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2 Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM–CNRS/IN2P3,

Bd Henri Becquerel, F-14076 Caen, France

E-mail: huu-tai.chau@cea.fr

Abstract. We recall some properties of convex functions and, in particular, of the

sum of the largest eigenvalues of a Hermitian matrix. From these properties a new

estimate of an arbitrary eigenvalue of a sum of Hermitian matrices is derived, which in

turn is used to compute an approximate associated spectral projector. These estimates

are applied for the first time to explain generic spectral features of quantum systems.

As an application of the formalism, we explain the preponderance of certain ground-

state angular momenta as observed in the vibron model with random interactions. We

show that the evolution of eigenstates can be predicted from the knowledge of a limited

number of spectra and investigate the effect of a three-body interaction in the vibron

model on eigenenergies and eigenvectors.

1. Introduction

In non-relativistic quantum mechanics the properties of a many-particle system are

obtained by solving the Schrödinger equation. Usually this equation reduces to the

diagonalization of a Hamiltonian matrix which is Hermitian and the elements of which

depend on the interaction between the particles. It is often assumed that this interaction

is of finite rank (one-body, two-body,. . . ), and the Hamiltonian matrix can then be

rewritten as a sum of a set of given Hermitian matrices. It is therefore useful to study the

generic properties of the eigenvalues of sums of Hermitian matrices. Since the pioneering

work of Weyl [1], many inequalities (e.g., by Lidskii [2]) have been derived for eigenvalues

of sums of Hermitian matrices; a review can be found in, e.g., Bhatia’s book [3]. More

recently, differential properties of the eigenvalues of symmetric and Hermitian matrices

have been investigated within the non-smooth analysis framework [4].

In this article we deduce a set of inequalities from the convexity property of the

sum of the largest eigenvalues of a Hermitian matrix. From these inequalities, estimates

are derived for such sums as well as for the eigenvalues of a sum of Hermitian matrices.

Moreover, since expressions of spectral projectors are known in terms of the eigenvalues

of a Hermitian matrix, the derived estimates of the eigenvalues can be used to obtain

approximate spectral projectors.
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Formal properties of convex functions are given in section 2, which begins with a

summary of known definitions and properties, leading to a new and generic estimate of

an arbitrary eigenvalue of a sum of Hermitian matrices. Given that almost any non-

relativistic theory of interacting particles can be reduced to the diagonalization of sums

of Hermitian matrices, the formal results of section 2 have immediate repercussions in

quantum mechanics, as explained in section 3. It has to be noted that, since convexity is

a global feature, the derived estimates are not limited to small perturbations. Moreover,

they do not require differentiability of eigenvalues which in general is not satisfied in

the case of degenerate eigenvalues. Hence, the eigenvalue estimates given in this paper

are able to cope with level crossings.

To illustrate the use of the derived estimates, we apply them in section 4 to predict

some spectral properties of the vibron model, which was proposed by Iachello and

Levine [5] in the study of molecules. Since the inequalities do not depend on specific

parameters but are generally valid, they can be used to shed new light on some known

(but nevertheless startling) results concerning the ground-state angular momentum

obtained in the vibron model with random interactions. We also study the effect of

a three-body interaction on the spectrum of the vibron model. Finally, conclusions are

drawn in section 5.

2. Convexity

2.1. Convex functions

We introduce some definitions and notations and recall some theorems about convexity.

More details and proofs can be found in e.g. [6, 7, 8].

Let C be a non-empty convex set in R. A function f : C → R is convex over C if

∀(x, y) ∈ C × C, ∀α ∈ [0, 1] : f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y).

Example 1. Let us consider the following function g defined on [0, 1] by
{

x ≤ x0, g(x) = 3(x − u0)
2

x0 ≤ x, g(x) = x5 (1)

with x0 = 3/5 and u0 = x0 + x
5/2
0 /

√
3. g is a convex function whose graph is plotted in

figure 1(a) .

A function f : Ω → R, where Ω is an open set in R, has a right (left) derivative

f ′
+(x0) (f ′

−(x0)) at x0 in Ω, if the limit

lim
h→0±

f(x0 + h) − f(x0)

h
≡ f ′

±(x0)

exists.

If C is a convex subset of Ω and if the function f is convex, then f has a right and

a left derivative for all x0 ∈ C and the following inequalities hold:

∀x ∈ C, x ≤ x0 : f(x) ≥ f(x0) + f ′
−(x0)(x − x0),

∀x ∈ C, x ≥ x0 : f(x) ≥ f(x0) + f ′
+(x0)(x − x0). (2)
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Under the same assumptions for f and C, we have that

∀x0 ∈ C : f ′
−(x0) ≤ f ′

+(x0),

and therefore we can choose K(x0) such that f ′
−(x0) ≤ K(x0) ≤ f ′

+(x0). The

inequalities (2) then imply

∀(x, x0) ∈ C × C : f(x) ≥ f(x0) + K(x0)(x − x0). (3)

K(x0) is called a subgradient of f at x0 and the set of subgradients of f at x0 is called

the subdifferential of f at x0 and it is denoted by ∂f(x0).

Example 2. The function g defined by equation (1) has a derivative for all x 6= x0. At

x0, g has left and right derivatives. The inequality (3) is illustrated in figure 1(b) where

the straigth lines are lower limits of the function.

On the basis of the latter property, we can propose an estimate of a convex function

if some of its values are known.

Theorem 1. Let Ω be an open set in R and f be a convex function over Ω ⊃ [a, b] with

a < b. Assuming that f ∈ C 1([a, b]), i.e. f is differentiable over [a, b] with a continuous

derivative, we define the function f̃ as

∀c ∈ [a, b] : f̃(c) =
1

2
max

(

f(a) + f ′(a)(c − a), f(b) + f ′(b)(c − b)
)

+
1

2

(

(1 − α)f(a) + αf(b)
)

, (4)

where α = (c − a)/(b − a) is the barycentric coordinate of c in [a, b].

Then the function f̃ is an estimate of f , which satisfies

|f(c) − f̃(c)| ≤ 1

2
max(α, 1 − α)(b − a)

(

f ′(b) − f ′(a)
)

. (5)

Proof. (i) If f ′(a) = f ′(b): Since f is convex, its derivative f ′ is a monotonously

increasing function and, therefore, ∀c ∈ [a, b] : f ′(c) = f ′(a), which means that f

is an affine function and f̃(c) = f(c).

(ii) If f ′(a) 6= f ′(b): We introduce c̄ such that f(a) + f ′(a)(c̄− a) = f(b) + f ′(b)(c̄− b).

The function f̃ alternatively can be defined as

∀c ≤ c̄ : f̃(c) =
1

2

(

f(a) + f ′(a)(c − a) + (1 − α)f(a) + αf(b)
)

,

∀c ≥ c̄ : f̃(c) =
1

2

(

f(b) + f ′(b)(c − b) + (1 − α)f(a) + αf(b)
)

,

which allows for a separate treatment of the cases c ≤ c̄ and c ≥ c̄. We note that

the following implication is generally valid:

∀A, B, C, D ∈ R :
A ≤ C ≤ B

D =
1

2
(A + B)

}

⇒ |D − C| ≤ 1

2
(B − A). (6)

The application of the property (2) for x0 = a leads to the inequality

∀c ∈ ]a, b[: f(c) ≥ f(a) + α(b − a)f ′(a).
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x yαx+(1-α)y

αg(x)+(1-α)g(y)

g(αx+(1-α)y)

(a)

x

g '(x)

x0

g '+(x0)

g '-(x0)

K(x0)

(b)

tx1
(0) x2

(0) x3
(0) x4

(0)

(c)

tx1
(0) x2

(0) x3
(0) x4

(0) x5
(0) x6

(0)

(d)

Figure 1. (a) Graph of the convex function g defined by equation (1). (b) Illustration

of the inequality (3) applied to g. (c) Estimate of g according to theorem 2 using 4

values of g and of its subgradients. (d) Same as (c) for 6 values.

The preliminary inequality (6) with A = f(a)+f ′(a)(c−a), B = (1−α)f(a)+αf(b),

C = f(c) and D = f̃(c) therefore gives for c ≤ c̄

|f(c) − f̃(c)| ≤ 1

2

(

(1 − α)f(a) + αf(b) − f(a) − f ′(a)(c − a)
)

,

or

|f(c) − f̃(c)| ≤ 1

2
(c − a)

(f(b) − f(a)

b − a
− f ′(a)

)

.

Since f ∈ C 1([a, b]), the mean-value theorem is valid and implies that

∃ d ∈ ]a, b[: f ′(d) =
f(b) − f(a)

b − a
.
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With the help of this result, the last inequality can be rewritten as

|f(c) − f̃(c)| ≤ 1

2
(c − a)

(

f ′(d) − f ′(a)
)

.

Due to the convexity of f , its derivative f ′ is a monotonously increasing function,

and therefore

|f(c) − f̃(c)| ≤ 1

2
(c − a)

(

f ′(b) − f ′(a)
)

=
1

2
α(b − a)

(

f ′(b) − f ′(a)
)

.

The case c ≥ c̄ can be treated similarly and leads to

|f(c) − f̃(c)| ≤ 1

2
(1 − α)(b − a)

(

f ′(b) − f ′(a)
)

.

Combination of the two cases c ≤ c̄ and c ≥ c̄ leads to the theorem.

Theorem 2. Let f be a convex function over Ω ⊃ [a, b] with a < b. We define a

function, K, by

K : [a, b] → R,

x0 7→ K(x0) ∈ ∂f(x0),

so that this function satisfies

∀(x, x0) ∈ [a, b] × [a, b] : f(x) ≥ f(x0) + K(x0)(x − x0).

We define the function f̃ as

∀c ∈ [a, b] : f̃(c) =
1

2

(

max(f(a) + K(a)(c − a), f(b) + K(b)(c − b))
)

+
1

2

(

(1 − α)f(a) + αf(b)
)

, (7)

with α = (c − a)/(b − a).

Then the function f̃ is an estimate of f , which satisfies

|f(c) − f̃(c)| ≤ 1

2
max(α, 1 − α)(b − a)(K(b) − K(a)). (8)

Proof. The derivation of this result relies on two key arguments, namely the mean-value

theorem and the monotonicity property of the subdifferential which are both true for

any convex function even if this function is not differentiable (see e.g. [8], theorem 2.3.3,

page 179 and proposition 6.1.1, page 199, respectively).

(i) If K(a) = K(b): The monotonicity property of the subdifferential implies that

∀c ∈ [a, b] : K(c) = K(a).

Moreover

∀s ∈ ∂f(c) : K(a) ≤ s ≤ K(b) ⇒ s = K(a) = K(b).

Using the mean-value theorem, it is deduced that

∀c ∈ ]a, b[: f(c) − f(a) = K(a)(c − a),

which means that f is an affine function and that f̃ = f .
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(ii) If K(a) 6= K(b): We introduce c̄ such that f(a)+K(a)(c̄−a) = f(b)+K(b)(c̄− b).

The function f̃ alternatively can be defined as

∀c ≤ c̄ : f̃(c) =
1

2

(

f(a) + K(a)(c − a) + (1 − α)f(a) + αf(b)
)

,

∀c ≥ c̄ : f̃(c) =
1

2

(

f(b) + K(b)(c − b) + (1 − α)f(a) + αf(b)
)

,

which allows for a separate treatment of the cases c ≤ c̄ and c ≥ c̄. The application

of the definition of the convexity and of the property (2) for x0 = a leads to the

inequalities

∀c ≤ c̄ : f(a) + K(a)(c − a) ≤ f(c) ≤ (1 − α)f(a) + αf(b).

The preliminary result (6) with A = f(a) + K(a)(c− a), B = (1− α)f(a) + αf(b),

C = f(c) and D = f̃(c) therefore gives for c ≤ c̄

|f(c) − f̃(c)| ≤ 1

2

(

(1 − α)f(a) + αf(b) − f(a) − K(a)(c − a)
)

,

or

|f(c) − f̃(c)| ≤ 1

2
(c − a)

(f(b) − f(a)

b − a
− K(a)

)

.

Because of the mean-value theorem which states that

∃d ∈ ]a, b[:
f(b) − f(a)

b − a
∈ ∂f(d),

and because of the monotonicity property of the subdifferential which implies

f(b) − f(a)

b − a
≤ K(b),

we obtain that

|f(c) − f̃(c)| ≤ 1

2
(c − a)

(

K(b) − K(a)
)

=
1

2
α(b − a)

(

K(b) − K(a)
)

.

The case c ≥ c̄ can be treated similarly and leads to

|f(c) − f̃(c)| ≤ 1

2
(1 − α)(b − a)

(

K(b) − K(a)
)

.

Combination of the two cases c ≤ c̄ and c ≥ c̄ leads to the theorem.

Example 3. Theorem 2 is illustrated in figure 1(c) for the function g where it is assumed

that 4 values of g and 4 of its subgradients are known at x
(0)
i with i = 1, . . . , 4. The

dashed and the dotted lines represent max(f(a) + K(a)c − a), f(b) + K(b)(c − b)) and

(1 − α)f(a) + αf(b), respectively, with a = x
(0)
i and b = x

(0)
i+1. The full black lines

represent the estimate of g as defined in theorem 2. Figure 1(d) illustrates the same for

6 values.
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2.2. Extension to higher dimensions

The definitions and theorems of the previous subsection can be extended to higher

dimensions by introducing directional derivatives. First, we introduce the notion of a

convex set in R
p and a convex function over that set. Assume k points {t1, . . . , tk} with

ti ∈ R
p. This ensemble defines a convex set, denoted here by C, which contains all points

t that satisfy

∃αi ∈ [0, 1] : t =

k
∑

i=1

αiti,

k
∑

i=1

αi = 1.

In the following ti, αi and t are taken according to the above definitions. A function

f : C → R is convex over C if

∀t ∈ C : f(t) ≤
k
∑

i=1

αif(ti).

A function f : Ω → R, where Ω is an open set in R
p, has a directional derivative at x0

in Ω, along the direction v ∈ R
p, if the limit

lim
h→0+

f(x0 + hv) − f(x0)

h
≡ df(x0; v)

exists.

If C is a convex subset of Ω and if the function f is convex, then for all x0 ∈ C and

for all directions v ∈ R
p, the directional derivative df(x0; v) exists. Furthermore, the

following inequalities are valid:

∀x0 ∈ C : df(x0; v) + df(x0;−v) ≥ 0,

and

∀(x, x0) ∈ C × C : f(x) ≥ f(x0) + df(x0; x − x0). (9)

Introducing the notion of a scalar product 〈·|·〉 : R
p × R

p → R,

∀(x, y) ∈ R
p × R

p : 〈x|y〉 =

p
∑

r=1

xryr,

and of a metric ‖ · ‖ : R
p → R,

∀x ∈ R
p : ‖x‖ =

√

〈x|x〉,
we can now extend theorems 1 and 2 to higher dimensions.

Theorem 3. Let f be a convex function over a convex set C in R
p. Assuming that

f ∈ C 1(C), we define the function f̃ as

∀t ∈ C : f̃(t) =
1

2

(

max
i

(f(ti) + 〈∇f(ti)|t − ti〉)
)

+
1

2

k
∑

i=1

αif(ti), (10)

where t =
∑k

i=1 αiti, 0 ≤ αi ≤ 1 and
∑k

i=1 αi = 1.

Then the function f̃ is an estimate of f , which satisfies

|f(c) − f̃(c)| ≤ 1

2
max

i
(αi) max

i,j
(‖ti − tj‖ ‖∇f(ti) −∇f(tj)‖). (11)
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Theorem 4. Let f be a convex function over a convex set C in R
p. We define the

function f̃ as

∀t ∈ C : f̃(t) =
1

2

(

max
i

(f(ti) + 〈si|t − ti〉)
)

+
1

2

k
∑

i=1

αif(ti), (12)

where t =
∑k

i=1 αiti, 0 ≤ αi ≤ 1 and
∑k

i=1 αi = 1 and where si is any subgradient of f

at ti: ∀i, si ∈ ∂f(ti).

Then the function f̃ is an estimate of f , which satisfies

|f(c) − f̃(c)| ≤ 1

2
max

i
(αi) max

i,j
(‖ti − tj‖ ‖si − sj‖). (13)

2.3. Eigenvalues of Hermitian matrices

The preceding results about convex functions are important in the theory of secular

equations for Hermitian matrices due to the following theorem [6, 7].

Theorem 5. Let Hn denote the set of Hermitian n × n matrices and λ1(H) ≥ · · · ≥
λn(H) and Xk(H) the ordered eigenvalues and the associated normalized eigenvectors,

respectively, for any matrix H in Hn. The functions Si : Hn → R with 1 ≤ i ≤ n,

defined by Si(H) =
∑i

k=1 λk(H), are convex.

The convexity property of the Si(H) implies the concavity property of S̄i(H) =
∑n

k=i λk(H) since S̄i(H) + Si−1(H) =
∑n

k=1 λk(H) = Tr(H) and the trace satisfies

Tr(
∑

j αjHj) =
∑

j αjTr(Hj).

2.4. Spectral projectors of diagonalizable matrices

If the eigenvalues of a Hermitian matrix are known, the associated eigenvectors can be

obtained from the spectral projectors. Two forms of the spectral projector are useful in

the following.

Theorem 6. Let H denote a complex n × n matrix. If H is diagonalizable and if λi

with i = 1, . . . , N are its distinct eigenvalues, the spectral projector P̂i associated with

λi is given by

P̂i =
1

∏

j 6=i

(λi − λj)

N−1
∑

k=0

(−1)k







∑

i1<···<iN
il 6=i

k
∏

l=1

λil






HN−1−k. (14)

Proof. Since ∀k, 0 ≤ k ≤ N−1, Hk =
∑

i λ
k
i P̂i, the expression for the spectral projectors

as a function of powers of H can be deduced by inverting the transpose of a Vandermonde

matrix. This inversion can be performed by means of a lower-upper decomposition [9]

which gives the expression (14).

Another expression for the spectral projector is given by the following theorem.
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Theorem 7. Let H denote a complex n × n matrix. If H is diagonalizable and if λi

with i = 1, . . . , N are its distinct eigenvalues, the spectral projector P̂i associated with

λi is given by

P̂i =
1

∏

j 6=i

(λi − λj)

N
∏

j=1
j 6=i

(H − λjI). (15)

Theorems 6 and 7 show that, for parameter-dependent matrices, the “singular part”

of the spectral operators originates from level crossings and that one may expect abrupt

shifts in the eigenvectors when such crossings occur. The interest of the expressions (14)

and (15) is that they can be used with approximate expressions λ̃i of eigenvalues as

derived from the convexity property stated in theorem 5, to obtain estimates of the

spectral projectors.

3. Convexity in quantum mechanics

We assume in the following that the Hamiltonian H̃ of an hitherto arbitrary model

can be written as a linear combination of p operators Ôj, H̃ =
∑p

j=1 cjÔj. With the

notation S =
∑

j |cj| and εj the sign of cj, the hamiltonian matrix H̃ can, up to the

scaling factor S, be rewritten as

Ĥ ≡ H̃

S
=

p
∑

j=1

εjαjÔj.

Since αj = |cj|/S, we have αj ∈ [0, 1] and
∑

j αj = 1. Any sum of the Ôj operators can

be rewritten in terms of one of the 2p sets of operators {Ĥ±
1 , . . . , Ĥ±

p }, with Ĥ±
j ≡ ±Ôj ,

Ĥ =

p
∑

j=1

αjĤ
±
j = H±

p +

p−1
∑

j=1

αj(H
±
j − H±

p ),

which can be seen as the barycentre of the Ĥ±
j operators since αj ∈ [0, 1] and

∑

j αj = 1.

Therefore, the spectral properties of any Hamiltonian model can be derived from those of

sums of p Hermitian n × n matrices, H(~α) ≡
∑

j αjHj , with αj ∈ [0, 1] and
∑

j αj = 1.

The ordered eigenvalues and the associated normalized eigenvectors of H(~α) will be

denoted by λ1(~α) ≥ · · · ≥ λn(~α) and Xk(~α), respectively.

3.1. Inequalities for the largest or the smallest eigenvalue

From theorem 5 one deduces that the function λ1(H) is convex while λn(H) is concave.

Therefore, for all Hj ∈ Hn and for all αj ∈ [0, 1] with
∑

j αj = 1, we have

λ1(~α) ≡ λ1(

p
∑

j=1

αjHj) ≤
p
∑

j=1

αjλ1(Hj),

λn(~α) ≡ λn(

p
∑

j=1

αjHj) ≥
p
∑

j=1

αjλn(Hj), (16)
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corresponding to an upper (lower) limit for the largest (smallest) eigenvalue of
∑

j αjHj.

From the same convexity (concavity) property, we can also derive a lower (upper)

limit for the largest (smallest) eigenvalue of a sum of p Hermitian matrices. To illustrate

this derivation, we consider, for simplicity’s sake, two matrices, H1 and H2, both

belonging to Hn, and their linear combination

H(α) = αH1 + (1 − α)H2, (17)

with α ∈ [0, 1]. Furthermore, for any α(0) ∈ ]0, 1[, we introduce Ki ≡ Ker(H(α(0)) −
λ

(0)
i I), the eigenspace of dimension di associated with the eigenvalue λ

(0)
i ≡ λi(α

(0)).

If di = 1, λ
(0)
i is non-degenerate and it can be shown that its derivative at α(0)

exists and is given by

dλi

dα
(α(0)) = X

(0)†
i (H1 − H2)X

(0)
i , (18)

where X
(0)
i ≡ Xi(α

(0)) is the normalized eigenvector associated with λ
(0)
i .

If di > 1, λ
(0)
i is degenerate and the linear variations of the eigenvalue are obtained

from stationary perturbation theory by diagonalizing the matrix H1 − H2 expressed in

any orthonormal basis of Ki. Let us denote its eigenvalues by e
(1)
i ≥ · · · ≥ e

(di)
i . If the

largest eigenvalue λ
(0)
1 is degenerate, we have that

lim
h→0−

λ1(α
(0) + h) − λ1(α

(0))

h
= e

(d1)
1 ,

lim
h→0+

λ1(α
(0) + h) − λ1(α

(0))

h
= e

(1)
1 ,

meaning that e
(d1)
1 and e

(1)
1 are the left and right derivatives of the largest eigenvalue

of H(α) at α(0), respectively. Moreover, for any normalized vector X
(0)
1 in K1, we have

the property e
(d1)
1 ≤ X

(0)†
1 (H1 −H2)X

(0)
1 ≤ e

(1)
1 . Therefore, the diagonal matrix element

X
(0)†
1 (H1−H2)X

(0)
1 is larger than the left derivative of the largest eigenvalue and smaller

than its right derivative, and the application of the inequality (3) leads to

λ1(α) ≥ λ
(0)
1 + (α − α(0))X

(0)†
1 (H1 − H2)X

(0)
1 ,

for α(0) ∈ ]0, 1[ and α ∈ [0, 1]. This inequality also holds if the largest eigenvalue is

non-degenerate since, in this case, the right and the left derivatives are identical, and

for α(0) = 0 (α(0) = 1) where there is only a right (left) derivative.

To summarize, we have found the following range for the largest eigenvalue of H(α):

λ1(α) ≤ αλ1(H1) + (1 − α)λ1(H2), (19)

λ1(α) ≥ λ
(0)
1 + (α − α(0))X

(0)†
1 (H1 − H2)X

(0)
1 , (20)

for α(0), α ∈ [0, 1].

Similarly, for the smallest eigenvalue, due to concavity, the following lower and

upper bounds hold:

λn(α) ≥ αλn(H1) + (1 − α)λn(H2), (21)

λn(α) ≤ λ(0)
n + (α − α(0))X(0)†

n (H1 − H2)X
(0)
n . (22)
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These results can be extended to sums of p Hermitian matrices by use of directional

derivatives introduced above. The following lower (upper) bound can then be derived

for the largest (smallest) eigenvalue:

λ1(~α) ≥ λ
(0)
1 +

p−1
∑

j=1

(αj − α
(0)
j )X

(0)†
1 (Hj − Hp)X

(0)
1 , (23)

λn(~α) ≤ λ(0)
n +

p−1
∑

j=1

(αj − α
(0)
j )X(0)†

n (Hj − Hp)X
(0)
n , (24)

where λ
(0)
k ≡ λk(~α

(0)) and X
(0)
k ≡ Xk(~α

(0)), with ~α representing any p numbers αj ∈ [0, 1]

with
∑

j αj = 1.

An important remark is that the eigenvalues of H(~α) are not, in general,

differentiable when a level crossing occurs. Indeed, if e
(1)
1 6= e

(d1)
1 the eigenvalue λ1(~α),

degenerate for ~α = ~α(0), has different left and right (in general, directional) derivatives,

λ1(~α) is not differentiable at ~α(0) and theorem 1 (or its generalized version, theorem 3)

therefore cannot be applied. However, in this case the quantities X
(0)†
1 (Hj − Hp)X

(0)
1

(j = 1, . . . , p − 1) interpolate between the directional derivatives such that theorem 2

or theorem 4 can be used to obtain an estimate of the largest eigenvalue.

The inequalities derived in this subsection imply that the range of the largest

and smallest eigenvalue of a sum of Hermitian matrices is strongly constrained by the

corresponding eigenvalues and eigenvectors of the separate matrices in the sum.

3.2. Inequalities for the sum of the largest eigenvalues

The results of the previous section can be generalized to a sum of the largest eigenvalues

of Hermitian matrices, which is a convex function. The canonical basis of R
p−1 will be

denoted by ~ej (j = 1, . . . , p − 1).

Theorem 8. Let Hj be p Hermitian n × n matrices and let H(~β) =
∑p

j=1 βjHj for all
~β ∈ R

p with
∑p

j=1 βj = 1 and βj ∈ [0, 1]. If ~α ∈ R
p−1 denotes the p−1 first components

of ~β, then H(~β) ≡ H(~α) = Hp +
∑p−1

j=1 αj(Hj − Hp). It is assumed that, for a given

~α(0) ∈ R
p−1, H(~α(0)) has D distinct eigenvalues with multiplicity dl. Define il and dl for

l = 1, . . . , D by

dl = dim(Ker(H(~α(0)) − λ̄lI)),

λ̄l ≡ λil(~α
(0)) = λil+1(~α

(0)) = · · · = λil+dl−1(~α
(0)) > λ̄l+1.

Introducing ~hj ≡ h~ej ∈ R
p−1 with h ∈ R and j = 1, . . . , p − 1, we have the properties

∀k, 1 ≤ k ≤ n : lim
h→0−

λk(~α
(0) + ~hj) − λk(~α

(0))

h
= je

(dl−k′)
l (~α(0)),

∀k, 1 ≤ k ≤ n : lim
h→0+

λk(~α
(0) + ~hj) − λk(~α

(0))

h
= je

(k′+1)
l (~α(0)),

where 0 ≤ k′ ≤ dl − 1 such that k = il + k′, and where the je
(t)
l (~α(0)) (t = 1, . . . , dl)
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denote the ordered eigenvalues of (Hj − Hp) (je
(1)
l ≥ · · · ≥ je

(dl)
l ) within the subspace

Ker(H(~α(0)) − λ̄lI)).

Then the two vectors of R
p−1 with the following p − 1 components:

∑

1≤k≤i

k=il+k′

∑

1≤l≤D

0≤k′≤dl−1

je
(k′+1)
l (~α(0)), j = 1, . . . , p − 1,

and
∑

1≤k≤i

k=il+k′

∑

1≤l≤D

0≤k′≤dl−1

je
(dl−k′)
l (~α(0)), j = 1, . . . , p − 1,

respectively, are subgradients of Si(~α) ≡
∑i

k=1 λk(~α) at ~α = ~α(0), meaning that

Si(~α) ≥ Si(~α
(0)) +

p−1
∑

j=1

(αj − α
(0)
j )

∑

1≤k≤i

k=il+k′

∑

1≤l≤D

0≤k′≤dl−1

je
(k′+1)
l (~α(0)),

Si(~α) ≥ Si(~α
(0)) +

p−1
∑

j=1

(αj − α
(0)
j )

∑

1≤k≤i

k=il+k′

∑

1≤l≤D

0≤k′≤dl−1

je
(dl−k′)
l (~α(0)),

for all ~α ∈ [0, 1]p−1 with
∑p−1

j=1 αj ≤ 1.

It has to be noted that Ye and Hiriart-Urruty [10] have obtained a similar result

while deriving the general expression of the subdifferential of a symmetric matrix.

3.3. Estimates of eigenvalues

Using the same notations as in the previous theorem, let us assume that the Hamiltonian

H(~α) has been diagonalized for P ≥ p vectors ~α(v) (v = 1, . . . , P ), p − 1 among them

being independent. We introduce the following functions mi(~α) and Mi(~α):

mi(~α) ≡ max
v=1,...,P

(

S
(v)
i +

p−1
∑

j=1

p
(v)
ij (αj − α

(v)
j ), S

(v)
i +

p−1
∑

j=1

q
(v)
ij (αj − α

(v)
j )

)

,

with S
(v)
i ≡ Si(~α

(v)) and where

p
(v)
ij =

∑

1≤k≤i

k=i
(v)
l

+k′

∑

1≤l≤D(v)

0≤k′≤d
(v)
l

−1

je
(k′+1)
l (~α(v)),

q
(v)
ij =

∑

1≤k≤i

k=i
(v)
l

+k′

∑

1≤l≤D(v)

0≤k′≤d
(v)
l

−1

je
(d

(v)
l

−k′)

l (~α(v)),

and

Mi(~α) ≡ min
{vj}∈I

p
∑

j=1

γjS
(vj)
i , (25)
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where I is the set of labels for which ~α can be written as a barycentre of some ~α(vj )

(j = 1, . . . , p), and where the γj are the barycentric coordinates of ~α within this new

frame, as explained below. If the functions S̃i are defined as

S̃i(~α) ≡ 1

2

(

Mi(~α) + mi(~α)
)

, (26)

theorem 4 applies to |Si(~α)− S̃i(~α)|. We have therefore obtained the following estimates

λ̃i of the eigenvalues λi ≡ Si − Si−1:

λ̃i(~α) ≡ 1

2

(

Mi(~α) + mi(~α) − Mi−1(~α) − mi−1(~α)
)

. (27)

A geometrical way of computing Mi(~α) is illustrated in figure 2, for p = 3 and

P = 10. It is assumed that the convex function Si(~α) is known for P choices of ~α:

these points ~α(v) (v = 1, . . . , P ), which are interpreted as barycentric coordinates of

points within an equilateral triangle, are shown as the blue crosses in figure 2. The

associated points (~α(v), S
(v)
i ), which belong to R

p, are represented by the blue squares.

The aim is to compute the value of Mi(~α) for a given ~α represented by the red cross,

and this is done in the following way. From the blue crosses several triangles can be

built by choosing p points among the ~α(v). Each triangle is characterized by a set

~α(vj) (j = 1, . . . , p), and some of these triangles contain the red cross. The set of all

triangles containing ~α defines the set I in equation (25). Two examples of such triangles

are represented in figure 2 by the black and green dotted triangles. If {vj} ∈ I, ~α is

inside the associated triangle and can be written as a barycentre of the vertices with the

barycentric coordinates γj appearing in equation (25). Due to convexity one therefore

has that Si(~α) ≤
∑p

j=1 γjS
(vj)
i . The triangles in black and green full lines in figure 2

illustrate the computation of
∑p

j=1 γjS
(vj )
i for the two different choices of the triangle.

The minimum value of
∑p

j=1 γjS
(vj)
i for all {vj} ∈ I (which are represented by the purple

crosses) yields Mi(~α). Finally, the solid red curve shows the Mi(~α) obtained in this way

for several values of ~α.

These estimates of the eigenvalues can now be used to approximate the spectral

projector using the expressions given in theorems 6 or 7. It can be noted that, in

practice, the calculation of powers of H(~α) (which might be time consuming) can be

deduced from ~α, from the powers of eigenvalues of Hi and from their spectral projectors,

which need to be computed only once.

4. Application to the vibron model

In this section we apply the estimates derived in the previous sections to the vibron

model of molecules. The vibron model was proposed by Iachello and Levine to study

molecular rotation-vibration spectra, in particular of diatomic molecules. Many of the

essential features of such molecules can be characterized in terms of the distance vector

~r between the atoms which behaves as a rank-1 tensor under rotations and which has

negative parity. It is therefore natural to introduce operators with similar transformation

properties, which leads to a U(4) realization in terms of a vector (rank-1) operator with
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Figure 2. Graphical illustration of the computation of Mi(~α) in equation (25).

Symbols in the figure are explained in the text.

components p†m and a scalar (rank-0) operator s†. Since these operators have integer

angular momentum, they create bosonic states. While the p boson is used to describe the

dipole degree of freedom, the physical role of the s boson is less clear; its introduction is

justified mainly on phenomenological grounds as a way to generate interactions between

bosonic states with different numbers of p bosons. A detailed description of the vibron

model can be found in [11].

The p and s bosons are the basic building blocks of the U(4) molecular vibron

model, which is taken here as a testing ground of our previously derived eigenvalue

estimates.

4.1. The vibron model with two-body interactions

A simple one- plus two-body Hamiltonian of the vibron model takes the following form:

H̃vibron = α CU(3) + β CSO(4) + γ CSO(3),

where CG is a quadratic Casimir operator of the algebra G ⊂ U(4) with eigenvalues

and eigenvectors that can be derived analytically [12]. With S = |α| + |β| + |γ| and

α1 = |β|/S, α2 = |γ|/S and α3 = |α|/S, the scaled vibron Hamiltonian becomes

Ĥε1,ε2,ε3

vibron (α1, α2) = ε3CU(3) + α1

(

ε1CSO(4) − ε3CU(3)

)

+ α2

(

ε2CSO(3) − ε3CU(3)

)

, (28)
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Figure 3. The red surfaces represent the estimates of (a) the lowest, (b) the second,

(c) the third, (d) the fourth, (e) the fifth and (f) the largest eigenvalue obtained with

the vibron Hamiltonian (28) for N = 10 bosons, for angular momentum L = 0 and for

(ε1, ε2, ε3) = (+, +, +). The black curves represent the exact eigenvalues for α2 = 0,

1/3 and 2/3, and α1 ∈ [0, 1 − α2].

with εi = ±, αi ∈ [0, 1] and α1 + α2 ≤ 1. Since the Hamiltonian is the sum of three

operators, 23 classes of spectra are to be studied, corresponding to the eight choices of

(ε1, ε2, ε3).

We calculate the eigenvalues and eigenvectors for the following six sets of ~α(0) ≡
(α

(0)
1 , α

(0)
2 ) for a given boson number N :

• for ~α(0) = (0, 0), H(~α(0)) = CU(3) corresponds to the U(3) limit and describes a

non-rigid molecule,

• for ~α(0) = (1, 0), H(~α(0)) = CSO(4) corresponds to the SO(4) limit and describes a

rigid molecule,

• for ~α(0) = (0, 1), H(~α(0)) = CSO(3),

• and for ~α(0) = (1/4, 0), (1/2, 0) and (3/4, 0), the spectra are obtained by numerical

diagonalization.

From the spectra obtained for these six values of ~α(0) and for any angular momentum

L, we can determine the surfaces defined by the estimates of the eigenvalues for

any ~α. These surfaces are plotted in figure 3 for angular momentum L = 0 and

(ε1, ε2, ε3) = (+, +, +). On the three-dimensional plots in figure 3, each point is defined

by (α1, α2, λ), where the (α1, α2) are interpreted as the barycentric coordinates of a

point inside an equilateral triangle and λ is the eigenvalue. For comparison, each panel

also shows the numerically computed exact eigenvalues for α2 = 0, 1/3 and 2/3, and for

all α1 ∈ [0, 1 − α2].

The quality of the approximation of the exact eigenvalues is further illustrated in
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α1

N=10
L=0
(+ + +)

α2=1/3E

α1

N=10
L=1
(+ + +)

α2=1/3E

α1

N=10
L=2
(+ + +)

α2=1/3E

α1

N=10
L=6
(+ + +)

α2=1/3E

Figure 4. Energy spectra of the vibron Hamiltonian (28) for N = 10 bosons, for

angular momenta L = 0, 1, 2 and 6, and for (ε1, ε2, ε3) = (+, +, +). The black curves

represent the exact eigenvalues for α2 = 1/3 and α1 ∈ [0, 2/3] while the dashed red

lines are the estimates of the eigenvalues for each L.

figure 4, which shows vibron spectra for N = 10 bosons and for various angular momenta

L, with α2 = 1/3 and for all α1 ∈ [0, 2/3].

4.2. Ground-state angular momentum

We now apply the eigenvalue estimates to the problem of the dominance of certain

angular-momentum states in the vibron model. In many quantum-mechanical models

it was observed that, even if random interactions among the constituent particles are

adopted, the ground state has a preference for certain angular momenta. This was first

pointed out by Johnson et al. [13, 14] in the context of the nuclear shell model (see
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Figure 5. Angular momentum L for N = 7, 8, 9 and 10 bosons with the

vibron Hamiltonian (28), as derived from the comparison of the estimates of the

lowest eigenvalues. If the angular momentum of the estimate of the eight classes

of Hamiltonians Ĥε1,ε2,ε3

vibron
(α1, α2) (with εi = ±) is L = 0, 1 or N , the pixel at the point

(α1, α2) in the triangle is red, blue or green, respectively. The grey pixels represent

points for which 2 ≤ L ≤ N − 1.
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Figure 6. Ground-state angular momentum L for N = 7, 8, 9 and 10 bosons with

the vibron Hamiltonian (28), as derived from the inequalities (22) and (21) of the

lowest eigenvalues. If the angular momentum of the ground state of the eight classes

of Hamiltonians Ĥε1,ε2,ε3

vibron
(α1, α2) (with εi = ±) is L = 0, 1 or N , the pixel at the point

(α1, α2) in the triangle is red, blue or green, respectively. In white areas no definite

ground-state angular momentum could be deduced from the inequalities. The yellow

dots on the first triangle indicate the points used to derive the inequalities.
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also [15]) and subsequently shown to apply to other models of nuclei as well [16, 17].

It was also observed to be valid in the vibron model, where the angular-momentum

preponderance was successfully explained with coherent-state theory [18]. The problem

has received extensive attention since then (see, e.g. [19]) but arguably no comprehensive

explanation of the observed preponderance has come forward. We show here that the

eigenvalue estimates derived in the previous section can be used to derive the angular-

momentum preponderance in the vibron model from a limited number of spectra.

Figure 5 displays the angular momenta L associated with the lowest λ̃L of the eight

classes of Hamiltonians Ĥε1,ε2,ε3

vibron (α1, α2) with εi = ±, for N = 7, 8, 9 and 10 bosons with

L = 0, 1 or N corresponding to red, blue or green, respectively. The grey dots denote

angular momenta ranging from 2 to N − 1: the higher L, the darker is the dot. The

ground-state angular momentum can be determined exactly from the inequalities (22)

and (21). Since, in some cases, no angular momentum could be assigned due to the

range of these inequalities using six points, we have performed calculations with twenty-

six points which are represented by the yellows dots on the left triangle of figure 6. On

this figure, we have used the same colours as in figure 5 to display the ground-state

angular momenta L of the eight classes of Hamiltonians Ĥε1,ε2,ε3

vibron (α1, α2) with εi = ±,

for N = 7, 8, 9, and 10 bosons. If no ground-state angular momentum could be derived

from the inequalities, the point is left white.

From the property of convexity and from the calculation of only twenty-six different

spectra, we can deduce the following ground-state properties:

• A large fraction of the parameter space yields a ground-state with L = 0 (red),

notably for (ε1, ε2, ε3) = (+, +, +), (−, +, +) and (+,−, +).

• The ground-state angular momentum is always stretched, L = N (green), for

(ε1, ε2, ε3) = (−,−,−), and the component of the same configuration is large for

(ε1, ε2, ε3) = (+,−,−) and (−,−, +).

• For (ε1, ε2, ε3) = (+, +,−) the ground-state angular momentum oscillates between

L = 1 and L = 0 depending on whether the number of bosons N is odd or even.

This odd-even staggering effect is also partly present in the (ε1, ε2, ε3) = (+,−,−)

and (−, +,−) spectra.

4.3. The vibron model with a three-body interaction

To illustrate the versatility of our eigenvalue estimates, we generalize the Hamiltonian

of the vibron model and replace the rather trivial angular-momentum term CSO(3) by a

three-body interaction, leading to the Hamiltonian

3bH̃vibron = α CU(3) + β CSO(4) + γ C3b,

where C3b is defined by

C3b = [p† × p† × p†](3) · [p̃ × p̃ × p̃](3)

+ [[p† × p†](0) × s†](0) · [s̃ × s̃ × s̃](0) + h.c.
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This operator conserves angular momentum but not the number of p bosons. Similar

to the discussion of the two-body vibron Hamiltonian, we define S = |α|+ |β|+ |γ| and

α1 = |β|/S, α2 = |γ|/S and α3 = |α|/S. The scaled three-body vibron Hamiltonian

then reads

3bĤε1,ε2,ε3

vibron (α1, α2) = ε3CU(3) + α1

(

ε1CSO(4) − ε3CU(3)

)

+ α2

(

ε2C3b − ε3CU(3)

)

, (29)

with εi = ±, αi ∈ [0, 1] and α1 + α2 ≤ 1. We can now study ground-state properties

of this Hamiltonian by using the concavity property of the smallest eigenvalue. The

spectra are computed for the following 10 values of ~α(0):

• for ~α(0) = (0, 0), H(~α(0)) = CU(3),

• for ~α(0) = (1, 0), H(~α(0)) = CSO(4),

• for ~α(0) = (0, 1), H(~α(0)) = C3b,

• and for 7 other values of ~α(0) which have been obtained iteratively to minimize

the distance beween the lower and upper surfaces for L = 0 defined by the

inequalities (19) and (21). In these 7 points the spectra are obtained by numerical

diagonalization.

These 10 spectra are used to obtain estimates for the eigenvalues within the entire

parameter space for a given angular momentum and a given boson number.

The quality of the approximation of the eigenvalues is illustrated in figures 7

and 8, which show spectra of the three-body vibron Hamiltonian (29) for N = 10

bosons, for various angular momenta L, with α2 = 1/3, for all α1 ∈ [0, 2/3], and for

(ε1, ε2, ε3) = (+, +, +) and (+,−, +), respectively. The red curves denote the exact

eigenvalues while the black ones represent the estimates deduced from the 10 spectra.

We illustrate the accuracy of our method further by comparing exact eigenvectors

of the three-body vibron Hamiltonian (29) with those obtained with a spectral projector

with approximate expressions for the eigenvalues. In figure 9 are shown, for the two

cases (ε1, ε2, ε3) = (+, +, +) and (+,−, +), the absolute values of the components of

the eigenvector |01〉, associated with the lowest eigenvalue of the Hamiltonian (29) for

N = 10 bosons, for angular momentum L = 0 and for α2 = 1/3 and α1 ∈ [0, 2/3]. It

is seen that the exact results in black are close to the approximate ones (red), deduced

from the spectral projectors with the interpolated eigenvalues. An even more detailed

test is carried out in figure 10 where the absolute value of the third component of the

approximate eigenvector |01〉 is shown (red surface) for all α1 ∈ [0, 1] and α2 ∈ [0, 1]. For

comparison, the exact component for α2 = 0, 1/3 and 2/3, and for all α1 ∈ [0, 1−α2] is

shown in black.

We can now revisit the problem of the ground-state angular momentum with the

three-body vibron Hamiltonian (29). Figure 11 displays the angular momenta L of

the lowest λ̃L of the eight classes of Hamiltonians 3bĤε1,ε2,ε3

vibron (α1, α2) with εi = ±, for

N = 7, 8, 9 and 10 bosons with L = 0, 1 or N corresponding to red, blue or green,

respectively. The inequalities (21) and (22) with the ten-point estimates lead to rather
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α1

N=10
L=0
(+++)

α2=1/3E

α1

N=10
L=1
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α2=1/3E

α1

N=10
L=2
(+++)

α2=1/3E

α1

N=10
L=6
(+++)

α2=1/3E

Figure 7. Energy spectra of the three-body vibron Hamiltonian (29) for N = 10

bosons, for angular momenta L = 0, 1, 2 and 6, and for (ε1, ε2, ε3) = (+, +, +). The

black curves represent the exact eigenvalues for α2 = 1/3 and α1 ∈ [0, 2/3] while the

red dashed lines are the interpolation deduced from the calculation of 10 spectra.

large inconclusive regions. Therefore, we have also performed calculations using twenty-

six points. The results are shown in figure 12.

We observe the following effects of the three-body interaction on the ground-state

properties:

• For (ε1, ε2, ε3) = (+,−, +): Due to the three-body interaction, states with L ≥ 1

compete with those with L ≥ 0 to become the ground state, a phenomenon which

is not observed for two-body interactions.

• For (ε1, ε2, ε3) = (+,−,−): While for the two-body vibron Hamiltonian the ground-

state angular momentum is L = 0 for a wide parameter region, this is no longer true
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α1

N=10
L=0
(+-+)

α2=1/3

E

α1

N=10
L=1
(+-+)

α2=1/3

E

α1

N=10
L=2
(+-+)

α2=1/3

E

α1

N=10
L=6
(+-+)

α2=1/3

E

Figure 8. Same caption as figure 7 for (ε1, ε2, ε3) = (+,−, +).

for the three-body vibron Hamiltonian and this configuration is now competiting

with other angular momenta.

• For (ε1, ε2, ε3) = (−, +,−): The ground-state region with angular momentum

L = N (L = 0 or L = 1) reduces (increases) in size.

Level crossings, which are often a signature of a quantum phase transition [20], can

also be predicted with the present technique. Indeed, if such crossing occurs for the levels

i and i + 1, then the ratio‡ (λ1 − λn)/(λi − λi+1) (1 ≤ i ≤ n − 1) should exhibit a peak

and, therefore, the localization of peaks in the approximate ratio (λ̃1 − λ̃n)/(λ̃i − λ̃i+1)

will be a signature of a phase transition. This is exemplified in figures 13 and 14, which

show results for the three-body vibron Hamiltonian (29). On the left panel of figure 13

‡ The numerator in this expression is introduced to remove effects coming from spectrum dilatation

or compression.



Convexity and the quantum many-body problem 23

α1

Components of |01›
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L=0
(+++)
α2=1/3
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(3)
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(3)

(4)
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(6)

Figure 9. Absolute values of the components of the eigenvector |01〉, associated with

the lowest eigenvalue of the vibron Hamiltonian (29) for N = 10 bosons, for angular

momentum L = 0, and for α2 = 1/3 and α1 ∈ [0, 2/3]. The exact (approximate) results

are shown in black (red). The left and right panels correspond to (ε1, ε2, ε3) = (+, +, +)

and (+,−, +), respectively.

Figure 10. Absolute value of the third component of the eigenvector |01〉, associated

with the lowest eigenvalue of the vibron Hamiltonian (29) for N = 10 bosons and

for angular momentum L = 0. The red surface shows the approximate value for all

α1 ∈ [0, 1] and α2 ∈ [0, 1] while the exact component for α2 = 0, 1/3 and 2/3, and for

all α1 ∈ [0, 1 − α2] is shown in black.



Convexity and the quantum many-body problem 24

α 2

α1

L=0

N=7
(+ + +)

α 2

α1

L=0

N=8
(+ + +)

α 2

α1

L=0

N=9
(+ + +)

α 2

α1

L=0

N=10
(+ + +)

α 2

α1

L=0
L=1

N=7
(+ + -)

α 2

α1

L=0
L=1

N=8
(+ + -)

α 2

α1

L=0
L=1

N=9
(+ + -)

α 2

α1

L=0
L=1

N=10
(+ + -)

α 2

α1

L=0
 L=1

N=7
(+ - +)

α 2

α1

L=0
 L=1

N=8
(+ - +)

α 2

α1

L=0
 L=1

N=9
(+ - +)

α 2

α1

L=0
 L=1

N=10
(+ - +)

α 2

α1

L=0
L=1
 L=7

N=7
(- + +)

α 2

α1

L=0
 L=8

N=8
(- + +)

α 2

α1

L=0
L=1
 L=9

N=9
(- + +)

α 2

α1

L=0
 L=10

N=10
(- + +)

α 2

α1

L=0

L=7
L=1

N=7
(+ - -)

α 2

α1

L=0
L=8

N=8
(+ - -)

α 2

α1

L=0
L=1
L=9

N=9
(+ - -)

α 2

α1

L=0
L=10

N=10
(+ - -)

α 2

α1

L=1
L=7

N=7
(- + -)

α 2

α1

L=0
L=8

N=8
(- + -)

α 2

α1

L=1
L=9

N=9
(- + -)

α 2

α1

L=0
 L=10

N=10
(- + -)

α 2

α1

L=0
L=7

N=7
(- - +)

α 2

α1

L=0
L=8

N=8
(- - +)

α 2

α1

L=0
L=9

N=9
(- - +)

α 2

α1

L=0
L=10

N=10
(- - +)

α 2

α1

L=7

N=7
(- - -)

α 2

α1

L=8

N=8
(- - -)

α 2

α1

L=9

N=9
(- - -)

α 2

α1

L=10

N=10
(- - -)

Figure 11. Angular momentum L for N = 7, 8, 9 and 10 bosons with the three-

body vibron Hamiltonian (29), as derived from the comparison of the estimates of the

lowest eigenvalues. If the angular momentum of the estimate of the eight classes of

Hamiltonians Ĥε1,ε2,ε3

vibron
(α1, α2) (with εi = ±) is L = 0, 1 or N , the pixel at the point

(α1, α2) in the triangle is red, blue or green, respectively. The grey pixels represent

points for which 2 ≤ L ≤ N−1. Ten points have been used to compute these estimates.
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Figure 12. Ground-state angular momentum L for N = 7, 8, 9 and 10 bosons with the

three-body vibron Hamiltonian (29), as derived from the lower (21) and upper (22)

bounds of the lowest eigenvalues. If the angular momentum of the ground state of

the eight classes of Hamiltonians Ĥε1,ε2,ε3

vibron
(α1, α2) (with εi = ±) is L = 0, 1, N , or

2 ≤ L ≤ N − 1 the pixel at the point (α1, α2) in the triangle is red, blue, green, or

grey respectively. In white areas no definite ground-state angular momentum could

be deduced from the inequalities. The yellow dots on the first triangle indicate the

twenty-six points used to derive the inequalities.
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α 2
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Figure 13. Properties of the exact and approximate eigenvalues λi and λ̃i of the

three-body vibron Hamiltonian (29) for N = 10 bosons and for angular momentum

L = 0. Left panel: The ratio (λ̃1−λ̃6)/(λ̃5−λ̃6) for all α1 ∈ [0, 1] and α2 ∈ [0, 1]. Right

panel: The approximate eigenvalues λ̃i (red) and the two lowest exact eigenvalues λ5

and λ6 (black) for α2 = 3/4 and α1 ∈ [0, 1/4].

the ratio (λ̃1 − λ̃6)/(λ̃5 − λ̃6) is plotted as a function of (α1, α2), for N = 10 bosons and

for angular momentum L = 0. The yellow triangles indicate the values of (α
(v)
1 , α

(v)
2 )

(v = 1, . . . , 11§) for which the spectra are calculated. From these points one obtains

approximate eigenvalues for all (α1, α2), from which the ratio (λ̃1 − λ̃6)/(λ̃5 − λ̃6) is

computed. The latter quantity exhibits two maxima, one of which is indicated by the

yellow dot. One suspects that level crossings may occur at these maxima. On the right

panel of figure 13 are shown the approximate eigenvalues λ̃i and the two lowest exact

eigenvalues λ5 and λ6 for α2 = 3/4 and α1 ∈ [0, 1/4]. For a certain critical value α1 = αc

the exact eigenvalues λ5 and λ6 are closest and this behaviour is correctly reproduced

by the approximate eigenvalues λ̃5 and λ̃6. The absolute values of the components |cj|
(j = 1, . . . , 6) of the approximate eigenvectors |0+

1 〉 and |0+
2 〉 associated with the two

lowest levels are plotted in figure 14. An abrupt shift is clearly observed at α1 = αc for

all components, indicating that a quantum phase transition is predicted to occur at the

point (α1 = αc, 3/4).

§ Eleven points are used. The calculation starts with ten points which yield two maxima in the ratio

(λ̃1 − λ̃6)/(λ̃5 − λ̃6). Therefore, a point is added between the two maxima to improve the accuracy in

the computation of the spectral projectors.
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Figure 14. Absolute values of the components |cj | (j = 1, . . . , 6) of the approximate

eigenvectors |0+
1 〉 (solid) and |0+

2 〉 (dashed) associated with to two lowest eigenvalues

of the three-body vibron Hamiltonian (29) for N = 10 bosons, for angular momentum

L = 0, and for α2 = 3/4 and α1 ∈ [0, 1/4].
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5. Conclusion

In this article we have recalled several properties that can be deduced from the fact

that the sums of the largest eigenvalues of Hermitian matrices are convex and we have

shown how to derive inequalities from these convexity properties. We have proposed

a new estimate of convex functions and have deduced from it an approximation of the

eigenvalues of sums of Hermitian matrices and of their spectral projectors.

It has to be emphasized that these results must not be interpreted as just a new

numerical approach to solve an eigenvalue problem, even though they can be used in

that way. Rather, they are as intrinsic as the fact that eigenvalues of Hermitian matrices

are real numbers and one may take advantage of them to deduce information on the

spectral properties of sums of Hermitian matrices. It has also to be noted that the

results presented here are different from any perturbation theory which are powerful

tools [21] since convexity is a global feature and that, in some sense, they go beyond

perturbation theory and are not limited to small variations.

As an illustration, these general results have been applied in the study of spectral

properties of a particular quantum-mechanical model, namely the vibron model of

molecules. We have derived some ground-state features of this model and, specifically,

we have shown that our eigenvalue estimates provide a new way to tackle the problem

of the preponderance of ground states with a certain angular momentum when random

interactions between the bosons are taken. We have also studied the effect of a

three-body interaction on this preponderance and shown that ground-state features

are strongly affected by the rank of the interaction.

The properties of convexity considered in this paper are valid under very general

conditions. The derived eigenvalue estimates can be applied to model Hamiltonians

describing a wide class of time-independent quantum systems, and, consequently, many

properties of such systems can be inferred from the knowledge of a limited number of

spectra. We believe, therefore, that our results pave the way for applications to a variety

of problems in different fields of quantum physics. Those applications might include

effects of three-body or other (such as tensor) interactions on nuclear spectroscopy,

ratios of excitation energies of specific levels in nuclei such as Ex(4
+
1 )/Ex(2

+
1 ), the

existence of energy gaps in quantum systems, the values of matrix elements of transition

operators or the study of quantum-phase transitional behaviour in nuclei and other

mesoscopic systems. Moreover, generalizations to lower semi-bounded or compact self-

adjoint operators on an infinite-dimensional Hilbert space can be carried out and should

be submitted soon.
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