
HAL Id: cea-00822436
https://cea.hal.science/cea-00822436v1

Submitted on 13 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On metastable vacua and the warped deformed conifold:
analytic results

Iosif Bena, Gregory Giecold, Graña Mariana, Halmagyi Nick, Massai Stefano

To cite this version:
Iosif Bena, Gregory Giecold, Graña Mariana, Halmagyi Nick, Massai Stefano. On metastable vacua
and the warped deformed conifold: analytic results. Classical and Quantum Gravity, 2013, 30,
pp.15003. �10.1088/0264-9381/30/1/015003�. �cea-00822436�

https://cea.hal.science/cea-00822436v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

10
2.

24
03

v1
  [

he
p-

th
] 

 1
1 

Fe
b 

20
11

IPhT-t11/019

On Metastable Vacua and the

Warped Deformed Conifold:

Analytic Results

Iosif Bena∗, Gregory Giecold∗, Mariana Graña∗, Nick Halmagyi∗† and Stefano Massai∗

∗Institut de Physique Théorique,
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Abstract

Continuing the programme of constructing the backreacted solution corresponding to
smeared anti–D3 branes in the warped deformed conifold, we solve analytically the equations
governing the space of first–order deformations around this solution. We express the results
in terms of at most three nested integrals. These are the simplest expressions for the space of
SU(2)×SU(2)×Z2–invariant deformations, in which the putative solution for smeared anti–
D3 branes must live. We also explain why one cannot claim to identify this solution without
fully relating the coefficients of the infrared and ultraviolet expansions of the deformation
modes. The analytic solution we find is the first step in this direction.
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1 Introduction and Motivation

Anti–D3 branes in Klebanov-Strassler (KS) warped deformed conifold throats [1] are a key in-
gredient in string model building and string cosmology, where they are used both for lifting AdS
to de Sitter solutions [2], and to construct models of inflation using D3 branes moving in KS–like
geometries [3].

In a previous paper [4], three of the authors solved for the space of SU(2) × SU(2) × Z2–
invariant deformations, in which the would–be solution describing anti–D3 branes smeared at
the tip of the warped deformed conifold must live. The equations parameterizing this space of
deformations were found in [5], and by repackaging them and finding their homogeneous solu-
tions, one can write down the implicit solution to the full space of deformations in terms of
nested integrals [4]. Performing these nested integrals is no easy task. To analyze the physics of
the backreacted solution sourced by antibranes and determine whether this solution is dual to a
metastable vacuum of the dual gauge theory (as conjectured by [6] following a probe analysis),
the authors of [4] found the explicit infrared and ultraviolet expansions of all the modes1. This
analysis revealed that the candidate anti–D3 brane solution must have a certain infrared singular-
ity. If this singularity is physical, then the space of solutions implicitly–solved–for in [4] captures
the first–order backreaction of antibranes in KS. If this singularity is pathological, the analysis
of [4] implies that the backreaction of anti–D3 branes in KS cannot be treated in perturbation
theory2.

As discussed in detail in [4] there are many arguments why this singularity may be physical
or not, but so far there exists no criterion for accepting it that does not force one to also accept
clearly unphysical singularities like that of the negative–mass Schwarzschild solution3. Solving
the fully–backreacted solution for these anti–D3 branes could settle the issue, but this involves
solving eight coupled second–order nonlinear differential equations. A more indirect way to
determine whether this singularity is physical would be to allow it, and then explore whether
the physics of the resulting solution is consistent with the physics one expects from anti–D3
branes. To do this, one must set all the other unphysical IR singularities and all the UV non–
normalizable modes to zero (which was done in [4]), and then relate the various coefficients of
the infrared and ultraviolet expansions. This will fix all the parameters of the solution in terms
of one parameter, the number of anti–D3 branes, and yield the relation between the charge
of the would–be antibranes and the force they exert on a probe D3 brane. Since this force is
known from KKLMMT [3] and is not screened [11], if the force–to–charge ratio is the correct one
for anti–D3 branes, this indicates that the singularity is most likely physical, and the solution
describes indeed the backreaction of anti–D3 branes. If this ratio is not the correct one then the
solution has nothing to do with antibranes, and is most likely unphysical. Note that obtaining
this ratio from the solution is a nontrivial process, which involves matching all the infrared and
ultraviolet integration constants in the expansions of the modes.

1The UV expansion of a subset of the invariant modes for the Klebanov–Tseytlin solution has been considered
in [7] and the IR expansion of a deformation around KS has been looked at in [8].

2A similar result was obtained when investigating the backreaction of putative brane–engineered metastable
vacua [9], or the backreaction of anti–M2 branes in a warped Stenzel background [10].

3An example of such a criterion is accepting so-called “normalizable,” singularities whose energy density
diverges, but whose energy is finite.
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One way to obtain this ratio would be to perform numerically all the nested integrals that
appear in the solution of [4] and relate the corresponding ultraviolet and infrared integration
constants. However, this gets complicated, in particular because most of the integrals either
diverge or decay very fast. What simplifies the analysis is the observation that one of the
modes (ξ1) is proportional to the warp factor in the Klebanov–Strassler solution. This simplifies
the expressions of the integrals appearing in the functions ξa, which in the Borokhov–Gubser
formalism are the “conjugate momenta” to the physical perturbation fields φa [5]. The second
key observation is that most of the nested double integrals that appear at various stages of
solving the Borokhov–Gubser equations can be integrated by parts, and hence can be expressed
in terms of single integrals.

In this note we show that by making judicious use of these two observations, one can express all
eight conjugate momentum functions ξa as linear combinations of simple integrals. Furthermore,
with the exception of the perturbation to the warp factor, all the other seven perturbation modes
can be expressed in terms of just two nested integrals. The expression for the perturbed warp
factor is the most complicated of them all, and can be expressed in terms of three nested integrals.
This is a huge improvement from the implicit solution of [4], where the most complicated of the
ξa was expressed in terms of four nested integrals, and the warp factor (φ4) was expressed in
terms of eight of them.

Hence, the expressions presented in this paper correspond to the simplest solution to the
space of SU(2) × SU(2) × Z2–invariant deformations of the Klebanov–Strassler background,
and should include both the putative antibrane solution, as well as other perturbations of the
Klebanov–Strassler field theory with various non-normalizable modes that have no R–charge (see
for example [12, 13, 14]).

In an upcoming paper we will use these results to perform the numerical integration of the
putative anti–D3 brane solution of [4], allowing for the extra infrared singularity. This will relate
the ultraviolet and the infrared integration constants and allow us to determine whether the ratio
between the anti–D3 charge of the solution and the force on a probe D3 brane is the correct one.

Note: While we were preparing this paper for submission we became aware of [15], in which
some of the nested integrals obtained in [4] were explicitly performed. In the solution of [4] the
most complicated field can be expressed in terms of 8 nested integrals, in [15] this is expressed in
terms of 7 nested integrals, and in the present paper in terms of 3. Furthermore, as it is clear from
the discussion above, we believe that it is premature to claim that a solution describes anti–D3
branes without first computing the charge–to–force ratio and making sure it is the correct one.
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2 Analytic Solution for Deformations of the Warped De-

formed Conifold

In this section we present our analytic formulae for the full set of SU(2)×SU(2)×Z2–invariant
deformation space around the Klebanov–Strassler solution4. The method follows that of [4], but
here we present numerous analytical improvements.

We use the ansatz for the supergravity background fields proposed by Papadopoulos and
Tseytlin (PT) [18], which is the most general ansatz consistent with the SU(2) × SU(2) × Z2–
symmetry of the Klebanov–Strassler background:

ds210 = e2A+2 p−x ds21,3 + e−6 p−x dτ 2 + ex+y
(

g21 + g22
)

+ ex−y
(

g23 + g24
)

+ e−6 p−x g25 , (1)

where all the functions depend on the variable τ . The fluxes and dilaton are

H3 = 1

2
(k − f) g5 ∧ (g1 ∧ g3 + g2 ∧ g4) + dτ ∧ (f ′ g1 ∧ g2 + k′ g3 ∧ g4) ,

F3 = F g1 ∧ g2 ∧ g5 + (2P − F ) g3 ∧ g4 ∧ g5 + F ′ dτ ∧ (g1 ∧ g3 + g2 ∧ g4) , (2)

F5 = F5 + ∗F5 , F5 = [k F + f (2P − F )] g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ,

Φ = Φ(τ) , C0 = 0 , (3)

where P is a constant while f, k and F are functions of τ and a prime denotes a derivative with
respect to τ .

2.1 The Borokhov–Gubser method and the zeroth–order background

The method introduced in [5] relies on the existence of a superpotential W whose square gives
the potential, namely

V (φ) =
1

8
Gab ∂W

∂φa

∂W

∂φb
. (4)

The fields φa (a = 1, ..., n) are expanded around their supersymmetric background value in the
form

φa = φa
0 + φa

1(X) +O(X2) , (5)

where X represents the set of perturbation parameters, φa
1 is linear in them, and φa

0 are the
functions in the Klebanov–Strassler solution, written explicitly below. The method amounts to
splitting n second–order equations (n = 8 for us), into 2n first–order ones, out of which n of
them (those for the conjugate momenta ξa) form a closed set. The conjugate momenta ξa are
defined as

ξa ≡ Gab(φ0)

(

dφb
1

dτ
−M b

d(φ0)φ
d
1

)

, M b
d ≡

1

2

∂

∂φd

(

Gbc ∂W

∂φc

)

. (6)

4See [16, 17] for a rigorous derivation of a consistent truncation on T 1,1 which includes several additional
modes.
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They are linear in the expansion parameters X and non–zero for non–supersymmetric solutions
only. The set (ξa, φ

a) satisfies the equations:

dξa
dτ

+ ξb M
b
a(φ0) = 0 , (7)

dφa
1

dτ
−Ma

b(φ0)φ
b
1 = Gab ξb . (8)

Note that equations (8) are just a rephrasing of the definition of the ξa in (6), while the equations
in (7) imply the equations of motion [5]. The functions ξa should additionally satisfy the zero–
energy condition

ξa
dφa

0

dτ
= 0 . (9)

We will denote the set of functions φa, a = 1, ..., 8 of the PT ansatz in the following order

φa = (x, y, p, A, f, k, F,Φ) . (10)

The field–space metric in (6) is

Gab φ
′a φ′b = e4 p+4A

[

x′2 +
1

2
y′2 + 6 p′2 − 6A′2 +

1

4
Φ′2

+
1

4
e−Φ−2x

(

e−2 y f ′2 + e2 y k′2 + 2 e2Φ F ′2
)

]

(11)

and the superpotential is given by

W (φ) = e4A−2 p−2x + e4A+4 p cosh y +
1

2
e4A+4 p−2x (f (2P − F ) + k F ) . (12)

The background fields are given by the Klebanov–Strassler solution [1]

ex0 =
1

4
h(τ)1/2

(

1

2
sinh(2 τ)− τ

)1/3
,

ey0 = tanh(τ/2) ,

e6 p0 = 24

(

1

2
sinh(2 τ)− τ

)1/3

h(τ) sinh2 τ
,

e6A0 =
1

3 · 29
h(τ)

(

1

2
sinh(2 τ)− τ

)2/3
sinh2 τ , (13)

f0 = −P
(τ coth τ − 1) (cosh τ − 1)

sinh τ
,

k0 = −P
(τ coth τ − 1) (cosh τ + 1)

sinh τ
,

F0 = P
(sinh τ − τ)

sinh τ
,

Φ0 = 0 .

The warp factor h cannot be found analytically. Its expression as an integral is given below in
equation (23).

5



2.2 The first–order deformation: ξ̃a equations

As in [4] we shift to a slightly more convenient basis ξ̃a, defined as

ξ̃a ≡ (3ξ1 − ξ3 + ξ4, ξ2,−3ξ1 + 2ξ3 − ξ4,−3ξ1 + ξ3 − 2ξ4, ξ5 + ξ6, ξ5 − ξ6, ξ7, ξ8) . (14)

The equations in the order in which we solve them, are5

ξ̃′1 = e−2x0 [2P f0 − F0 (f0 − k0)] ξ̃1 (15)

ξ̃′4 = −e−2x0 [2P f0 − F0 (f0 − k0)] ξ̃1 (16)

ξ̃′5 = −
1

3
P e−2x0 ξ̃1 (17)

ξ̃′6 = −ξ̃7 −
1

3
e−2x0 (P − F0) ξ̃1 (18)

ξ̃′7 = − sinh(2 y0) ξ̃5 − cosh(2 y0) ξ̃6 +
1

6
e−2 x0 (f0 − k0) ξ̃1 (19)

ξ̃′8 =
(

P e2 y0 − sinh(2 y0)F0

)

ξ̃5 +
(

P e2 y0 − cosh(2 y0)F0

)

ξ̃6 +
1

2
(f0 − k0) ξ̃7 (20)

ξ̃′3 = 3 e−2x0−6 p0 ξ̃3 +
[

5 e−2x0−6 p0 − e−2x0 (2P f0 − F0 (f0 − k0) )
]

ξ̃1 (21)

ξ̃′2 = ξ̃2 cosh y0 +
1

3
sinh y0

(

2 ξ̃1 + ξ̃3 + ξ̃4

)

+2
[

(

P e2 y0 − cosh(2 y0)F0

)

ξ̃5 +
(

P e2 y0 − sinh(2 y0)F0

)

ξ̃6

]

. (22)

The key development we present here is to solve for all the ξ̃a in terms of two simple integrals,
one of which is the KS warp factor:

h(τ) = h0 − 32P 2

∫ τ

0

u coth u− 1

sinh2 u
(cosh u sinh u− u)1/3 du , (23)

j(τ) =

∫ τ du

(cosh u sinh u− u)2/3
, (24)

with h0 = 18.2373P 2 a numerical constant.
In solving the system of ξ̃ equations, we make the following key observations. In the equations

for ξ̃1 and ξ̃4, we note that

e−2x0 [2P f0 − F0 (f0 − k0) ] =
h′

h
. (25)

This implies
ξ̃1 = X1 h(τ) , ξ̃4 = −X1 h(τ) +X4 . (26)

To obtain ξ̃8 we use the relations

P e2 y0 − sinh(2 y0)F0 = −
1

2
(f0 + k0)

′ , (27)

P e2 y0 − cosh(2 y0)F0 = −
1

2
(f0 − k0)

′ , (28)

5We have accounted for two misprints in the published version of [4].
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which yields

ξ̃′8 = −
1

2
(f0 + k0)

′ ξ̃5 −
1

2
(f0 − k0)

′ ξ̃6 +
1

2
(f0 − k0) ξ̃7 . (29)

Integrating by parts and using (18) and (26), we get

ξ̃′8 = −
1

2

(

(f0 + k0) ξ̃5

)′

−
1

2

(

(f0 − k0) ξ̃6

)′

−
1

6
X1 h

′ . (30)

This easily integrates to

ξ̃8 = −
1

2
(f0 + k0) ξ̃5 −

1

2
(f0 − k0) ξ̃6 −

1

6
X1 h(τ) +X8 . (31)

For ξ̃3 we observe that

e−2x0−6 p0 =
4

3

sinh2 τ

sinh 2 τ − 2 τ
=

1

3

ξ̃′3,h

ξ̃3,h
, (32)

where ξ̃3,h is the solution to the homogeneous equation, namely

ξ̃3,h = sinh 2 τ − 2 τ . (33)

As a result,

ξ̃′3 = 3 e−2x0−6 p0 ξ̃3 +
[

5 e−2x0−6 p0 − e−2x0 (2P f0 − F0 (f0 − k0))
]

ξ̃1

= 3 e−2x0−6 p0 ξ̃3 +X1

(5

3

h ξ̃′3,h

ξ̃3,h
− h′

)

. (34)

Henceforth,

ξ̃3 = −
5

3
X1 h(τ) +

2

3
X1 ξ̃3,h

∫ τ

du
h′

ξ̃3,h
+X3 ξ̃3,h . (35)

The above observations allow us to write the full solution in terms of two simple integrals. We
collect here the full solution

ξ̃1 = X1 h(τ) , (36)

ξ̃3 = −
5

3
X1 h(τ)−

32

3
P 2X1 csch

2τ (sinh τ cosh τ − τ)4/3

−
128

9
P 2X1 (sinh τ cosh τ − τ) j(τ) + 2X3 (cosh τ sinh τ − τ) , (37)

ξ̃4 = −X1 h(τ) +X4 , (38)

ξ̃5 = −
16P

3
X1 j(τ) +X5 , (39)

ξ̃6 = −
1

sinh τ
λ6(τ)−

cosh τ sinh τ − τ

2 sinh τ
λ7(τ) , (40)

ξ̃7 = −
cosh τ

sinh2 τ
λ6(τ) +

−3 + cosh 2 τ + 2 τ coth τ

4 sinh τ
λ7(τ) , (41)

ξ̃8 = P (τ coth τ − 1) coth τ ξ̃5 − P
τ coth τ − 1

sinh τ
ξ̃6 −

1

6
X1 h(τ) +X8 , (42)
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where

λ6(τ) = X6 +
1

2

(

−τ + coth τ − τ coth2 τ
)

ξ̃5(τ) +
1

6

X1

P
h(τ) , (43)

λ7(τ) = X7 − csch2τ ξ̃5(τ) +
16

3
P X1 csch

2τ (cosh τ sinh τ − τ)1/3

+
64

9
P X1 j(τ) . (44)

Finally, ξ̃2 can be obtained through the zero–energy condition (9) or just by direct integration
of (22). The latter will introduce another integration constant, X2, that one could then determine
as some combination of the other ones via the zero–energy condition. We find

ξ̃2 = −
2

3
X3 τ cosh τ +

1

3
X4 cosh τ + P X6 cschτ

(

coth τ − τ csch2τ
)

+ P X5 cschτ
(

1− 2 τ cothτ + τ 2 csch2τ
)

+X2 sinh τ

+
1

2
P X7

(

−2 τ coth3 τ + csch2τ + τ 2 csch4τ
)

sinh τ

−
1

108
X1

[

3 csch3τ h(τ) (6 τ − 5 sinh 2 τ + sinh 4 τ)

+ 2P 2 csch5τ
(

− 15 + 24 τ 2 + 16 cosh 2 τ − cosh 4 τ − 32 τ sinh 2 τ + 4 τ sinh 4 τ
)

×

[

4 sinh2 τ j(τ)− 6 (cosh τ sinh τ − τ)1/3
]

]

(45)

The zero–energy condition then amounts to6

X2 −
2

3
X3 − P X5 −

3

2
P X7 = 0 . (46)

2.3 The first–order deformation: φ̃a equations

The analytic expressions we obtain for the eight φ̃a modes are all double integrals, except for φ̃4

where we obtain a triple integral. This is a considerable improvement over all previous works.
Depending on the reader’s taste, the expressions may appear somewhat cumbersome but we find
them crucial for explicit numerical computations which will appear in a companion paper [19].

To solve the system of φa, we also use a shifted basis [4]

φ̃a = (x− 2p− 5A, y, x+ 3p, x− 2p− 2A, f, k, F,Φ) . (47)

6The relation between the Xa integration constants in this paper and the ones in [4] depends on the lower
limit of the j(τ) integral (24); it is not hard to check that this zero–energy condition is the same as that of [4].
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The system of equations for the φ̃a modes is (in the order in which we actually solve them)

φ̃′
8 = −4 e−4A0−4 p0 ξ̃8 , (48)

φ̃′
2 = − cosh y0 φ̃2 − 2 e−4A0−4 p0 ξ̃2 , (49)

φ̃′
3 = −3 e−6 p0−2x0 φ̃3 − sinh y0 φ̃2 −

1

6
e−4A0−4 p0

(

9 ξ̃1 + 5 ξ̃3 + 2 ξ̃4

)

, (50)

φ̃′
1 = 2 e−6 p0−2x0 φ̃3 − sinh y0 φ̃2 +

1

6
e−4A0−4 p0

(

ξ̃1 + 3 ξ̃4

)

, (51)

φ̃′
5 = e2 y0 (F0 − 2P )

(

2 φ̃2 + φ̃8

)

+ e2 y0 φ̃7 − 2 e−4A0−4 p0+2x0+2 y0
(

ξ̃5 + ξ̃6

)

, (52)

φ̃′
6 = e−2 y0

[

F0

(

2 φ̃2 − φ̃8

)

− φ̃7

]

− 2 e−4A0−4 p0+2x0−2 y0
(

ξ̃5 − ξ̃6

)

, (53)

φ̃′
7 =

1

2

(

φ̃5 − φ̃6 + (k0 − f0) φ̃8

)

− 2 e−4A0−4 p0+2x0 ξ̃7 , (54)

φ̃′
4 =

1

5
e−2x0 [f0 (2P − F0) + k0 F0]

(

2 φ̃1 − 2 φ̃3 − 5 φ̃4

)

+
1

2
e−2x0 (2P − F0) φ̃5

+
1

2
e−2x0 F0 φ̃6 +

1

2
e−2x0 (k0 − f0) φ̃7 −

1

3
e−4A0−4 p0 ξ̃1 . (55)

2.3.1 The φ̃8 solution

By directly integrating (48) and a little bit of massaging, we arrive at

φ̃8 = Y8 − 64X8 j(τ) +
X7

P
h(τ)

− 64P X6

∫ τ (u coth u− 1)

sinh2 u (cosh u sinh u− u)2/3
du

+
2

P
h(τ) ξ̃5(τ) +

16

3
X1 csch

2τ (cosh τ sinh τ − τ)1/3 h(τ)

+
64

9
X1 h(τ) j(τ) +

64

3
X1

∫ τ
(

sinh2 u+ 1− u coth u
)

sinh2 u (cosh u sinh u− u)2/3
h(u) du . (56)

2.3.2 The φ̃2 solution

The solution to equation (49) is given by

φ̃2 = cschτ Λ2(τ) , (57)
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where

Λ2(τ) = Y2 − 16P X7

∫ τ
(

−2 u coth3 u+ csch2u+ u2 csch4u
)

sinh2 u

(cosh u sinh u− u)2/3
du

− 32P X6

∫ τ coth u− u csch2u

(cosh u sinh u− u)2/3
du− 32P X5

∫ τ 1− 2 u cothu+ u2 csch2u

(cosh u sinh u− u)2/3
du

−
32

3
X4

∫ τ cosh u sinh u

(cosh u sinh u− u)2/3
du+

64

3
X3

∫ τ u cosh u sinh u

(cosh u sinh u− u)2/3
du

− 48X2 (cosh τ sinh τ − τ)1/3 +
8

9
X1

∫ τ 6 u− 5 sinh 2 u+ sinh 4 u

sinh2 u (cosh u sinh u− u)2/3
h(u) du

−
32

9
P 2X1

∫ τ
−15 + 24 u2 + 16 cosh 2 u− cosh 4 u− 32 u sinh 2 u+ 4 u sinh 4 u

sinh4 u (cosh u sinh u− u)1/3
du

+
64

27
P 2X1

∫ τ
−15 + 24 u2 + 16 cosh 2 u− cosh 4 u− 32 u sinh 2 u+ 4 u sinh 4 u

sinh2 u (cosh u sinh u− u)2/3
j(u) du .

(58)

2.3.3 The φ̃3 solution

Equation (50) is solved by

φ̃3(τ) =
1

sinh 2 τ − 2 τ
Λ3(τ) , (59)

where Λ3 is specified as

Λ3 = Y3 −
32

3
X4

∫ τ

(cosh u sinh u− u)1/3 du−
112

3
X1

∫ τ

(cosh u sinh u− u)1/3 h(u) du

−
80

3

∫ τ

(cosh u sinh u− u)1/3 ξ̃3(u) du+ 2 τ coth τ Λ2(τ)− 2

∫ τ

u coth uΛ′
2(u) du .

(60)
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Expanding and simplifying this expression, it becomes

Λ3 =Y3 + 32P X7

∫ τ u cosh u
(

−2 u coth3 u+ csch2u+ u2 csch4u
)

sinh u

(cosh u sinh u− u)2/3
du

+ 64P X6

∫ τ u coth u
(

coth u− u csch2u
)

(cosh u sinh u− u)2/3
du

+ 64P X5

∫ τ u coth u
(

1− 2 u cothu+ u2 csch2u
)

(cosh u sinh u− u)2/3
du

+
32

3
X4

{

2

∫ τ u cosh2 u

(cosh u sinh u− u)2/3
du−

∫ τ

(cosh u sinh u− u)1/3 du

}

−
32

3
X3

{

5

∫ τ

(cosh u sinh u− u)4/3 du+ 4

∫ τ u2 cosh2 u

(cosh u sinh u− u)2/3
du

}

+ 2 τ coth τ Λ2(τ) + 64X2

∫ τ u cosh u sinh u

(cosh u sinh u− u)2/3
du

+
64

9
X1

∫ τ

(cosh u sinh u− u)1/3 h(u) du

+
10240

27
P 2X1

∫ τ

(cosh u sinh u− u)4/3 j(u) du

+
2560

9
P 2X1

∫ τ

csch2u (cosh u sinh u− u)5/3 du

−
16

9
X1

∫ τ u coth u csch2u (6 u− 5 sinh 2 u+ sinh 4 u)

(cosh u sinh u− u)2/3
h(u) du

+
64

9
P 2X1

∫ τ u coth u (−15 + 24 u2 + 16 cosh 2 u− cosh 4 u− 32 u sinh 2 u+ 4 u sinh 4 u)

sinh4 u (cosh u sinh u− u)1/3
du

−
128

27
P 2X1

∫ τ
(

−15 + 24 u2 + 16 cosh 2 u− cosh 4 u− 32 u sinh 2 u+ 4 u sinh 4 u
)

×
u coth u csch2u

(cosh u sinh u− u)2/3
j(u) du . (61)
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2.3.4 The φ̃1 solution

Next comes φ̃1 which we express concisely in terms of Λ2 and φ̃3:

φ̃1 = Y1 +
40

9
X4 j(τ)−

2

3
φ̃3(τ)−

160

9
X3

∫ τ

(cosh u sinh u− u)1/3 du

+
5

3

∫

cothuΛ′
2(u) du−

5

3
coth τ Λ2(τ) +

2560

27
P 2X1

∫ τ

csch2u (cosh u sinh u− u)2/3 du

+
10240

81
P 2X1

∫ τ

(cosh u sinh u− u)1/3 j(u) du−
80

27
X1

∫ τ h(u)

(cosh u sinh u− u)2/3
du .

(62)

2.3.5 The (φ̃5, φ̃6, φ̃7) solutions

The fields φ̃5,6,7 are determined by a system of coupled ordinary differential equations. The
homogeneous solutions are easily found and then we apply the Lagrange method of variation of
parameters to find the following expressions

φ̃5 =
1

2
sech2(τ/2) [τ + 2 τ cosh τ − (2 + cosh τ) sinh τ ] Λ5(τ) +

1

1 + cosh τ
Λ6(τ) + Λ7(τ) ,

(63)

φ̃6 =

[

τ

(

2−
1

1− cosh τ

)

− coth(τ/2) + sinh τ

]

Λ5(τ) +
1

1− cosh τ
Λ6(τ) + Λ7(τ) , (64)

φ̃7 = (− cosh τ + τ cschτ) Λ5(τ)− cschτ Λ6(τ) , (65)

where

Λ5 =Y5 −
1

2
P (τ coth τ − 1) csch2τ φ̃8(τ)− 32P

∫ τ (u coth u− 1) csch2u

(cosh u sinh u− u)2/3
ξ̃8(u) du

+
1

4
X7

∫ τ

csch4u [2 u (2 + cosh 2 u)− 3 sinh 2 u] h(u) du−X6

∫ τ 2 + cosh 2 u

sinh4 u
h(u) du

+

∫ τ

csch2u
[

−3 coth u+ u
(

2 + 3 csch2u
)]

h(u) ξ̃5(u) du−
1

2
P

cosh τ sinh τ − τ

sinh4 τ
Λ2(τ)

+
1

2
P

∫ τ

csch4u (cosh u sinh u− u) Λ′
2(u) du−

X1

6P

∫ τ

(2 + cosh 2 u) csch4u h2(u) du

+
16

9
P X1

∫ τ

csch4u [2 u (2 + cosh 2 u)− 3 sinh 2 u] j(u) h(u) du

+
4

3
P X1

∫ τ

csch6u (cosh u sinh u− u)1/3 [2 u (2 + cosh 2 u)− 3 sinh 2 u] h(u) du , (66)
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Λ6 = Y6 −
1

2
P

[

−τ + coth τ + τ (−2 + τ coth τ) csch2τ
]

φ̃8(τ)

− 32P

∫ τ
[

−u+ coth u+ u (−2 + u coth u) csch2u
]

(cosh u sinh u− u)2/3
ξ̃8(u) du

+
1

2
X7

∫ τ
[

cosh 2 u+ csch2u
(

3 + 2 u2
− 6 u coth u+ 3 u2 csch2u

)]

h(u) du

+X6

∫ τ

csch2u
[

3 coth u− u
(

2 + 3 csch2u
)]

h(u) du

+

∫ τ
[

1 +
(

3 + 2 u2
− 6 u coth u

)

csch2u+ 3 u2 csch4u
]

h(u) ξ̃5(u) du

−
1

2
P

[

2 coth2 τ (−1 + τ coth τ) + csch2τ − τ 2 csch4τ
]

Λ2(τ)

+
1

2
P

∫ τ
[

2 coth2 u (−1 + u coth u) + csch2u− u2 csch4u
]

Λ′
2(u) du

+X1

∫ τ {csch4u [−2 u (2 + cosh 2 u) + 3 sinh 2 u]

12P
h(u) +

1

36
P csch6u

×

[

8 j(u) sinh2 u+ 6 (cosh u sinh u− u)1/3
] [

− 28 + 32 u2 +
(

31 + 16 u2
)

cosh 2 u

− 4 cosh 4 u+ cosh 6 u− 48 u sinh 2 u
]

}

h(u) du (67)

and

Λ7 =Y7 + P
[

−τ + coth τ + τ (−2 + τ coth τ) csch2τ
]

φ̃8(τ)

+ 64P

∫ τ
[

−u+ coth u+ u (−2 + u coth u) csch2u
]

(cosh u sinh u− u)2/3
ξ̃8(u) du

+X7

∫ τ
[

−1 +
(

−3 − 2 u2 + 6 u coth u
)

csch2u− 3 u2 csch4u
]

h(u) du

+X6

∫ τ

csch4u [2 u (2 + cosh 2 u)− 3 sinh 2 u] h(u) du

+

∫ τ
[

−2− 2 csch2u
(

3 + 2 u2
− 6 u cothu+ 3 u2 csch2u

)]

h(u) ξ̃5(u) du

− P csch2τ
(

1− 2 τ coth τ + τ 2 csch2τ
)

Λ2(τ)

+ P

∫ τ

csch2u
(

1− 2 u coth u+ u2 csch2u
)

Λ′
2(u) du

+X1

∫ τ {csch4u [2 u (2 + cosh 2 u)− 3 sinh 2 u]

6P
h(u)−

1

9
P csch6u

×

[

8 j(u) sinh2 u+ 6 (cosh u sinh u− u)1/3
]

×
[

−9 + 16 u2 + 8
(

1 + u2
)

cosh 2 u+ cosh 4 u− 24 u sinh 2 u
]

}

h(u) du . (68)
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2.3.6 The φ̃4 solution

While all the φ̃a modes so far have been double integrals, we obtain for φ̃4 a triple integral
expression

φ̃4(τ) =
1

h(τ)

{

Y4 −
16

3
X1

∫ τ h(u)2

(cosh u sinh u− u)2/3
du+ 32P

∫ τ (u coth u− 1) csch2uΛ6(u)

(cosh u sinh u− u)2/3
du

+ 16P

∫ τ Λ7(u)

(cosh u sinh u− u)2/3
du+

32

5
P

∫ τ

(u coth u− 1) csch2u (cosh u sinh u− u)1/3

×

[

5Λ5(u) + 2P
(

−φ̃1(u) + φ̃3(u)
)]

du
}

. (69)

It may be possible that this expression can also be reduced to double integrals, but we could not
find any obvious way to do it. This completes the solution to the system.

3 Boundary Conditions and Anti–D3 Branes

The deformation space we have solved for is a fourteen–dimensional linear space7 and has nu-
merous solutions, out of which one has to fish out the possible solution for backreacted anti–D3
branes by imposing appropriate boundary conditions.

The strategy for doing this was explained in detail in [4]: one should eliminate all integration
constants that give divergent fields in the IR or non-normalizable modes in the UV. Furthermore,
to argue that the solution corresponds to D3 branes one should set the divergence in the warp
factor perturbation (given by φ̃4) to be commensurate with the divergence coming from the five–
form. This should fix all the integration constants in terms of the would–be anti–D3 charge.
Nevertheless, to obtain the precise values of these constants, one needs to relate the infrared and
ultraviolet expansion parameters of the modes presented in this paper, and this can only be done
by numerical integration.

In particular, this calculation will fix the constant X1 in terms of the additional anti–D3
brane charge ND3 which is given by the UV value of the mode φ̃5 + φ̃6. Having done that, one
can test whether the candidate solution describes indeed anti–D3 branes by using the universal
form of the force exerted on a probe D3 brane by any solution to the equations [4, 11]:

FD3 =
32

3

X1[ND3]

(sinh τ cosh τ − τ)2/3
(70)

and comparing this with the force anti–D3 branes should exert [3, 11]. The expressions for
the (ξ̃a, φ̃

a) obtained here in terms of single and double integrals turn out to be crucial in this
endeavor, on which we intend to report soon.
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