the metric (B.1).

A suitable cutoff is zneck = ρneck = (QBH1 QBH2 QBH3 )1/6. The expression for ∆L is quite
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complicated, but as we explain in appendix C we can make a very insightful approximation

through which we obtain

∆L ≈ ρneck ln

(
2
ρMS

ρ+

)
, (4.13)

where we replaced the cutoff zMS by ρMS in a spherically symmetric approximation of the

microstate geometry.

Consider the following scaling of the supertube charges and of the coordinates of the

GH centers:

(q1, q2, d3) → eλ(q1, q2, d3) ,

ρMS → eµρMS . (4.14)

The approximated difference in depths then goes as

∆L

ρneck
→ ∆L

ρneck
− 1

4
λ+

3

4
µ . (4.15)

This reveals that the black hole throat can be made deeper than that of the microstate

(∆L positive) by taking either smaller tubes or deeper background microstates.

To confirm this approximation, we evaluate ∆L = LBH − LMS numerically. We do

this for supertubes of charges

(q1, q2, d3) = eλ(10,−50, 1) , (4.16)

with λ = −10,−9, . . . , 9, 10. The supertubes are placed in the nine background scaling

geometries of different sizes of table 1. The size of the black hole throat LBH is calculated

from (C.3) for the rotating black hole geometry (B.1), and the parameters of the black

hole are extracted from the metastable supertube minima as in section 4.2. The size of the

microstate throat is obtained by integrating (C.1). We replace the background microstate

geometry by that of the extremal black hole.

We plot our findings in figures 9a and 9b. In figure 9a we show the effect of scaling

the tube charges. We plot ∆L for tubes of various sizes (λ = −10,−9, . . . , 9, 10), in three

scaling solutions of table 1. We find all possibilities: microstates that are deeper, of the

same depth, and shallower than the black hole. By making the tubes smaller, the black

hole can always be made deeper than the microstate. It is also clear that ∆L has the

scaling behavior anticipated in (4.15).

In figure 9b we show the effect of putting the tube in backgrounds of different scaling

size and depth. We plot ∆L for tubes in all nine scaling solutions (2,6 and 9 of table 1),

in terms of µ ≡ log z7, where z7 is the position of the outermost center of the scaling

background. This reveals that the approximately linear scaling (4.15) still holds.

4.4 The range of validity of our construction

Having obtained non-extremal microstates by placing probe supertubes inside long super-

symmetric fuzzballs, it is important to study the ranges of charges in which our construction

is valid. Clearly, since we have not backreacted the supertube, and treated them as probes,
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-10 -5 5 10
Λ

-4

-2

2

LBH - LMS

Q1 Q2 Q3

6

ss11 Hslope �-0.250013L

ss15 Hslope �-0.249875L

ss18 Hslope �-0.249928L

(a) The difference in depths ∆L
ρneck

in terms

of the tube charge scaling sizes (q1, q2, d3) =

eλ(10,−50, 1) for the backgrounds 2, 6 and 9 of

table 1.

-2 -1 1 2 3
Μ � logHz7L

-4

-3

-2

-1

1

LBH - LMS

Q1 Q2 Q3

6

H slope �0.757732 L Λ �-3

H slope �0.757812 L Λ �0

H slope �0.757959 L Λ �3

(b) The difference in depths ∆L
ρneck

in terms of the scaling

solution sizes measured by the logarithm of the position

of the 7th center z7.

Figure 9. The difference in depths ∆L = LBH − LMS for tubes of size λ = −10,−9, . . . , 9, 10 in

several scalings backgrounds.

we are automatically assuming that their charges and dipole charges are much smaller

than those of the GH centers and we are only describing configurations whose mass above

extremality is much smaller than the sum of the charges. These correspond to microstates

of near-extremal black holes.

A possible mechanism for invalidating our construction is if the microstates we create

will have closed timelike curves. In the absence of backreaction one cannot say precisely

when or whether this will happen; however, one can estimate whether the angular mo-

mentum of a microstate is larger or smaller than the angular momentum that would cause

closed timelike curves in a black hole of identical charges and length.

The non-extremal black hole geometry has closed timelike curves unless m ≥ (a1±a2)2.

This gives two ‘cosmic censorship bounds’ on the black hole angular momenta. For a near-

extremal black hole, the angular momenta (4.11) have to satisfy:

JBH
L ≤ m

2

√
Q1Q2Q3

(
1

Q1
+

1

Q2
+

1

Q3

)
,

JBH
R ≤ 2

√
Q1Q2Q3 . (4.17)

The second bound is automatically satisfied because we are starting with a BPS microstate

of a black hole with a large horizon area, and adding a probe supertube only changes the

charges and JR by very small amounts.

The first bound is more problematic. Since the BPS microstate has JL = 0, the

resulting metastable microstate will get its left-moving angular momentum entirely from the
~E× ~B interactions between the supertube and the background. If we call this contribution

J tube
L and express the parameter m in terms of the energy of the metastable supertube
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∆M , this bound becomes

J tube
L ≤ A(Q)

√
∆M , A(Q) =

√
2
√
Q1Q2Q3

√
1

Q1
+

1

Q2
+

1

Q3
. (4.18)

Since both the angular momentum J tube
L and ∆M scale linearly with the tube charges, we

see that in a solution of fixed length this condition will be violated when the tube charges

become very large.

Alternatively, one can consider a supertube with fixed charges in a solution whose

length is dialed by hand by bringing the centers together on the GH base. The mass above

extremality ∆M is linear in the inter-center separation, while we expect (from the known

supersymmetric solutions) that the ~E × ~B interactions that give rise to J tube
L will remain

constant. Hence, a solution with a single supertube that becomes too deep will start having

charges and angular momenta outside of the cosmic censorship bound, and will most likely

have closed timelike curves.

Of course, the way to avoid all these complications is to use the fact that the original

solution is Z2-symmetric and place two identical supertubes in metastable minima symmet-

ric around the origin, such that resulting configuration preserves this symmetry. In such a

symmetric configuration the contribution to J tube
L from the interaction of the supertubes

with the background vanishes, and the cosmic censorship conditions are always satisfied.

4.5 The force on probe branes

Another quantity that one can compute in both the near-extremal black hole geometry

and in the non-extremal fuzzballs we construct is the force on a probe brane whose charge

is carried by the black hole. Of course, this force is identically zero in the BPS black hole

and in the BPS fuzzballs, but now we have more mass than charge, and we expect such a

probe brane to start feeling a force.

The potential for an M2 brane wrapping the Ith torus T 2
I , in the Cvetic-Youm black

hole (appendix B) is easy to compute6

V
(I)
BH = VDBI + VWZ =

1

HI
(
√
Hm − coth δI) . (4.19)

As before, in the near-extremal limit with no rotation QBHI ≈ QI and m � Q1. The

leading-order contribution to the potential of a probe M2 brane wrapping the torus T 2
I is

proportional to what we may define as the mass above extremality in the Ith channel:

V
(I)
BH =

∆MI

ρ2
, where ∆MI ≡

m2

8QI
and ∆M =

3∑
I=1

∆MI +O(m3) . (4.20)

Note that probe branes wrapping different tori will correspond upon compactification to

five dimensions to point particles with different types of U(1) charges, and feel different

forces.

6The force is ~FBH = qM2
∂VBH
∂~rM2

.
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To compute the force on a probe M2 brane in the non-extremal fuzzball one may

think naively that one needs to construct the fully backreacted solution corresponding to

metastable supertubes, but this is not so. Using the fact that in the absence of a metastable

supertube one can add a BPS M2 brane at a large distance away from the throat without

breaking supersymmetry, one can calculate the action of a metastable supertube in a mi-

crostate geometry both with and without the brane. The difference between the two actions

gives then by Newton’s third law the potential felt by far-away M2 brane as a function of

its position, which can then be used to determine the force it feels. In the examples where

a backreacted solution exists, this method, first introduced in KKLMMT [49], reproduces

correctly the force computed from supergravity [55–58].

Adding an M2 brane with charge qM2 far away from the scaling centers introduces

another term in the M2 harmonic function

LI =
7∑
i=1

`i
|~r − ~ri|

+
qM2

|~r − ~rM2|
, (4.21)

and for small charges this changes the energy of the metastable supertube by

V
(I)
MS =

∂H
∂LI

∣∣∣∣
min

1

|~rmin − ~rM2|
, (4.22)

which by Newton’s third law gives then the potential felt by the M2 brane in the non-

extremal fuzzball.

Given that our non-extremal microstates have the same mass and charges as a non-

extremal black hole, we would expect by Birkhoff’s theorem that the leading-order term in

the potential felt by an M2 brane far away from the region of the throat would be the same.

However, the leading-order term in (4.22) is not of the same form as (4.20); in particular

the microstate attractive potential (4.22) does not scale properly with the length of the

microstate throat:
V

(I)
MS

V
(I)
BH

∼ 1

LI
. (4.23)

Since 1/LI is linear in the inter-center distances of the scaling background, the force with

which the microstate attracts the M2 brane vanishes as one considers deeper and deeper

microstates with the same mass. Furthermore, another surprise is in store. A microstate

with a metastable supertube with electric charges q1 and q2 will attract M2 branes with

charges Q1 and Q2, but will repel M2 branes with charge Q3. This can be seen both by

investigating (4.22), or by evaluating the potential numerically:

V
(1)
MS

V
(1)
BH

≈ 3.0× 10−5 z6 ,
V

(2)
MS

V
(2)
BH

≈ 2.9× 10−5 z6 ,
V

(3)
MS

V
(3)
BH

≈ −6.4× 10−5 z6 . (4.24)

The “wrong” sign of V
(3)
MS and the linear dependence of these ratios on z6 implies that

one cannot hope to obtain the “correct” black-hole force on probe M2 branes from mi-

crostates constructed this way. One can also imagine constructing other types of black
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hole microstates, by placing single anti M2-branes or other more complicated objects in-

side bubbling geometries; however, the “force problem” persists, and it can be summarized

as follows.

Given a background that does not attract M2 branes, the mass above extremality

generated by adding a probe that breaks supersymmetry inside a long throat generically

goes like the mass of that probe divided by the warp factor at the bottom of the throat. On

the other hand, if one computes “à la KKLMMT” the force on a probe M2 brane, this force

scales generically like the mass of the probe divided by the square of the warp factor, and

hence like the ADM mass of the solution divided by the warp factor at the bottom. If one

now makes the throat longer or shorter keeping the mass fixed, the force in a microstate

changes, unlike in a black hole solution where this force is always proportional to the mass

above extremality.

This force analysis indicates that the non-extremal microstates obtained by placing

single metastable supertubes inside BPS microstates do not attract M2 branes in the way

one may naively expect of a typical black hole microstate. The underlying reason for this

is that the supertube couples not only to the warp factor and electric fields but also to

extra scalars in five dimensions, which come from the volume moduli of the torus. This

extra interaction, which is absent for M2 probes in the background of the black hole, leads

to the different scaling behavior of the force on a probe M2 in the microstate background

and to the repulsive force felt by an M2-brane along the third torus.

Even if the microstates we obtain by placing one metastable supertube do not attract

M2 branes the way the black hole does, one can clearly bypass this problem and construct

very large numbers of microstates that attract M2 branes typically by placing several

species of metastable supertubes, and by fixing the supertube charges such that the length

of the microstate is exactly that of the black hole (4.15) and furthermore such that at

this length the forces are exactly those of the black hole (4.22). However, this is more

a matter of engineering, and can obscure an important piece of physics that the force

computation reveals: the fact that the force on a probe M2 branes varies wildly from

microstate to microstate, and can be even negative, implies that M2 branes will feel the

thermal fluctuations between various fuzzballs as thermal fluctuations in the force even if

they are quite far away from the black hole. Thus, these M2 branes will become aware of

the existence of fuzzballs and of the breakdown of classical physics further away from the

horizon than other probes.

5 Fuzzballs of fire or fuzzballs of fuzz (in lieu of conclusions)

In this paper we have used probe supertubes to construct microstate geometries, or

fuzzballs, that have the same mass and charges as three-charge non-extremal black holes.

We computed the length of the throats of these solutions, and found that one can easily

build microstates whose throats are longer, shorter or have the same length as the throat

of the black hole. Since in our construction there is no dynamical mechanism that sets

the microstate length to be the same as that of the black hole throat, this indicates that

this mechanism may be entropic: there will be many more microstates of black hole throat
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length than shorter or longer ones. Of course, to produce such an entropic argument one

needs first to make sure that our method for constructing non-extremal microstates can

produce at least a subset of the typical ones, and them count these microstates.

However, the absence of a dynamical mechanism for fixing the microstate length in-

dicates that fuzzballs will differ from the black hole at macroscopic distances from the

horizon, and not just in its vicinity (as recently mentioned as a possibility in [30]). Of

course, this intuition applies to near-extremal fuzzballs, and the extrapolation to more

generic black holes may break down. Nevertheless, one can use near-extremal black holes

as a testing ground for all the ideas proposed in relation to infalling observer physics,

firewalls, black hole complementarity and spacelike singularity resolution and this is the

purpose of this section.

5.1 What does an in-falling observer see?

The first question one can try to address is the scale at which an infalling observer stops

experiencing spacetime. In the most straightforward interpretation of the fuzzball proposal,

which one may call a “fuzzball of fire” interpretation, the classical geometry breaks down

at the horizon, and is replaced by an ensemble of fuzzballs [2]. Hence, the horizon is the

scale where the “thermodynamic” description of physics (in terms of a classical spacetime)

breaks down, and the “statistical” description (in terms of fuzzballs) takes over. In a naive

analogy with an ideal gas, the scale of the horizon is like that of the mean free path, and

hence we might expect the incoming observers to experience large statistical fluctuations in

the same way in which a particle of smaller and smaller size in a gas experiences larger and

larger fluctuations. Below a certain size of the particle the Brownian motion deviations

overtake the classical trajectory, and the notion of “particle moving in a continuous fluid”

breaks down. In the same way, a particle far away from a black hole experiences a classical

spacetime, but as the particle approaches the horizon the statistical fluctuations become

stronger and stronger, and at the horizon the notion of “particle moving in a classical

spacetime” breaks down.

From the point of view of the incoming particle, the increasing fuzzball fluctuations

it feels at the scale of the horizon are not a very pleasant experience, which agrees with

the recent proposal of [30] that an incoming particle must see a firewall at the horizon

scale in order for the information paradox to be solved. In [36] one of the authors and

Chowdhury have argued that the pleasantness an in-falling particle experiences depends

on its energy; particles of the order of the Hawking radiation should thermalize in the bath

of out-going radiation which thus constitutes a firewall for these in-falling particles, while

particles much heavier than Hawking radiation should pass the bath nearly unaltered.

Recently Mathur has argued for a new approximate complementary for observers heav-

ier than Hawking radiation falling into a fuzzball. According to this “fuzzball complemen-

tarity” paradigm [35, 59, 60], which draws from recent ideas of [61, 62], the scale of fuzzball

thermalization/loss of spacetime experience does not depend only on the location of the

infalling observer, but also on its energy. Heavier observers will continue experiencing a

spacetime even after they have passed the horizon scale and have entered the fuzzball re-

gion, and for these observers spacetime will emerge from the quantum superposition of the
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fuzzballs. On the other hand lighter particles, of order the Hawking radiation energy, stop

experiencing a classical spacetime at the horizon — this is necessary in order for the Hawk-

ing radiation to be able to carry off the black hole information to infinity and solve the

information paradox. According to the “fuzzball complementarity” paradigm, the analogy

with the ideal gas in the “fuzzball of fire” argument above is not so straightforward, essen-

tially because in the ideal gas there is only one scale, while when describing an observer

falling into a black hole one has two scales: the observer mass and its location.

It is hard to tell directly whether our non-extremal fuzzballs will be felt by an incoming

observer as fuzzballs of fire or as fuzzballs of fuzz (in the sense of fuzzball complementarity).

To do this one would have to construct first more generic non-extremal fuzzballs, and then

to scatter various particles off them. Such a research programme is feasible; one can in

particular use the quiver quantum mechanics that describes these fuzzballs in the regime of

parameters where gravity is turned off [45], and analyze the scattering of various charged

centers, as one does in supergoop studies [63]. One can analyze for example the collision of

a multicenter near-extremal fuzzball goop with a center whose charges are much bigger than

those of the centers that compose the fuzzball, and see whether such a center gets absorbed

by the fuzzball goop as soon as it reaches it or traverses it with impunity, and if so how does

the trajectory of this center differ from the trajectory in a single-center black hole geometry.

However, even before such a calculation is done, there are two features of our construc-

tion that are relevant in the fuzzballs of fire/fuzz discussion. First, the fact that nothing

dramatic happens as the throat of microstate geometries becomes longer or shorter than

that of a black hole implies that the difference between fuzzballs and the classical black

hole is not strongly suppressed immediately above the horizon scale. Hence, if an observer

heavier than Hawking particles continues to experience a spacetime below the horizon scale

then, by extension, an observer lighter than the Hawking particles should stop experiencing

a spacetime above the horizon scale. The physics of this possibility can get quite unpalat-

able: a spaceship orbiting at say five Schwarzschild radii above the horizon cannot send to

another nearby spaceship any photons that have an energy lower than the Hawking radia-

tion energy divided by five to some power; such photons are thermalized by the ensemble

of fuzzballs already at that scale and hence cannot propagate.

Since we do not expect observers, be they very small, to start experiencing large

statistical fluctuations of spacetime and dissolve in the fuzz far away from the horizon, this

Gedanken experiment seems to tilt the balance against “fuzzball complementarity”, and

towards the “fuzzball of fire” interpretation. On the other hand, another piece of fuzzball

physics in our construction seems to incline the balance backwards:

We have computed the force on probe M2 branes (that experience no force when the

fuzzball is supersymmetric), and we have found that this force varies wildly, and can even

change sign when one goes from one metastable fuzzball to another. It may be that this

wild variations in the force are just a feature of the very specific type of fuzzballs we have

succeeded to construct, and some yet-to-be-constructed more typical microstates will not

attract M2 branes in such erratic ways. However, it is also possible that we have uncovered

a fundamental feature of fuzzballs of near-extremal black holes: they may attract very

erratically the components of the extremal black hole with the same charges.
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Now, if these very special probes see the thermal noise from the fuzzball and experience

statistical fluctuation already at a very large distance, way above the horizon scale, it does

not seem so far-fetched that other observers, in particular those with energy below that of

Hawking radiation, could also see this thermal noise far away from the horizon, while other

(more massive) observers continue experiencing a spacetime well into the fuzzball, as the

“fuzzball complementarity” paradigm indicates.

5.2 Is Hawking radiation coming from brane-flux annihilation?

Besides being the first examples of non-extremal fuzzballs and maybe a way to realize

firewalls in string theory, one can also use our configurations to explore other pieces of

black hole physics. The first is Hawking radiation. The metastable supertubes we use to

construct the fuzzballs decay into supersymmetric vacua via brane-flux annihilation [42, 43]

and this decay corresponds to the near-extremal black hole emitting its last Hawking

radiation quantum and becoming an extremal black hole. This process is quite difficult to

study from the black hole side, essentially because thermodynamics breaks down [64, 65]. A

comparison of the fuzzball decay rates (which one can compute rather straightforwardly) to

the near-extremal black hole emission rate may shed light on how thermodynamics breaks

down, and also on which fuzzballs are more typical than others: the decay rates depend on

how big the bubbles of a fuzzball are, and can be used to determine the typical bubble size.

The other important question is what is the backreacted solution corresponding to

our metastable supertubes. The JMart solution [37], which is one of the two known fully-

backreacted non-extremal fuzzballs, is known to have ergoregions, and its instability [66]

has been argued [67] to correspond to Hawking radiation. The other fully-backreacted

non-extremal fuzzball, the running-Bolt solution [40], is also unstable, but its instability

does not come from ergoregions. Our configurations on the other hand are metastable, at

least in the probe approximation. It might be possible that the energy of some metastable

supertubes will decrease by taking one of the GH centers off the symmetry axis, and if

this happens the fully backreacted solution will probably be unstable as well. However,

it is also very likely that one will be able to construct metastable supertubes that remain

metastable when fully backreacted, and thus will have very different physics from the

JMaRT and running-Bolt solutions.

The other issue with the metastable supertube backreaction is that most of the work

analyzing the backreaction of antibranes in backgrounds with charge dissolved in fluxes

indicates that such backreacted solutions have unphysically-looking singularities, both at

first order [56, 57, 68–71] and when looking at the fully-backreacted solutions [72, 73]. If

one would naively extend this result to our work, one might expect that anti-M2 branes

in long BPS throats will also give rise to unphysically-looking singularities. However, in

our construction we are not using bare antibranes, but supertubes that carry two kinds

of antibrane charges, and also have a dipole charge and a nonzero angular momentum.

The advantage of supertubes is that if they are solutions of the DBI Hamiltonian they

backreact into geometries that are smooth in the D1-D5-P duality frame [46]. Hence we

expect the backreaction of our metastable supertubes to give rise to regular solutions; it
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would be very interesting to confirm this by constructing directly this challenging non-

supersymmetric cohomogeneity-two solution.

5.3 Are spacelike singularities resolved backwards in time?

The existence of microstate solutions that have the same mass, charges and throat length

as non-extremal black holes indicates that the singularity of these black holes will most

likely not only be resolved to the inner horizon (as one may expect by extrapolating the

extremal black hole result) but all the way to the outer one, which is backwards in time

from where the singularity is, as the Penrose diagrams in figure 1 show. One can now try

to see what this intuition may tell us about singularity resolution.

Indeed, since the Penrose diagram of the near-extremal black holes is the same as

that of all Reissner-Nordström black holes, one can extrapolate our result and assume

that the singularity of all Reissner-Nordström black holes is resolved all the way to the

outer horizon. One can then take the small charge limit (in which the inner horizon and

the timelike singularity merge to form a spacelike singularity) and infer that the spacelike

singularity of the zero-charge Schwarzschild black hole is also resolved backwards in time,

all the way to the horizon.

If this is indeed the correct pattern of the resolution of spacelike singularities in string

theory, one can ask two questions:

1. What is the mechanism by which this happens and the corresponding scale?

2. What does this imply for the physics of other spacelike singularities, like the cosmo-

logical ones?

Both questions have several possible answers, and we leave it to the reader who is

unhappy with them to find more compelling ones. To answer Question 1, one can always

argue that singularities in string theory have low-mass degrees of freedom, that destroy

the spacetime on macroscopic distances. One can also refine the answer, and argue [74]

that an incoming shell that will form such a singularity in the future will enter in a region

where there are a very large number of fuzzball-like states, and even if the probability of

tunneling into any of them is tiny, since there are so many of them, the incoming shell

will tunnel in the fuzz with probability one. The size of the region where the singularity is

resolved depends on the mass of the singularity, and on the density of fuzzballs.

The answer to the second question depends largely of the mechanism for the backwards

in time resolution. If this mechanism involves tunneling into fuzzball-like configurations

that live near say a Big Crunch singularity, then the scale for the resolution will probably

be given by the typical size of these configurations (which is quite hard to estimate at this

point, in the absence of any explicit Big-Crunch-resolving fuzzballs). Furthermore, one

can argue that such configurations were also present in the early universe, where they can

again be thought of as giving a “forward in time” resolution of the Big Bang singularity,

and their physics might have cosmological implications [75, 76]. We leave the fascinating

exploration of these possibilities to future work.
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A Smooth scaling backgrounds

We focus on three-charge backgrounds that are microstate geometries of black holes and

black rings. Microstate geometries are everywhere smooth and free of horizons, such that

each individual geometry carries no entropy. They have the same mass, charges and angular

momenta as their black hole or black ring counterpart. Deep microstate geometries have a

scaling behavior: the centers can be put arbitrarily close such that the geometry develops

a very long throat, while the curvature is small everywhere.

A.1 Smoothness and regularity

The first physical requirement on the background is the absence of closed timelike curves

(CTC’s) in the geometry, giving the necessary conditions:7

Z1Z2Z3V − µ2V 2 ≥ 0 and V ZI ≥ 0 . (A.1)

Note that this ensures that the potential (2.7) is well-defined (radicand under square root is

positive). To have a smooth geometry, the warp factors and the function µ appearing in the

angular momentum one-form k must be regular at the sources of the harmonic functions.

This yields relations between the charges and the constants in the harmonic functions. The

constants are further constrained by demanding asymptotic flatness. We will choose the

harmonic functions V (Taub-NUT charges) and KI (dipole charges) to be fixed as:

V =

N∑
j=1

vj
rj
, KI =

N∑
j=1

kIj
rj
. (A.2)

Regularity requires these harmonic functions to be sourced at the same points and one

must take vj ∈ Z. For the base metric to be asymptotically R4 one must impose

N∑
j=1

vj = 1. (A.3)

Then smoothness determines LI (M2 charges) and M (momentum along ψ) to be

LI = 1− 1

2
CIJK

N∑
j=1

kJj k
K
j

vj

1

rj
, M = m0 +

1

12
CIJK

N∑
j=1

kIj k
J
j k

K
j

v2
j

1

rj
, (A.4)

7The sufficient no-CTC condition, which insures the existence of a time function is Z1Z2Z3V − µ2V 2 ≥
ω2 [8].
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Figure 10. Smooth three-charge bubbling geometry with a supertube (red) placed on one of the

cycles along ψ.

with

m0 = −1

2

∑N
j=1

∑3
I=1 k

I
j∑N

i=1 vi
= −1

2

N∑
j=1

3∑
I=1

kIj . (A.5)

After imposing regularity and smoothness as well as asymptotic flatness there is a residual

freedom in choosing N − 1 Taub-NUT charges and N dipole charges.

The microstates are ‘bubbled’ geometries. For N centers, there are N − 1 non-trivial

two-cycles, or bubbles, on the GH base. The cycles are supported by N − 1 non-trivial

fluxes Π
(I)
ij :

Π
(I)
ij ≡

KI

V

∣∣∣
rj
− KI

V

∣∣∣
ri

=
(kIj
vj
− kIi
vi

)
. (A.6)

We depict such a geometry in figure 10.

The smoothness condition together with the first condition of (A.1) leads to a further

requirement that ensures the absence of CTC’s: µ has to vanish at each center, since for

ri → 0 the ZI ’s tend to finite values while V −1 goes to zero. This gives N − 1 bubble

equations [2, 7, 8, 77]. By writing the charges and constants in the harmonic functions as

vectors Γi = (vi, k
I
i , `I,i,mi) and h = (V∞,K

I
∞, LI,∞,M∞) these are:8

∀i :

N∑
j=1
j 6=i

〈Γi,Γj〉
rij

+ 〈Γi, h〉 = 0 , (A.7)

where 〈Γi,Γj〉 = vimj−mivj+ 1
2(kIi `I,j−`I,ikIj ) is the symplectic product and rij = |~rj−~ri|

are the inter-center distances. For smooth solutions, the bubble equations can be written

in terms of the magnetic two-form fluxes Π
(I)
ij through the bubbles as:

1

6
CIJK

N∑
j=1

j 6=i

Π
(I)
ij Π

(J)
ij Π

(K)
ij

vivj
rij

= −2
(
m0vi +

1

2

3∑
I=1

kIi

)
. (A.8)

The bubble equations relate the magnetic flux through each bubble to the physical size of

each bubble.
8In more general solutions [44, 45, 78] these equations come from imposing that ω should have no

Dirac-Misner strings at the centers, but in smooth backgrounds this is equivalent to (A.7).
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A.2 Asymptotic charges and angular momenta

We give the charges and angular momenta of the five-dimensional solutions. Since the

solution is invariant under the gauge transformation KI → KI + cIV , or kIj + cIvj , for any

constant cI , we define asymptotic quantities in terms of the gauge invariant flux parameters:

k̃Ij ≡ kIj − vj

 N∑
j=1

kIj

 . (A.9)

The electric charges of the solution as measured at infinity are extracted from the ρ−2

term, with r = 1
4ρ

2 in the expansion of the warp factors ZI :
9

QI = −2CIJK

N∑
j=1

k̃Jj k̃
K
j

vj
. (A.10)

In five dimensions there are two angular momenta, which are read off from the asymptotic

behavior of k in (2.5) from the terms that have a ρ−2 fall-off:

k ∼ 1

4ρ2

(
(J1 + J2) + (J1 − J2) cos θ

)
dψ + . . . (A.11)

where θ is the angle between ~r and the dipoles ~D ≡
∑N

j=1

∑3
I=1 k̃

I
j~rj . The two angular

momenta are then given by

JR ≡ J1 + J2 =
4

3
CIJK

N∑
j=1

k̃Ij k̃
J
j k̃

K
j

v2
j

and JL ≡ J1 − J2 = 8| ~D|. (A.12)

Using the bubble equations, one can associate an angular momentum flux vector with the

ijth bubble:

~JL =
∑
i>j

~JL,ij , ~JL,ij ≡ −
4

3
vivjCIJKΠ

(I)
ij Π

(J)
ij Π

(K)
ij

(~ri − ~rj)
|~ri − ~rj |

. (A.13)

The flux on the left-hand side of the bubble equation (A.8) yields the contribution of the

bubble to JL.

B Non-extremal black hole geometry

The non-extremal rotating black hole solution sourced by three M2’s on T 6 is the Cvetic-

Youm black hole. We give it in the notation of [79]. The solution depends on six parameters:

a mass parameter m, three ‘boosts’ δI related to the charges and angular momentum

parameters a1, a2. The metric is

ds2
11 = −(H1H2H3)−2/3Hm(dt+ k)2 + (H1H2H3)1/3ds2

4 +
3∑
I=1

(H1H2H3)1/3

HI
ds2
I . (B.1)

9To isolate the charges of the solution one needs to take (2.3) to a standard polar form for R4 via r = 1
4
ρ2.
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with

k =
m

f

[
−c1c2c3

Hm
(a1 cos2 θ dψ + a2 sin2 θ dφ) + s1s2s3(a2 cos2 θ dψ + a1 sin2 θ dφ)

]
(B.2)

with I, J,K all different and we write

cI ≡ cosh δI , sI ≡ sinh δI . (B.3)

The solution is built from the functions

HI = 1 +
ms2

I

f
, Hm = 1− m

f
, f = ρ2 + a2

1 sin2 θ + a2
2 cos2 θ . (B.4)

The four-dimensional metric is

ds2
4 =

fρ2

g
dρ2 + f(dθ2 + sin2 θ dφ2 + cos2 θ dψ2)

+H−1
m (a1 cos2 θ dψ + a2 sin2 θdφ)2 − (a2 cos2 θ dψ + a1 sin2 θ dφ)2 ,

g = (ρ2 + a2
1)(ρ2 + a2

2)−mρ2 ≡ (ρ2 − ρ2
+)(ρ2 − ρ2

−) . (B.5)

The inner and outer horizon are given by the roots of g(ρ):

(ρ±)2 =
1

2

(
m− a2

1 − a2
2 ±

√(
m− a2

1 − a2
2

)2 − 4a2
1a

2
2

)
. (B.6)

The ADM mass, electric charges and angular momenta of the black hole are

MADM =
m

2

∑
I

cosh 2δI , J1 = m(a1c1c2c3 − a2s1s2s3) ,

QI =
m

2
sinh 2δI , J2 = −m(a2c1c2c3 − a1s1s2s3) ,

(B.7)

where we have set G5 = π
4 as discussed in appendix A of [79].

C Approximation for throat depth

We can give a good measure of the throat depth by integrating along the z-axis, from the

outermost center zMS ≡ z7 up to a suitable cutoff scale zneck:

LMS ≡
∫ zneck

zMS

V 1/2(Z1Z2Z3)1/6dz , (C.1)

The depth of the black hole throat is the metric distance from the horizon at ρ = ρ+ to

the end of the throat at ρ = ρneck which can be approximated by

ρneck = (QBH1 QBH2 QBH3 )1/6 . (C.2)

The depth of the throat is then given by integrating
√
gρρ in the metric (B.1):

LBH ≡
∫ ρneck

ρ+

√
gρρdρ =

∫ ρneck

ρ+

ρ
√
f

√
g

(H1H2H3)1/6dρ . (C.3)
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To get a feeling for ∆L, we make some approximations. First, we approximate the geometry

of the non-extremal black hole by a non-rotating one, so a1 = a2 = 0. We get:

LBH =

∫ rneck

r+

(H1H2H3)1/6√
1− m

ρ2

dρ , (C.4)

with HI = 1 + QBHI /ρ2. For near-extremal black holes, this is a good approximation.

We also replace the microstate geometry by the (spherically symmetric) geometry of the

extremal black hole metric:

LMS =

∫ rneck

rMS

(Z1Z2Z3)1/6 dρ√
r

=

∫ ρneck

ρMS

(Z1Z2Z3)1/6dρ , (C.5)

where we performed the change of variables r = 1
4ρ

2 and we have ZI = 1 + QI/ρ
2. This

is a valid approximation, since the extremal black hole geometry only differs significantly

from the microstate very deep down the throat.

Second, we approximate the black hole integral by splitting it into a part where ρneck >

ρ � ρ+ and a part where ρneck � ρ > ρ+. We choose some intermediate radius ρint ≈√
ρ+ρneck, but its exact value is of no importance.10 With this approximation C.4 becomes:

LBH = ρneck

∫ ρint

ρ+

dρ√
ρ2 − ρ2

+

+

∫ ρneck

ρint

(H1H2H3)1/6dρ , (C.6)

where we used that for the non-rotating non-extremal black hole the non-extremality pa-

rameter m is just the square of the horizon radius ρ+. In the same way we approximate C.5:

LMS = ρneck

∫ ρint

ρMS

dρ

ρ
+

∫ ρneck

ρint

(Z1Z2Z3)1/6dρ . (C.7)

Third, we know that for the extremal and non-extremal black hole the charges are

almost equal because we are working with supertube probes, and hence also the ZI = HI

are equal. Then the difference in depth is

LBH − LMS = ρneck

∫ ρint

ρ+

dρ√
ρ2 − ρ2

+

−
∫ ρint

ρ+

dρ

r


= ρneck

ln

ρint +
√
ρ2

int − ρ2
+

ρ+

− ln
ρint

ρMS

 (C.8)

Since we chose ρint � ρ+, we can approximate this very well by

∆L = LBH − LMS = ρneck ln

(
2
ρMS

ρ+

)
. (C.9)

10In our example, we have ρ2
neck ≈ 106, ρ2

+ . 102 and we can choose ρ2
int ∼ 104.
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We can use this result to get some idea on how the size of the supertubes and the

depth of the microstates affect ∆L. Consider the scaling of the supertube charges and the

coordinates of the microstate centers as

(q1, q2, d3) → eλ(q1, q2, d3) ,

ρMS → eµρMS , (C.10)

Both scalings have a non-trivial effect on the size of the horizon radius of the would-be

non-extremal black hole, which (neglecting rotation) is given by

ρ2
+ = m =

√
8∆M

1
Q1

+ 1
Q2

+ 1
Q2

. (C.11)

The potential H scales linearly with the tube charges, and in the scaling regime it also

scales linearly with the coordinate size of the centers, see eq. (2.11). The same applies,

of course, to the value ∆M of its metastable minimum. Hence the horizon radius, as a

function of the tube charges qtube ≡ (q1, q2, d3) and the size of the microstate background

ρMS , has the following scaling behavior:

ρ+(qtube; ρMS) = e−(λ+µ)/4ρ+(eλqtube; eµρMS) . (C.12)

Therefore under the scalings (C.10), the difference in depths ∆L ≡ LBH − LMS goes as

∆L

ρneck
→ ∆L

ρneck
− 1

4
λ+

3

4
µ . (C.13)
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