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A discrete duality finite volume discretization of the
vorticity-velocity-pressure formulation of the 2D Stokes problem on
almost arbitrary two-dimensional grids

Sarah Delcourte! and Pascal Omnes?3

Abstract

We present an application of the discrete duality finite volume method to the numerical
approximation of the vorticity-velocity-pressure formulation of the 2D Stokes equations,
associated to various non-standard boundary conditions. The finite volume method is
based on the use of discrete differential operators obeying some discrete duality principles.
The scheme may be seen as an extension of the classical MAC scheme to almost arbitrary
meshes, thanks to an appropriate choice of degrees of freedom. The efficiency of the scheme
is illustrated by numerical examples over unstructured triangular and locally refined non-
conforming meshes, which confirm the theoretical convergence analysis led in the article.

Keywords: Stokes equations; boundary conditions; finite volumes; arbitrary meshes; a priori
estimates;

1 Introduction

Let Q be a bounded, open, connected but not necessarily simply connected polygon of R?, whose
boundary is denoted by I'; we consider the numerical approximation by means of finite volumes
of the solution (u,p) of the Stokes equations:

—Au+Vp = f inQ (1.1)
V-u = g inQ (1.2)

supplemented with one of the following non-standard sets of conditions

u-n=c0 over' | Vxu=uwy overI' and /Qp(x)dx =0, (1.3)
u-n=0 over[' |, p=pg over ' and /QV x u(x)dx =my, , (1.4)
u-T=0 overl' |, Vxu=wy over ' and /Qp(x)dx:(), (1.5)
u-r=0 overI' , p=pg over I' and /QV x u(x)dx =m,, , (1.6)

where f, g, 0, pg and wy are given functions and m,, is a given real number. These conditions
are written here in the case of simply connected domains for the sake of simplicity but they will
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be extended in the core of the article to non-simply connected domains. There are compatibility
conditions between the data (g,0) in (1.3) and (1.4), the data (wq,o) in (1.5) and the data
(my,0) in (1.6). They will be discussed in subsection 5.1.

As recognized for example by Dubois et. al. [25], these non-standard conditions can be
treated in a very general and natural way thanks to the vorticity-velocity-pressure formulation
of the Stokes problem (for earlier works based on different approaches, we refer to [6] and [29]).
Since

—Au=V xVxu—-VV.u, (1.7)

and using (1.2), we may rewrite Eq. (1.1) in the following way
VxVxu+Vp=f+Vg in Q. (1.8)

Further, introducing the vorticity w, Eq. (1.8) may be split as
Vxw+Vp = f4+Vg in Q, (1.9)
Vxu = w in Q. (1.10)

The mathematical analysis of system (1.9)-(1.10)-(1.2) with various boundary conditions has
been provided in several references, among which [1, 2, 5, 23, 25]. Finite element methods for
the vorticity-velocity-pressure formulation have been derived and analyzed in [1, 2, 24]. Spectral
methods have been considered in [5, 7] and [42], where a least-square formulation in used.

In the present work, we shall be interested in a finite volume generalization of the Marker and
Cell (MAC) scheme on very general meshes (for other approaches with finite volumes, we refer to
[9, 26, 27, 28]). The MAC scheme was developed initially in [31] on staggered rectangular grids
and extended to the so-called covolume scheme using Delaunay-Voronoi mesh pairs, as reviewed
in [40]. We note that the orthogonality property of these mesh pairs might be in certain cases a
drawback, in particular in the context of adaptive mesh refinement. The standard MAC scheme
discretizes (1.1)-(1.2), while the covolume scheme discretizes (1.9)-(1.10)-(1.2). It was proved
in [40] that the MAC discretization may be obtained by the covolume scheme using well chosen
triangular meshes. Given a (primal) mesh, the MAC and covolume schemes use as velocity
unknowns the normal components of the velocity field with respect to the edges of the control
volumes, while the pressure unknowns are located at their circumcenters. Then the normal
component of Egs. (1.1) or (1.9) is integrated on staggered control volumes centered on the
edges. As far as the MAC scheme is concerned, a simple finite difference is used to evaluate the
normal derivative of the velocity unknown, while in the covolume scheme, vorticity unknowns
have to be evaluated at the vertices of the primal mesh. This is performed by integrating Eq.
(1.10) on dual control volumes centered on the vertices and obtained by joining the circumcenters
of the primal cells that share a common vertex. Due to the orthogonality property of the primal
and dual meshes, the tangential components of the velocity with respect to the dual mesh,
which are needed to discretize Eq. (1.10), are exactly the normal components on the edges of
the primal control volumes. Finally, (1.2) is integrated on each primal control volume, and its
discretization uses the normal components of the velocity on the edges of the primal mesh.

The generalization of the MAC scheme we propose is a new application of the “discrete
duality finite volume” (DDFV) method [20]. Originally developed for linear diffusion equations
[22, 33, 34], the DDFV method has been extended to nonlinear diffusion [4, 10, 15], convection-
diffusion [16], electro-cardiology [3, 17], drift-diffusion and energy-transport models [13], electro-



and magnetostatics [21], electromagnetism [35], and Stokes flows [19, 36, 37, 38]. The advantage
of this covolume-like method is that it allows the use of almost arbitrary meshes, including very
distorted, degenerating, or highly non-conforming meshes (see the numerical tests in [22]). The
name of the method comes from the definition of discrete gradient and divergence operators
which verify a discrete Green formula, as will be recalled in the core of the article. Note that
the works [36, 37, 38] are dedicated to the DDFV discretization of Stokes flows with standard
Dirichlet boundary conditions and with velocity unknowns located at the centers and the nodes
of the mesh, while pressure is discretized at the faces, which is different from the approach we
follow in the present work.

In order to get rid of the orthogonality constraints on the mesh, the price to pay is to
discretize both velocity components on the edges of the control volumes, while pressure and
vorticity unknowns are associated with the centroids of the primal cells and to their vertices,
i.e. to the dual cells. Then, we integrate both components of (1.9) on the cells associated with
the edges (the so-called “diamond mesh”) and (1.10) and (1.2) on both the primal and dual
cells. This process enables us to derive discrete versions of the differential operators divergence,
gradient and curl which appear in (1.9), (1.10) and (1.2). These discrete operators are known
to satisfy properties which are analogous to properties verified by the continuous operators
[21]. With the help of these properties, we show that the solution of the DDFV discretization
applied to the Stokes equations with any of the sets of conditions (1.3) to (1.6) can be reduced
to the solution of four discrete Laplace equations involving the pressure, the vorticity and the
potentials stemming from the discrete Hodge decomposition of the velocity.

When g = 0 in Eq. (1.2), another advantage of this scheme is that it satisfies the notion
of “reinforced incompressibility” introduced in a finite volume element context in [32] and in a
finite element context in [8] to overcome spurious (non-perfectly divergence free) velocity modes
that may appear in unsteady Navier-Stokes simulations performed with Crouzeix-Raviart [18]
finite elements of lowest order. Indeed, since these elements involve pressure unknowns located
at the triangle barycenters only, the incompressibility constraint is satisfied only around these
barycenters and the resulting velocity field may be non-divergence free in the sense that the
discrete divergence, when computed around the vertices of the mesh, may not vanish or even be
small. A possible cure to this problem, proposed in [8] and [32], is to add pressure unknowns
at the vertices of the mesh, which introduces incompressibility constraints around these nodes.
Thus, if one restricts the discussion to primal triangular meshes, the scheme presented here
has exactly the same unknowns as (but is however not equivalent to) those involved in [8] and
[32], and incompressibility conditions are written on each triangle (primal cell) and around each
vertex (dual cell) of the mesh. The advantage of the scheme we present here is that it handles
meshes that are much more general than triangular.

The convergence analysis shows that pressure, vorticity, their gradients and the velocity
field are first order accurate on general meshes. Moreover, for families of meshes for which the
diamond cells are (almost all) parallelograms, we prove that the pressure and vorticity gradients
satisfy the superconvergence order 1.5.

These theoretical results are validated by the numerical tests included in this paper. The
results of these tests even go beyond the theoretical findings; indeed, we observe that pressure
and vorticity converge on general meshes with the order 2 (although we are able to prove order
1 only), while velocity converges with the order 2 for families of meshes for which the diamond
cells are (almost all) parallelograms.



The paper is organized as follows: in Section 2, we introduce the notations associated with the
primal, dual and diamond meshes. Then, in Section 3 we define discrete differential operators:
the discrete gradient (respectively vector curl) operator is defined on the diamond cells and the
corresponding adjoint discrete divergence (resp. scalar curl) operator is defined over the primal
and dual cells. In Section 4, we state discrete properties of the discrete differential operators.
In Section 5, we write down the finite volume schemes for the steady Stokes problems with the
various conditions given by (1.3)—(1.6) extended to non-simply connected domains. Section 6 is
devoted to the convergence analysis of the finite volume scheme with the boundary condition
(1.3) only. Finally, we present some numerical results of convergence over unstructured and
non-conforming meshes.

2 Definitions and notations

Let Q be a bounded connected polygon of R?, whose boundary is denoted by I'. We suppose in
addition that the domain has @ holes. Throughout the paper, we shall assume that @@ > 0, but
the results also hold for the case Q = 0. Let I'y denote the exterior boundary of € and let I'y,

with ¢ € [1,Q)], be the interior polygonal boundaries of €2, so that I' =T’y U r,.
q€[1,Q]

2.1 Construction of the primal mesh

We consider a first partition of  (named primal mesh) composed of elements T;, with i € [1, I],
supposed to be convex polygons. With each element T; of the mesh, we associate a node G;
located at the barycentre of T;. The area of T; is denoted by |T;|. We shall denote by J the
total number of edges of this mesh and by J' the number of these edges which are located on
the boundary I'" and we associate with each of these boundary edges its midpoint, also denoted
by G; with i € [I + 1,1 + J]. By a slight abuse of notations, we shall write i € T'; if and only
ifG; e Fq.

2.2 Construction of the dual mesh

Further, we denote by Sy, with k € [1, K], the nodes of the polygons of the primal mesh. With
each of these points, we associate a polygon denoted by Py, obtained by joining the points G;
associated to the elements of the primal mesh (and possibly to the boundary edges) of which
Sk is a node to the midpoints of the edges of which Sy, is a node. The area of Py is denoted by
|Pi|. The family of cells (Py)rep, k] constitutes a second partition of 2, which we name dual
mesh. Figure 1 displays an example of a non-conforming primal mesh and its associated dual
mesh. Moreover, we suppose that the set [1, K] is ordered so that when Sy is not on T', then
k€ [1,K — J'], and when S is on T, then k € [K — J' + 1, K]. We shall also write k € T if
and only if S, € I'y.

2.3 Construction of the diamond mesh

With each edge of the primal mesh, denoted by A; (whose length is |A,|), with j € [1,J], we
associate a quadrilateral named “diamond cell” and denoted by D;. When A; is not on the



Figure 1: An example of a primal mesh and its associated dual mesh.

boundary, this cell is obtained by joining the points Sy, ;) and Sk, (;), which are the two nodes
of A;, with the points G;, (;) and G, (;) associated with the elements of the primal mesh which
share this edge. When A; is on the boundary I', the cell D; is obtained by joining the two
nodes of A; with the point G;, (;y associated with the only element of the primal mesh of which
Aj is an edge and to the point G, ;) associated with A; (i.e. by convention is(j) is element of
[I + 1,1+ J'] when A; is located on T'). The cells D; constitute a third partition of 2, which
we name “diamond-mesh”. The area of the cell D; is denoted by |D;|. Such cells are displayed
on Fig. 2. Moreover, we suppose that the set [1, J] is ordered so that when A; is not on I', then
j€[1,J—J"], and when A; is on I, then j € [J — J' + 1, J]. We shall also write j € Iy if and
only if A; C I'y.

Figure 2: Examples of diamond cells.



2.4 Definitions of geometrical elements

The following geometrical elements are displayed on Fig. 3. The unit vector normal to A; is
denoted by n; and is oriented so that its dot product with Gy, ) Gi,j) is positive. We further

denote by A’ the segment (G, ()G, (;)] (whose length is |A%|) and by n’; the unit vector normal
to A’ oriented so that Sy, (j)Sk,j) - n} > 0. We denote by M; the midpoint of A; and by A’;

(respectively A’) the segment [G;, (;)M;] (vesp. [M;G,(;)]) and by n’; (resp. njy) the unit
normal vector to A (resp. A’,) oriented so that
(2.1)

| A0 = [Af[nj, + A0, .

When Sy, € T (k € [K — J' +1, K]), we define A, as the part of the boundary I' which consists

Gi
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Figure 3: Notations for the diamond cell.

of the union of the halves of the two segments A; located on I' and of which Sj; is a node, and
by By, the exterior unit normal vector to A, (see figure 4). We define for each i € [1,I] the set
V(i) of integers j € [1,J] such that A; is an edge of T; and for each k € [1, K] the set E(k) of
integers j € [1, J] such that S is a node of A;.
We define for each j € [1,J] and each k such that j € E(k) (resp. each i such that j € V(i)
the real-valued number s, (resp. s;j;) whose value is +1 or —1 whether n; (resp. n;) points
outward or inward Py (resp. T;). We define n; := s’;n} (resp. nj; := s;n;) and remark that
n, (resp. nj;) always points outward Py (resp. T;). In the same way, we set n;, := s’;n’;

and nf, = s%;n,.
For j € [1,J — J'], as indicated on Figure 5, we also denote by Dj;, and Dj o, the triangles
Sk () Gy (5)Ska () a0d S, ()G (5)Sky (). In the same way, we denote by D;-J and D§v72, the

triangles Gy, ;) Sk, (j)Gi (j) and Gi, () Sks () Gia () -



Figure 4: Definition of A; and fi;, for the boundary nodes
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Figure 5: A diamond-cell may be split into two triangles in two distinct ways



2.5 A hypothesis on the mesh regularity

In the sequel of this article, we shall obtain error estimates under the following hypothesis (see
Figure 6 for the notations).

Figure 6: Notations for Hypothesis 2.1.

Hypothesis 2.1. The angles of the subtriangulation G;M;S) of the diamond-cells D; are
greater than an angle 6* which is strictly positive and independent of the mesh:

36, 0<0*<g s.it. min{am, Bm, Ym} > 0%, m=1,234.

We can easily verify that Hypothesis 2.1 implies various weaker hypotheses: [22, Hypotheses
5.5 and 5.6], [21, Hypothesis 5.5] and [39, Definition 2.1] under which results obtained in these
articles, and used in the present work, are valid.

3 The discrete operators

T
We may approach the gradient operator Ve = (%, g—;) by a discrete gradient operator on

the diamond cells D; (see [22]).

Definition 3.1. Given any ¢ = (¢I,¢L) € R+ 5 RE | the discrete gradient VP is defined
by its values over the diamond cells D; (see Fig. 3):

1
(Vi) = 3157 { [0k, — oL 145105 + [#7, — o1,] lAjlnj} : (3.1)
J




Note that formula (3.1) is exact for any affine function ¢ if we set ¢,§ = ¢(Sk) and ¢! =
¢(Gi)7 for any (Za k)
T
In the very same way, we may approach the vector curl operator V x e = (g—; , —%) by
a discrete vector curl operator:

Definition 3.2. Given any ¢ = (¢7, qb,f) e RIF7 x RE, the discrete vector curl operator V,?x
is defined by its values over the diamond cells D :

(V0 % 6); = - l{[% O 1AL, + [6F — 6] 14, m}, (3.2)

where the unit vectors T; and 7',
oriented bases of R2.

are such that (n;,7;) and (n},T’) are orthogonal positively

Next, we define the discrete divergence of a vector field u by its values both on the primal
and dual cells of the mesh. Supposing that the vector field u is given by its discrete values u; on
the cells D;, we state the definition of the discrete divergence V£~ on each T; and the discrete
divergence Vf - on each P.

Definition 3.3. Given any u = (u;) € (R?)7, the discrete divergence V,*- = (VE-, V") is
defined by its values over the primal cells T; and the dual cells Py (see Fig. 7)

(V,iz: ) RUTR
]GV(z
1
(VE ), = |Pk|< Z (JAS [0y, + | Al 0l - uy (3.3)
JEE(k)

1

+ > 5 |Aj|uj'nj> ;
JEE(K)N[J—JT+1,J]

where we recall that V (i) (resp. E(k)) is the set of integers j € [1,J] such that A; is an edge of

T; (resp. Sk is a mode of A;) and that nj; (resp. nly, and nly,) is the unit vector orthogonal
to Aj (resp. A}y and A%, ) pointing outward T; (resp. Py).

Remark that if the node Sy is not on the boundary T' (i.e. if k € [1, K — J']), then the set
E(k)N[J —JY +1,J] is empty. On the contrary, if P is a boundary dual cell, then the set
E(k)N[J—JY +1,J] is composed of the two boundary edges which have Sy as a vertex. In this

1
case, the quantity Z 3 |Aj|u; - n; is an approximation of [ u - ng (&) d¢ (see
JEE(K)N[J—JT+1,J] Ay
figure 4). Note also that we could have replaced <|A g0l +[A] 2\n]k2) by [A}|n, since these

two quantities are equal.
For a given vector field u, it is straightforward to check that formulae (3.3) are the exact
mean-values of V - u over T}, respectively over an inner Py, if

\Aj|uj-nji:/ u~njids,

J



Figure 7: Edges and unit vectors for the discrete divergence and curl

resp. if
(\A;1|n;k1 + |A;2|n;k2) ‘uy = /A/ u-nj, ds—&—/A, u-nj, ds.

Ji J2

In the very same way, we may approach the scalar curl operator V x e = (%’; — aa'yl' ) by a

discrete scalar curl operator:

Definition 3.4. Given any u = (u;) € (R?)”, the discrete scalar curl operator V' x :=
(V,{x,fo) is defined by its values over the primal cells T; and the dual cells Py:

1

(Vi xu);: = 7] PR VI TRE o
iev(
1
(VP xu),: = |Pk< > (|4 T+ A The) -y (3.4)
JEE(k)

1
+ Z 2|Aj|llj'Tj> .

JEE(k)N[J—JT+1,J]

4 Properties of the operators
In this section, we state properties of the discrete operators which are analogues to properties of

the continuous operators in two dimensions. Their proofs are skipped, since they may be found
in [21] and [22].
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Definition 4.1. (The discrete scalar products) Let (¢,v) € (RT x ]RK)2 and (u,v) € ((R2)J)2,
then we define the following scalar products:

(wv)p = > [Djlu;-vy, (4.1)

J€lL,J]
1
(0 9)rp = 5| Do Bl + D [Pelor vl |- (42
1€[1,1] ke[l,K]
The associated norms will be denoted by || - ||p and || - ||7.p-

We also define discrete scalar products on the boundaries I'y, for sets of values defined on
the boundary edges. For any (uj,vj)jer,, we set

(u,v)r,.n = Z |Aj]uj vy, (4.3)
J€T,
and fO’I“ any (Uj7’l)j)jep, we set
(’U,,U)F’h = Z (Ua'U)Fq,h . (44)
9€[0,Q]

In pargicular, we shall often consider these boundary scalar product for the trace g{) of a given
¢ € R x RX | defined by

Definition 4.2. (Trace operator) For any ¢ € RI+T x RE, and for any j € T, we set

7 Lip T P
6= 7 (9. +2650) + o) - (4-5)

The scalar products are built such that the discrete operators, defined in section 3, verify
some discrete duality principles, expressed in the following proposition.

Proposition 4.1. (The discrete Green formulae) The following discrete analogues of the Green
formulae hold:

(Vg’P ‘0, @)rp = —(0,V$)p + (u-n,¢)rn (4.6)
(V" < w,¢)rp = (0, VY x ¢)p + (- T,0)rn . (4.7)
for allu € (R')* and all ¢ = (47, ¢F) € RIT7" x RE,

As far as the continuous operators are concerned, there holds V- (Vx) =0, Vx V =0 and
V x (Vx)=-V-V (in two dimensions). The following two propositions state analogous prop-
erties verified by the discrete operators (note however the hypothesis needed on the boundary
dual cells):

Proposition 4.2. For all ¢ = (¢7, %) € RI+7" x RE | the following equalities hold:

(vf’P (VP x ¢)) =0 vie[LIVke[LK - JT), (4.8)
(VZ’P x (Vfgé)) =0 Vie[LIVke[LK - JT. (4.9)

11



Moreover, on the boundary dual cells Py (k ¢ T'), these formulae still hold if for each boundary
Ty, with ¢ € [0,Q)], there exist two real numbers ch and 05 such that ¢I = cg and qbkp = ch
uniformly over I'y.

Proposition 4.3. For all ¢ = (¢, ") € RI+7" x RE | the following equality holds:
(Vi x VP x @i =—(Vo" - VP)ix, Viel[l,I,Vke [1,K]. (4.10)

Finally, in the continuous case, the Hodge decomposition for non simply connected domains
reads: Let V ={¢p € H'(Q): [,¢ =0} and W = {¢ € H'(Q) : Vi, =0, ¥, =cg €ER, Vg €
[1,Q]}, then

212 s
(L)*=VVaeVxW.

As far as the discrete operators are concerned, an analogous property holds:

Proposition 4.4. Let (u;);ep, ) be a discrete vector field defined by its values on the diamond

cells D;. Then, there exist unique ¢ = (¢ ,¢r) and ¢ = (YI, ¢} both in RI+ x RE and
(eI, cP) in R? x R¥ such that:

q°7q
w; = (Vy9);+ (VY x¢);, Viell,J], (4.11)
with Y |Til¢7 = > |Pelor =0, (4.12)
i€[1,1] ke[1,K]
ol =0,Viely , F=0,Vkely, (4.13)
Vge[1,Q], W =cf,VieT, , ¢ =c vker,. (4.14)

Moreover, the decomposition (4.11) is orthogonal, in the sense that
(V36 Vi x¥)p =0, (4.15)
a property that is true for all ¢ and all ¢ verifying (4.13) and (4.14).

Formulae (4.12) are discrete analogues (respectively stated on the primal mesh and on the
dual mesh) of the condition fQ ¢ = 0 that appears in the definition of the space V', while formulae
(4.13) and (4.14) are discrete analogues of the boundary conditions that appear in the definition
of W.

Remark 4.1. We may also write a similar decomposition by changing the conditions (4.12)-
(4.14) in the following way

ST = Y Pl =0, (4.16)
]

i€[1,1 ke[l,K]
¢pf =0,V¥iely , ¢f =0, VkeTy, (4.17)
Vgee1,Q], ¢ =cf VieT, , ¢f =c Vkel,. (4.18)

12



Finally, we mention discrete analogues of the so-called Poincaré inequalities, which were
proved in [39] (respectively Theorem 3.3 and Theorem 3.9):

Proposition 4.5. Let ¢ = (o1, ¢f) and o = (Y], ) both in R x RE and (ch,el)
in R x RY be such that (4.12), (4.13) and (4.14) hold; then, there exists a constant C(6%),
depending only on 0* and on  such that

16llmp < CONNVE D+ [[¥llr,e < CE)IVE YD (4.19)

5 Application to the Stokes equations

In this section, we are interested in the discretization of Eqs. (1.9), (1.10) and (1.2) supplemented
with one of the following non-standard sets of conditions, which generalize conditions (1.3) to
(1.6) to non-simply connected domains:

u-n=0 overl' , wp, =ws wr, =wis+cg, Vqge[l,Q]

(5.1)
frurfkq,Vq€1Q Jop(x)dx =0,
u-n=o0 over ' | Pir, = Pd; p|Fq:pd+cq7Vq€[17Q]a

(5.2)
frqu~T:kq,Vq€[1,Q}, Jowx)dx =m,, ,
u-T=0 overl' |, wpp, =ws wr, =witcg, Yqe[l,Q],

(5.3)
frqu-n:kq,VqE[l,Q}, Jop(x)dx =
u-t=0 overI' |, pr,=ps pr,=ri+cq, Vqe[lL,Q]

(5.4)

Jroun=ky, Vee1,Q], [ywx)dx=m.,

where o, pg and wq are given functions, m,, is a given real number, (kq)zen,q] is a set of given
real numbers and the constants (c,) € R? have to be determined.

Before going into details of the discretization of these equations, we discuss the compatibility
conditions of the right-hand sides of these sets of equations, as was announced in the introduction
of this article.

5.1 Compatibility conditions

Consider Egs. (1.2), (1.9) and (1.10).
First, when associated with one of the sets of conditions (5.1) or (5.2), the data has to verify

[ atoix = [ ateras (5.5)
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Then, when associated with the set (5.4), integration of (1.10) over Q and application of the
Green formula and of the boundary conditions yield

/F o(€)dE = m. (5.6)

At last, in the case of Egs. (1.2), (1.9) and (1.10) associated with the set (5.3), the situation is
more involved. Indeed, we infer from (1.10) that [, o(£)dé = [, w(x)dx. However, the quantity
Jow(x)dx is not a data given by (5.3), but is a result of the computation of w through the
Hodge decomposition of f + Vg expressed by Eq. (1.9) associated with the conditions over p
and w expressed in the set (5.3). This may be interpreted as an implicit compatibility condition
between the boundary conditions wg and ¢ in (5.3). Further details on how to handle this will
be given in subsection 5.2.

5.2 Discretization of the Stokes equations in vorticity-velocity-pressure
formulation.

In this subsection, we are interested in the approximation of the continuous problem given by
(1.2)-(1.9)-(1.10) associated with one of the sets of conditions (5.1) to (5.4). We choose to
approach the solution of this problem by a vector (u;), with j € [1, J], which discretizes the
velocity field by values defined over the diamond cells of the mesh, and by scalars (w], w,}; ) and
(pF,pf), with i € [1,I + J'], k € [1, K], which discretize the vorticity and the pressure fields
by values defined over the primal and dual cells of the mesh. The problem will be solved in two
steps. In the first, we use the Hodge decomposition of f + Vg (see prop. 4.4) to solve for p and
w. In the second, we solve a div-curl problem for u.
Step 1: The discrete Hodge decomposition of the data f + Vg reads:
P

find p = (pgapf)ieu,uﬁ], ke[l,K]» W = (W;F7w)€))ie[1,l+JF], ke[1,x) and (CqT’Cq )ael1,q] such that
together with one of the following sets of conditions

7

wi =wa(Sk) Yk €Ty , wi =wa(Sk)+ cf; VkeTl,, Vq,

> Imipl = Y |Plpf =0,

i€(1,1] kell,K]

wiT = wd(Gi) Vi € Fo 5 WT = wd(Gi) + C; Vi e Fq ’ Vq ’
(5.8)

in the case of a given (up to constants to be determined on each internal boundary) vorticity
field wg on the boundary (see the corresponding equations in the sets (5.1) and (5.3)), or

pi =pa(Gi)VieTo , pl =pa(Gi) +cg Viel,, Vg,
pr = pa(Sk) Yk €To , pp =pa(Sk)+cl VkeTy, Vg,

Z |Ti|wz‘T: Z |Pk|w11::mwa

1€[1,1] ke[l,K]

(5.9)

in the case of a given (up to constants to be determined on each internal boundary) pressure
field pg on the boundary (see the corresponding equations in the sets (5.2) and (5.4)).
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In (5.7), the following definitions have been used

1
P = 7|D'|/D f(x) dx Vj € [1,J],
i,
R ‘ (5.10)
(VoP = 7/ Vel dx vielLa
il JD;

The two problems involving Egs. (5.7) and (5.8) on the one hand, and Egs. (5.7) and (5.9) on
the other hand are solved in a very similar way, thus we only detail the solution of (5.7)-(5.8).

Proposition 5.1. Problem (5.7)-(5.8) may be split into two independent subproblems: setting
s:= (S-]‘D)je[lﬂj] with sf = fJD + (Vg)]D, find (w;"r,w’f)ie[l}IJ’,JF]’ke[l,K] and (CqTan)qe[l,Q] such
that

~(VI-VPw) = (V] xs), Vie[l,]],
—(VEP - VPu) (VD x8), Vke€[l,K—J,
(Vth'n71)Fq’h _(S'Tal)Fq,h7 Vq S [LQ]»

~rer, 1P (VPP = Tyer, B (VE X8, Vo€ [1,Q)
wl'=wi(Gy), Yiely , wf =wiSk), Vk €Ty,
wl =wa(Gy) +cl, Yiely,Vge[1,Q] , wl =wa(Sk)+cl, Vkel,, Vqe [1,%2] , |
5.11
and, once w has been computed, find (p;-T,pﬁ)ie[L]_i_JF]’ke[lyK] such that
(VE-VPp) = (V] (s— VP xw)y,Vke[l,K],
(VPp); n; = (s; — (VP xw);)-nj, VielJ—J +1,J], (5.12)
Yo Imipl = > |Blpf =0
1€[1,1] ke[l1,K]

Proof. Applying the discrete vector curl operator to (5.7) on any primal cell and on any inner
dual cell yields the first two lines of (5.11), thanks to (4.9) and (4.10).

Next, for a given ¢ € [1,Q], we consider the element 1 € RI*/ " x RX which has the
following values: ¢! =1, Vi € T'y and ¥] = 0 everywhere else, and 1)}’ = 0 everywhere. Then,
we compute the scalar product (4.1) of Eq. (5.7) with V5 x ¢:

(VP xw, VP x)p+(VEp, VE x¢)p = (s, V x¥)p . (5.13)

Using the orthogonality of Vth and Vf x 1 (see last line of Prop. 4.4), using the discrete
Green formula (4.7) and Eq. (4.10), we infer

—(VZ’P VRw,b)rp —(VE xw- 7,9, = (5.14)
(VZ’P X va)T,P - (S : 7'»1/1)1“,}1-

Further, using the fact that i vanishes everywhere but on the boundary points G;, the first
term in the left-hand side and the first term in the right-hand side of (5.14) vanish. Finally,
since V) X w -7 = —VPw-n, and using the definition (4.3) and the fact that the values of 1)
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on the boundaries imply that 1% =1/2forall j €T, and 1/33' =0 for all j € I'}, for any ¢’ # ¢,
Equ. (5.14) implies
1 1

_(VEW - n, §)Fq,h =(s-T, §)Fq,h

and thus the third line of (5.11).

Last, we consider the element ¢y € R/ " x RX which has the following values: ¢! = 1,
Vi € Ty and 97 = 1, Vk € T, and vanishing everywhere else. Then, the dot product of Eq.
(5.7) with V¥ x 1 yields (5.13) and (5.14) again. Now, we use the fact that the first term
in the left-hand side of (5.14) equals —3 > ker, | Pkl (VP - VPw), while the first term in the
right-hand side of (5.14) equals 3 Zkerq |Pr| (VP xs)k. Using the previously proved third line
of (5.11), we obtain the fourth line of (5.11).

Once w has been computed, the derivation of (5.12) from (5.7)-(5.8) is obvious. We stress
that in the second equation of (5.12), there holds (V1 -V}’ x w);, = 0 for all inner dual cells

(k € [1, K — J']) but that this property might not necessarily be true for boundary dual cells
(k € [K — J' + 1, K]), see Prop. 4.2. O

Step 1 ends with the fact that (5.11) and (5.12) are well-posed:

Lemma 5.1. It was shown in [21, Proposition 5.2] that systems of the type (5.11) and (5.12)
both have a unique solution.

Now, we shall describe Step 2 of the calculations, which consists in solving for the velocity.
Step 2: Once (wiT,w,f)ie[lJLke[l,K] has been computed through Step 1, we solve a div-curl
problem for u: given (kq)qe1,q), find (w;);eq,s) such that

Vit wir = g5l Vie[LILVke [l K]
(VIP xw)ip = wlf, ViellI)Vke [, K —J7,
u;-n; = 0Jy, VjE[J—JF—i-l,J], (515)
(w-r,Dr,n = kg, Vg € [1,Q),
SR (VE xwe = > [Pl wi, Veel[l,Q],
kel kel
in the case of a given normal velocity field on the boundary (Egs. (5.1) or (5.2)) or
Vil wi, = gk, Yie[LIVke[l,K - J,
(VIP xu)ye = wlf, Vie[l,1),Vk e [1,K],
u T, = 0y, VielJ—J+1,J], (5.16)
(u'nvl)l—‘q,h = kqv VQ € [LQ]?
Sker, [Pl (Vi wr = Yuer, |Plgr, VYael[lQ

in the case of a given tangential velocity field on the boundary (Egs. (5.3) or (5.4)).
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In (5.15) and (5.16), we have set

of = i/ g(x) dx Vi€ [1,1], (5.17)
T3l Jo,

o = [ gx)dx ke LK), (5.18)
[Pyl Jp,
1

o, — —/ o(€) de Vi e [J—J" +1,]. (5.19)
|A;] Ja,

Moreover, the right-hand sides in (5.15) and (5.16) have to verify compatibility conditions.
Indeed, it is readily seen from the definition of the discrete divergence and curl operators (3.3)
and (3.4) that the following equalities hold

YITIVE wi= Y IRI(VE we= Y Ay (5.20)

i€([1,1] ke[l,K] JE[J—JT+1,J]

and

STTIVE xu)i= > [RI(VE xwe= Y |41, (5.21)

i€[1,1] kell, K] FET—JIT+1,J]
Then, because of (5.20), the right-hand sides in (5.15) must satisfy

Smlgl = Y 1Pdel = D> |Ajle; . (5.22)

1€[1,1] ke[1,K] JEJ—JIT+1,J]

This relation is true thanks to the definitions (5.17), (5.18) and (5.19) since

STl = Y (Pel = /Q g(x) dx

i€[1,1] kel,K]

and

> 1Al = [ ol ds.

FE[T—JT+1,J]

That the right-hand sides of the previous two equalities are identical follows from (5.5).
Further, because of (5.21), the right-hand sides in (5.16) must satisfy

Yool = > 1Pl = > |Ajlo;. (5.23)

i€[1,1] kel,K] JE[J—JT+1,J]

In the case of the set of conditions given by (5.9), the first two terms in (5.23) are equal to m,,
and the last term in (5.23) is equal to [ o(§) d&. These two quantities are identical thanks to
(5.6).

On the other hand, in the case of the set of conditions given by (5.8), the values of the first
two terms in (5.23) are never imposed, but, rather, are results of the computations involved in
the first step of our procedure (see Eq. (5.11)), so that the compatibility condition (5.23) may
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not be verified in general. A possible way to overcome this problem is to change w! into w! +c”
and w} into wf +cP for alli € [1,1+J'] and all k € [1, K] in (5.16), with two constants ¢I and
c” computed so that (5.23) holds. Note that doing so does not change the value of Vf w, SO
that the modified w still verifies system (5.11), but with modified boundary conditions. Another
possible way to deal with this issue is to change uniformly the values of o; to o; + cP, with a
value of c? chosen such that (5.23) holds. In any case, this may be interpreted as an implicit
compatibility condition between the boundary conditions wy and o in (5.3).

Now using the discrete Hodge decomposition of (u;);ep, 7, each of the problems (5.15) and
(5.16) may be split into two independent subproblems involving the potentials. We only detail
the resulting systems for problem (5.15) using the Hodge decomposition with boundary condi-
tions (4.12) to (4.14). A similar result holds for problem (5.16) using the Hodge decomposition
with boundary conditions (4.16) to (4.18).

Proposition 5.2. Problem (5.15) may be split into two independent problems:
find (¢;’F»¢kp)ie[1,I+JF],ke[1,K] such that

(Vi - Vio)
(V] - V7o

gf, Viell,1],
gf:, vk € [1, K],

(Vi) n; = o VjielJ—J"+1,J] (5.24)
YNoImlel = Y IRl e =0,
i€([1,1] ke[1,K]

and find ('(/)iT,wf)ie[l’I+JF],ke[1’K] and (ch,cf;)qe[LQ] such that

—(VI-VP2), = wl, Vie[l,1],
—(VEP VP = wb, Vke[l,K - J',
_(Vfd) -, 1)Fq,h = kq7 Vq € [17 Q]7
=Y IR (VE VR = Y Pl Wl VgeLQl, (5.25)
keT, keT,
O = = 0, Vi € Ty, Vk € T,
Vee[LQl, ¥l =cg , vp=cf, VieT,,Vk T,
Proof. The proof is given in [21, Proposition 5.1]. O

Step 2 ends with the fact that (5.24) and (5.25) are well-posed:

Lemma 5.2. It has been shown in [21, Proposition 5.2] that systems of the type (5.24) and
(5.25) both have a unique solution.

Once these two subproblems have been solved, the vector u is then reconstructed by u; =

(Vid);+ (Vi xa); .

6 Error estimates

Obtaining error estimates usually relies on regularity assumptions on the solution of the problem.
In order to apply results given in [21, 22], we shall assume more regularity on the vorticity and
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pressure fields (&, p) given by Proposition 6.1 below, and on the velocity potentials given by
Proposition 6.2 below.

Proposition 6.1. Let (f,g,0,wq) belong to L2(Q)2 x HY(Q) x HY*(T) x HY*(T), and let
(kq)qer,q) be a set of given real numbers. Then, system (1.9)-(1.10)-(1.2)-(5.1) associated with

(5.5) may be split into two subproblems, where (p,w) € Hl(Q)2 and a set of real numbers
(Cq)gen,q are the exact solution of the Hodge decomposition of £ +Vg:

Vxo+Vp = £4+Vg in Q,
Wr, = Wd; Wr, =wa +Cq Yqe[1,Q], (6.1)
Jop(x)dz = 0,

and, once & has been determined, 0 € Hdiv(Q)NHcurl(Q) is the solution of the div-curl problem:

vV-a = g in Q,

Vxa = o in Q,

a-n = o on [T, (6.2)
frqﬁ-‘r = k¢, Vgell,Q]

Hypothesis 6.1. We assume that the vorticity @ and the pressure p given by Proposition 6.1
belong to H?(Q).

The velocity field 1, solution of (6.2) may be found by the following Hodge decomposition.

Proposition 6.2. Let (g,&,0) belong to H () x H?(Q) x HY*(T'), and let (kq)qep1,q) be a set
of given real numbers; let @ be the exact solution of problem (6.2). Then, there exist é and @
both in H'(Q) and a set of real numbers (Cq)qen o) such that

where é is the solution of

A
Vé-n=tu-n=c on T, (6.3)

and 1& is the solution of
TA&:Vfﬁ:@inQ
¢\Fo :AO; ¢|rq = Cq V(] € [LQ]& (64)
Jr, Vb -n=—kg

Proof. The Hodge decomposition of & and the determination of ¢ and 1) through (6.3) and (6.4)
are direct consequences of [30, Theorem 3.2 and Corollary 3.1]. O

Hypothesis 6.2. We suppose that the potentials ngS and 1& given by Proposition 6.2 belong to
H2(Q).

We remark that due to re-entrant corners related to the internal polygonal boundaries Iy,
the H? regularity of the potentials is not a consequence of the regularity of the data (g,®, o).
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6.1 Error estimates in the H' semi-norm for the pressure and the
vorticity
Definition 6.1. We define, for any continuous function v, the following element Ilv, by
Vie[l,I+JY], ()l =u (&),
Vke[l,K], (Mv)f =v(Sk).
We note that, under Hypothesis 6.1, @ and p belong to H?(f2), which implies they are
continuous, so that considering IIw and IIp makes sense.

Theorem 6.1. Let p and w be the solutions of the numerical scheme (5.7)-(5.8), and let (p,w)
be the exact solutions of (6.1). Then, if all diamond-cells are conver and under assumptions 2.1
and 6.1, there exists a constant C(0*), independent of h, such that

IVE (= Tp)lp + [[V5 (w = 1@)||p < C(0%) h (1 9)- (6.5)

Proof. Firstly, taking the mean-value of each term of the first line of Equ. (6.1) on a diamond
cell D; and using (5.10), we get:

1
T / (Vp+V x &)(x)dx = £P + (Vg)P, Vi € [L,]. (6.6)
il JD;
Then, since (6.6) and (5.7) have the same right-hand side, we infer that:
1
(VPp); + (VP x w); = W/ (V5 +V x &)(x)dx, ) € [1,.]]. (6.7)
J Dj
Setting
gp:=p—1p and ¢, :=w —1D, (6.8)
Equ. (6.7) implies the following equality:
(VIE)EIJ) (Vh X 50-1 |D ‘ VEHP) )d
1 (6.9)
+W (V xo(x) — (Vh x Ilw);)dx, Vj € [1,J].
J i
According to (5.8) and the second line of (6.1), the error €, satisfies on the boundary
(e)f=0,VieTly , (e)f = 73 -C,,Viely, Vq, (6.10)
(ew)f =0,VkeTly , (eu)f =cf —Cq,VkeTly, Vq. '

Therefore, (V1'e,) and (V£ x &) are orthogonal for the scalar product (-,-)p, as recalled at
the end of Proposition 4.4. Consequently, multiplying (6.9) by |D;|(V#¢e,); and summing for
all j € [1,J], we obtain:

VPl = 3 [ (%360~ (VR1R),) - (9Fep)d

JE[L,J]
(6.11)

+ (V x O(x) — (VE xT&);) - (Vi ep)dx
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In the very same way, multiplying (6.9) by |D;|(VF x &,); and summing for all j € [1,.J], we
obtain:

Vel = % / —(VPIR),) - (VP x ) dx

J€(1,J]
(6.12)

+ ) / (V x O(x) — (VE xTI&);) - (VF x e,)dx.
Jel,J]

The right-hand sides of (6.11) and (6.12) may be bounded using the traditional P! Lagrange
interpolations of p and @ on a submesh of the diamond mesh, obtained by splitting each diamond
cell along one of its diagonals into two triangles, as shown on Fig. 5.

The details of the calculations may be found in [22], starting with inequality (62) of that
reference, and then using Lemma 5.11, where the norm in the right-hand side of inequality (66)
has to be replaced by the H?(Q) norm of p and @. O

6.2 Error estimates in the L?-norm for the pressure and the vorticity

We shall use the discrete Poincaré inequalities recalled in Proposition 4.5 to infer error estimates
for the discrete L? norm of the errors in the pressure and the vorticity.

On the one hand, it can be applied directly to the error €, because it verifies (6.10), which
are exactly conditions (4.13) and (4.14) that Proposition 4.5 requires. Thus, we infer from (6.5)
the following theorem

Theorem 6.2. There exists a constant C(0*) that does not depend on h such that
lw = T@flr,p < C07) h ([[pll2,0 + [@ll2,0)- (6.13)

On the other hand, since (p — IIp) does not in general verify the vanishing mean-value
condition (4.12) (because IIp doesn’t), we may not apply the discrete Poincaré inequality in a
straightforward way. However, defining

e Dien.n TR -

== g L ()T = P =T, i€ 1,1+ 7, (6.14)

P|(TIp)E _
v Zke”’ﬂsln T (@pf = mpf — " i e (1K) (6.15)

we have that ITp verifies the vanishing mean-value condition (4.12) and
Vi, ([1p) := V3 (1Ip) (6.16)

because (IIp) and (IIp) only differ by a constant on the primal and dual meshes, and it is seen
from the definition (3.1) of the discrete gradient that this does not affect its values. Next, we
have R ~

|lp = 11pl|z,p < |lp = Ipl|z,p + [[11p — 1Ip[|7.p- (6.17)
Estimating the first term in the right-hand-side of (6.17) may be performed through the discrete
Poincaré inequality applied to (p — IIp).
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Lemma 6.1. There exists a constant C(60*) that does not depend on h such that

Ip = [llz.p < CO%) h (Iplae + [&]20)- (6.18)

Proof. From Prop. 4.5, it holds that
lp = T1pl|z.p < C(O%)[IV (0 —T1H) I = C(0%)[|VE (0 — 1) || (6.19)
because of (6.16). Applying (6.5), we get (6.18). O

To estimate the second term in the right-hand-side of (6.17), we first recall that these two
elements only differ by a constant on the primal and dual meshes (see (6.14) and (6.15)), so that

QT,P = % [(CT)2 + (CP)Q] ) (6.20)

Lemma 6.2. Let ¢’ be defined by (6.14); then

1/2
") < oy 2 (Z JRGE ) <x>dx) . (6:21)

Proof. From (6.14), we have that

Q1T = ST = Y [ (075~ ] i

I11p — T1p|

because Y, [, p(x)dx = [,p(x)dx = 0. So, by a continuous and then a discrete Cauchy-
Schwarz inequality, we get

2]c"]

IN

Z |T; |/ (/T (7 p); _ﬁ]g (X)dx>1/2
1 1, )
W& (Z /T [ e (X)dx> |

which implies (6.21). O

IN

So, what remains to evaluate is the L? norm of (IITp); — p on T;.

Lemma 6.3. There exists a constant C(0*) that does not depend on h such that
16— (I B)illc2(ry < COA[3]2,r.. (6.22)

Proof. First, we split the integral on the subtriangles ¢; j , with vertices G;M;S}, (see Fig. 6),
where we recall that M; is the midpoint of the edge A; C JT; and Sj is one of the vertices of
Aj:

[ 1=l ax= 30 [ (a7 - o, (6.23)

t; j nCTi ¥ birdok

22



We define m; ; p as the standard P! Lagrange interpolation of p on the triangle t;,5,% and we
have

/ (175, — §)° (x)dx < 2 / (L7 B), — 1 308] () + 2 / g9 — 817 (x)dx.

ti gk ti g,k ti g,k
(6.24)
It is a standard result (see Theorem 3.1.5 of [14]) that there exists a constant C, not depending
on t; ;x such that

i gkd — Bl 0 < Cdiam(ti jx) (1Dl 22,y 0 (6.25)

which evaluates the second term in the right-hand side of (6.24). As far as the first term in the
right-hand side of (6.24) is concerned, since (II7p); — m; ;. xp(Gi) = 0, and since m; j 1P is a P!
function, we have that, for all x € ¢; ;

(I1"p); — mi jup(x) = Vi jub - (Gi — %),
which ensures that
[(7p)i — miykp(X)| < diam(t; ;1) ||V j x|
for all x € ¢; ;1 and thus
i — (T P)illr2e, ) < diam(ts )|V j bl L2t - (6.26)
Using a triangular inequality
IV gxbllez,, ) < IV (mignd — D)z, 0 + IVDlL2 0

and using again Theorem 3.1.5 of [14], we have that there exists a constant C' depending only
the regularity parameter of the subtriangulation (and thus on 6*) such that

VT gabllL2 0 < (LA Cdiam(ti )Pl 2 4)- (6.27)
Gathering (6.23), (6.24), (6.25), (6.26) and (6.27) implies (6.22). O
We are now able to estimate the second term in the right-hand side of (6.17)
Proposition 6.3. There exists a constant C(6*) that does not depend on h such that
ITp — TIp||7,p < C(67) h|p]|2,0- (6.28)
Proof. Bounds (6.21) and (6.22) imply that
"] < C(O)hlIpll2.0- (6.29)

Using (6.20), (6.29) and a similar bound that can be obtained in the same way for ¢’, we obtain
(6.28). O

Finally, using (6.17), (6.18) and (6.28), we obtain the following theorem:
Theorem 6.3. There exists a constant C(0*) that does not depend on h such that

llp = Tpllr.p < CO%) b ([IPll2.0 + [@]l2.0)- (6.30)
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6.3 Error estimate in the L?-norm for the velocity

Once the numerical approximation w = (w],w{ )ie(1,14+7], kep, k] of the vorticity & is known,
we have to solve (5.15) in order to find the discrete velocity u = (u;) e, s, with which we
define a piecewise constant function uy by

up(x) =u;, Vxe D;, Vjell,J.

In order to estimate the error between u; and the exact velocity 1, we first introduce an
intermediary discrete velocity 1 = (@;),¢[1,7, solution of the discrete div-curl system

(Vi -w)in = g, Vie[LILVkeLK]
Vil xa)y, = <o>5", Vie[LI,Vke[l,K - J,
(ﬁ'Tal)Fq,h = kqa Vq S [1>Q]7
SR (VE x e = > |R] <@>f, VYge[1,Q),
kel kel
where we have set
1
<o>! = / @(x) dx Vi€ [1,1], (6.32)
T3] Jr,
1
<@w>r = — [ &(x)dx Vke[LK]. (6.33)
|P| Jp,

Note that 1 is of course never actually computed (because the exact vorticity @ is not known),
but only serves for theoretical reasons. The following triangle inequality holds

lun, = llo,0 < |fu—al[p + [[u, — 1

lo,0- (6.34)

The estimation of the second term in the right-hand side of (6.34) is provided by [21, Theorem
5.22]:

Proposition 6.4. If all diamond-cells are convex and under Hypotheses 2.1 and 6.2, there exists
a constant C(0*) independent of h such that

I, — alloq < C@") (llg

o0+ 1@llo.0 +18ll.0 + 1Bll20) (6.35)

The next step is the evaluation of the difference d,, := u — @, which, using (5.15) and (6.31),
is the solution of

(VP dw)ix 0, Viel[lI],Vkel[l, K],
(Vir xdw)ix = (do)F, Vie[l,I),Vke[1,K - J],
(du)j-m; = 0, VjelJ—J"+1.J], (6.36)
(du - T, 1)Fq,h = 07 Vq S [17 QL
STRI(VExdue = > P (o). Vae1.Ql,
kel kel

with d, == w— < @ >.
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Proposition 6.5. There exists a constant C(0*) independent of h such that
[lu—1||lp <CO)||w— <@ >||rp. (6.37)

Proof. Using the discrete Hodge decomposition (see Proposition 4.4) of d,, into ¥V ,13 q[)d—i-V,? X d,
we easily get, using Proposition 5.2 that ¢gq vanishes, and we may thus evaluate ||d,||p =
[|VE x 1pq||p as follows. Let us first use the discrete Green formula (4.7):

IVE % dallp = (V" x Vi x da,a)r.p = (V3 X a7, da)r - (6.38)
In (6.38), let us first treat the second term in the right-hand side. By definition, we have
(Vi xt¢a- T, 0a)rn= Y (V7 xta 7, ¢a)r,n
q€(0,Q]

But tq vanishes on I'g and (vq)! and (¢q)f are equal to constants ch and ch on I'y, for
q € [1,Q)] (see (4.13) and (4.14)). Thus:

D 7 o teg D
(Vi xda-Tvaen= D |5 | (V) X a7, 1)r, 0 =0 (6.39)
9€[1,Q]

thanks to the fourth line of (6.36). Let us now turn to the first term in the right-hand side of
(6.38). By definition of the scalar product (4.2), and using the second line in (6.36), it holds
that

(Vi x vy xwd,wdm— S ITi(do)T (Wa)f
’Le [1,1]
1
b oS IR Wl + 5 S IRIVET < d)f ()l (6.40)
k¢r keFo

+ Z Z|Pk| (V" x du)f (Va)f -

g€[1,Q)] keP
Using once again boundary condition (4.13), we have
SOUPAVET x AP @a)E =0 = S [Pl ()] (ba)L. (6.41)
keTo keTo
Moreover, using boundary condition (4.14) and the last line in (6.36), we obtain

DoIPIVET ) d)P @Wa)t = el Y IRV xdu)f

kel kel

= < Z | Pr|(d

keT,

> 1Pel(dw)k (Va)i - (6.42)

ke,
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Thus, gathering (6.40), (6.41) and (6.42), we get that

(V" X Vi X a,¢a)r.p = (du, ba)1.p- (6.43)

Finally, (6.38), (6.39) and (6.43), may be used to obtain

V7 % Yl = (dw, Yd)7,p- (6.44)

The Cauchy-Schwarz inequality: (dy,¥d)r,p < ||dul||7,p||l%allr,p and the discrete Poincaré

inequality (4.19) allow us to conclude (recalling that u — it = d, = V2 x ¢q and d, = w— <
w>). O

Next, it remains to estimate the right-hand side of (6.37). We first link |w— < & > ||7,p to
a previous result by the triangle inequality

Hw— <> ||T7P < Hw —H(I)HT,p + || <@ > —H(IJHT7P. (645)

The first term in the right-hand side of (6.45) is bounded by (6.13). Bounding the second term
requires some more analysis.

Proposition 6.6. Under hypotheses 2.1 and 6.1, there exists a constant C'(6*) independent of h
such that
I <@>—Toflrp <CO) Il

2.0 (6.46)
Proof. First, we have

1
| <@&> -7 p = 3 [Z ITi| (< @ >] —(HT@)i)2 +Y IR (<@ >F —(HPL:))k)Q . (6.47)
k

K2

Let us consider the first sum in the right-hand side of (6.47); the second sum will be treated
in the same way, with however an important modification that will be underlined within the
developments that follow.

Since < © >7 —(IIT®); is a constant on T;, we have

T (<& >T —(M70))? = / (<& >T —(7&),)% dx
T

IA

2 (||a;— <@ >T 2oy +lo - (HTa)il\%z(Ti)) . (6.48)
Using arguments similar to those that led to (6.22), we have that
I — (T @)illr2(ry < ChlI@||2,z,- (6.49)

Further, since T; is an open bounded set which is star-shaped with respect to GG;, there exists a
constant C'(T;) only depending on the shape of T;, but not on its diameter such that

lo— <& >7 |lL2(ry < C(T)diam(T) VO 21, (6.50)
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Since T; is convex, a universal constant C(T;) is given by L (see [41]). As far as dual cells P
are concerned, a similar inequality holds because Py is star-shaped with respect to Sk:

[o— <@ >¢ |l2(py) < C(Pr)diam(Py) || VD 2(py)- (6.51)

However, since Py is not necessarily convex, the estimation of C(Py) is less obvious, but we
may use explicitly computable formulas given, for example, by [11, 43]. These formulas show
that C'(Py) only depend on the angles of the subtriangulation mentioned in Hyp. 2.1. Gathering
(6.48), (6.49) and (6.50), and similar inequalities on the dual cells Py, the upper bound (6.46)
is obtained from (6.47). O

Now, we are able to estimate the first term in the right-hand side of (6.34). With (6.45),
(6.13) and (6.46), we obtain from (6.37) the following proposition:

Proposition 6.7. Under hypotheses 2.1 and 6.1, there exists a constant C(6*) independent of h
such that

= llp < CO (&0 + [Plan) - (6.52)
Finally, plugging (6.52) and (6.35) into (6.34) leads to the following theorem

Theorem 6.4. If all diamond cells are conver and under hypotheses 2.1, 6.1 and 6.2, there
exists a constant C(6*) independent of h such that

[l — alloe < OO (I2lln0 + Ipll2e + lgllon + 9]0+ [1dll20) . (653)

6.4 Superconvergence on some mesh families

In this section, we consider families of meshes satisfying the following property:

Hypothesis 6.3. There exists a finite number L of sub-domains (§2¢)ec(1,1) included in Q and
independent of the mesh step h, such that the diamond-cells which are not parallelograms are
included in strips 0y, having width Ch and located along the boundaries of 2y, where C is a
constant independent of h.

We can note that the diamond-cells located on I" are triangles. Consequently, it is impossible
to find a mesh in which all diamond-cells are parallelograms. Examples of families of meshes
verifying Hypothesis 6.3 are families of uniformly refined meshes of rectangles, or any (possibly
non-conforming) union of such meshes; see for example on Fig. (9) the second family of meshes
used in section 7. In that case, each mesh of rectangles is an ;. Another example of such
families of meshes is what is called “homothetically refined triangular meshes”, obtained from
a coarse triangular mesh by iteratively refining each triangle into four homothetic sub-triangles
by joining the midpoints of its edges. In that case, each triangle of the coarse mesh is an €2,.

Hypothesis 6.4. We assume that the vorticity @ and the pressure p given by Proposition 6.1
belong to H3(Q).

We have the following superconvergence results:
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Theorem 6.5. If all diamond-cells are convexr and under hypotheses 2.1, 6.3 and 6.4, there
exists a constant C(0*), depending on the shape of the Q; but not on h, such that

VY (p—10p)||p + || V7 (w = TI&)||p < C(0%) 32 (||plls,0 + [|&]13,0)- (6.54)

Proof. We only sketch the proof for the pressure (we can obtain the same results for the vortic-
ity). Starting from (6.11), setting

(VD); |D|/ Vi(x , AV xw); = D|/ V x o(x
(dp); = (VD) = (VRID); ,  (do); = (V x@); = (Vy x @), (6.55)

recalling definition (6.8), and using the discrete Cauchy-Schwarz inequality leads to

IVRenllh <2 > 1D [(dp)? + (d)F] - (6.56)
JeE(1,J]

In (6.56), we shall only estimate the sum of the (d,)?, the other term being treated in the same
way. In order to obtain the refined estimates, we shall distinguish between the cells D; which
are not parallelograms (we shall write ;7 € J) and those which are parallelograms (we shall
write j ¢ J). Indeed, when D; is a parallelogram, then the quantity (d,); vanishes when p
is a P? polynomial function because both quantities in the right-hand side of (6.55) are equal
to the gradient of the P? function, evaluated at the intersection of the diagonals of D;. Then,
standard numerical analysis results (the Bramble-Hilbert lemma and a scaling argument in
parallelograms) show that there exists a constant C', depending only on the shape of D;, and
thus only on its angles, and thus only on 6*, such that for any p in H*(D;), there holds

(dp)7 < CR?(|pl I35,

which implies that

> 1D51(d)3 < Ch*1B13aqy- (6.57)
JeT
On the other hand, when the cell D; is not a parallelogram, then

()5 < ClIllZr(p,),

which implies that

STID;Id)? < CR2 ST (1Bl s, - (6.58)

JjET Le(1,L]

Since Ilin’s inequality (see, for example, [12, Formula (2.2)]) implies, under Hypotheses 6.3 and
6.4 that [|p]|gr2(s,) < (Ch)Y?||p||gs(q,), We finally obtain

S 1Ds((dy)? < CR3 B35 0 (6.59)
JjeT
Gathering (6.56), (6.57) and (6.59) ends the proof. O
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7 Numerical results

In this section, we test the finite volume method applied to the vorticity-velocity-pressure for-
mulation against known analytical solutions and plot convergence curves (in log-log scale) for
several quantities. The domain of computation is Q =] — 1/2;1/2[? and the data are chosen so
that the exact solution

. [ exp(z)cos(my) L
o ( zsin(ry) + cos(mr) ) and p =y exp(w) cos(ry) (7.1)

illustrate section 5.2 based on the Hodge decomposition of u with boundary conditions given
by i-n=o, [(p=0and &= wq.

Four families of increasingly fine meshes are used. The first family is a family of standard
triangular meshes, see Fig. 8(a). The second family has very localized non-conformities, see Fig.
9(a), and is obtained in the following way: the first mesh is obtained by dividing the domain
into 8 x 8 identical squares, and the 4 squares at the center of the mesh are further refined
into 4 x 4 sub-squares. Then the subsequent meshes are obtained by dividing each cell of the
previous mesh into 2 x 2 square cells. The third family has non-conformities spread over the
entire domain, see Fig. 10(a), since every other cell is refined into 4 x 4 sub-cells. Of course,
the third family of meshes is not of practical use but illustrates well the ability of the scheme
to deal with heavily non-conforming meshes. The fourth family is a family of triangular meshes
for the non-simply connected domain Q =] — 1/2;1/2[2\] — 1/6;1/6[?, see Fig. 11(a).

We have proved (see Sections 6.1 and 6.2) that p, w, as well as their gradients converge to the
exact solution of the Stokes problem. We are thus interested here in the numerical convergence
of p, Vf p, w and Vf w, which we measure by the following errors

X Tl — (Ip)T)? + 324 [Pl (i, — (IP)i0)?)
3 (5 ITIR)T)? + 32, | Pl (TH)F)?) ’

where Vi € [1,1], (IIp)T = p(G;) and Vk € [1, K], (Ip)F = p(Sk), and

2 L Zj |Dj‘ ‘(Vl?p)j - (HVﬁ)jF
(elp)=(h) := Zj D, (195, 7

where Vj € [1,J], 1IVp); = (Vp)(Bj), where Bj is the center of gravity of the diamond cell
D;. The same definitions hold for w by replacing p by w in the previous formulae. From the
numerical results given in [22], we may expect second-order accuracy for p and w (although
we were able to prove only first-order accuracy in section 6), and first-order accuracy for V;’? P
and Vf w on general meshes. However, on meshes with diamond-cells which are almost all
parallelograms, which is the case for the second family of meshes, we expect a convergence order
of 1.5 for V§/p and V7 w.

We also proved the convergence of the velocity field u to the solution of the Stokes problem.
The discrete relative L? error on the diamond cells for the velocity is measured by the following

quantity:
22, 1Dyl [uy — (1),
225 15 [T,

(e0p)*(h) = 2 (

e2(h) :
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where (IT); is the value of the exact solution @ at the midpoint of the edge A; (denoted by
Mj): ' o
Vi e [1,J], (IIa); = a(M;).

We expect first-order convergence of the velocity field on general meshes like those of the first and
third families. On the second family of meshes, since almost all diamond cells are parallelograms,
we may expect from the numerical results of [21] an order of convergence of at least 1.5. In Finite
Element methods, one is also usually concerned with the convergence of Vu, since u belongs
to H'(Q2) and since the term [, Vu : Vvdx appears in the bilinear form associated with the
variational formulation of the Stokes problem. In our formulation, we used formula (1.7), so that

1/
the natural norm induced by the variational formulation is (HV . u||%2(ﬂ) + 1|V x u||%2(ﬂ)) .

Since Vf’P -u is always exactly imposed through the first equation of (5.15) or (5.16), we

L T.P
measure the errors on the derivatives of u through the error on w =V, " x u.

7.1 Triangular meshes

We first consider standard triangular meshes, as shown in Fig. 8(a). On this type of meshes,
u, Vf p and Vf w are all first-order accurate, while p and w are second-order accurate, as
respectively displayed in Fig. 8(b), (d), (f) and (c) and (e). These are the expected orders of
convergence, as explained above.

7.2 Locally refined meshes

On the second family of meshes (see Fig. 9)(a), we observe a super-convergence of order 1.5
of V}? p and Vf w, as expected. Moreover, as far as u is concerned, we observe in practice an
order of convergence which is better than expected since it is slightly lower than 2. On the third
family of meshes, see Fig. 10(a), we recover the same orders of convergence as those obtained
on triangular meshes, as expected.

7.3 Non simply-connected meshes

Here, the domain of computation is Q =] —1/2;1/2[*>\] — 1/6;1/6[*>. We compute the numerical
solution on a family of five increasingly fine triangular meshes, the coarser of which is displayed
in Fig. 11(a). On this type of meshes, u, pr and Vfw are all first-order accurate, while p
and w are second-order accurate, as respectively displayed in Fig. 11(b), (d), (f) and (c) and
(e). These are the expected orders of convergence.

8 Conclusion

We have proposed a finite volume method for the two-dimensional Stokes equations with the
non-standard boundary conditions (5.1) to (5.4). These non-standard boundary conditions are
treated through the vorticity-velocity-pressure formulation of the Stokes equations, for which the
finite volume method was successfully applied over unstructured and non-conforming meshes.
Numerical results show a first-order convergence for the velocity, the pressure gradient and the
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Figure 8: (a) Triangular mesh. (b) Error on the velocity. (c¢) Error on the pressure. (d) Error
on the pressure gradient. (e) Error on the vorticity. (f) Error on the vorticity gradient.

31



error ——
0.1 Islope=2++--
0.01 9
e™ 0001 ]
0.0001 B
te-05 + ]
1@-0B
0.01 0.1
a b h
b error —o—
error —o— 1 Bt
1r {slope=2 -+~ 1t 1 slope=1.5+
0.1r 1 01k ]
0.01F ] elpth) |
e0p(h) 0.01 - ]
0.001F B
L 4 ]
0.0001F * ] 0.001 F
le-05— : 0.0001 st
0.01 0.1 0.01 0.1
c h d h
0.1
error —o— error —o—
=2+ slope=1.5+"
T slope=2-+ 01r PR L
0.01F 1 T
0.01r B
0.001¢ B elw (h)
e0w (h)
0.001¢ B
0.0001F B
0.0001F B
le-05fF ‘ ‘ B N ‘
0.01 0.1 0.01 0.1
e h f h
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(d) Error on the pressure gradient. (e) Error on the vorticity. (f) Error on the vorticity gradient.
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Figure 11: (a) Triangular mesh. (b) Error on the velocity. (¢) Error on the pressure. (d) Error
on the pressure gradient. (e) Error on the vorticity. (f) Error on the vorticity gradient.
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vorticity gradient and a second order convergence for the pressure and the vorticity, while a
superconvergence order of 1.5 for the pressure gradient and the vorticity gradient and an order
two for the velocity are obtained on regular (but possibly locally non-conforming) meshes. Some
of these convergence orders were proved through the theoretical analysis we led in this paper,
while only suboptimal orders were obtained for pressure and vorticity on general meshes and
for velocity on regular meshes.
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