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ABSTRACT 

Iron oxides and oxy-hydroxides are commonly of considerable importance in the sorption 

of ions onto rocks, soils and sediments. They can be the controlling sorption phase even if 

they are present in relatively small quantities. In common with other oxides and clay 

minerals, the sorption pH-edge of metals is directly linked to their hydrolysis: the higher the 

residual charge on the metal ion, the lower the pH-edge. Modelling of this process has 

been successfully carried out using different microscopic or macroscopic definitions of the 

interface (e.g. surface complexation or ion exchange models that may or may not include 

mineralogical descriptions). The influence of organics on the sorption of many metals is 

significant. This organic material includes simple organic molecules and more complex 

exopolymeric substances (e.g., humic substances) produced by the decay of natural 

organic matter. Sorption of these organics materials to mineral surfaces has also been the 

subject of a large body of work. The various types of organics do not share the same 

affinities for minerals in general, and for iron oxides and oxy-hydroxides in particular. In 

those cases in which successful models of the component binary systems (i.e., 

metal/surface, metal/organic, organic/surface) have been developed, the formation of 

mixed surface complexes, the evolution of the surface itself, the addition order in 

laboratory systems, and the evolution of natural organic matter fractions during sorption, 

have often precluded a satisfying description of the metal/surface/organic ternary system 

over a sufficiently wide ranges of parameter values (i.e. pH, ionic strength, concentration 

of humic substances). This manuscript describes the reasons for some successes and 

failures in the modelling of the ternary systems. Promising recent advances and possible 

methods of providing more complete description of these intricate systems are also 

discussed. 

http://doi.org/10.1180/minmag.2012.076.7.02
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1. INTRODUCTION 

Natural organic matter (NOM) exerts a significant influence on the sorption of metals onto 

minerals surfaces in soils and sediments. Its influence on the migration behaviour of 

radionuclides has been recognized in many studies. Examples include the migration of 

plutonium in soils following the nuclear detonation at Nagasaki (Mahara and Miyahara, 

1984; Mahara et al., 1988; Mahara and Kudo, 1995; Fujikawa et al., 1999) and the 

Chernobyl accident (Matsunaga et al., 2004); the migration of actinide-group elements in 

soils at Oak Ridge National Laboratory (McCarthy et al., 1998a,b); and the interaction of 

radionuclides with mining debris (wood and oil) at the Nevada Test Site (Zhao et al., 

2011). Natural organic matter is released by the decay of biological material through 

complex mechanisms. Although these have been studied for a many years, aspects of the 

composition and structure of NOM remains as puzzles for scientists. Achard (1786) 

proposed alkaline-extracted humic substances (HS) as simple and useful analogues for 

NOM more than two centuries ago. Modern definitions of humic substances are still linked 

to his extraction methods (Stevenson, 1982; MacCarthy, 2001b). The organic molecules 

produced during the diagenesis of biological material are so complex that HS are still not 

fully characterized (MacCarthy, 2001a,b). Briefly, HS are composed of humine, which is 

insoluble in all pH conditions; humic acid (HA), which is insoluble in acidic pH conditions; 

and fulvic acid (FA), which is soluble in all pH conditions and is retained on polyacrylic 

resins (XAD-8) (Stevenson, 1982; Aiken et al., 1985; Ghabbour and Davies, 2001). 

The use of HS in studies of the complexation and sorption properties of NOM has 

generated a large body of work. Although HS remains poorly characterized, some general 

features have emerged. From a structural point of view, Wershaw (1986, 1989, 1993, 

1999) proposed that NOM was made up of aggregates of small molecules. As part of 

NOM, HS also contain aggregates of small molecules (Aiken and Malcolm, 1987; Chin et 

al., 1994; Plancque et al., 2001; Kujawinski et al., 2002b; These et al., 2004) and organic 

nanometre-scale entities (Bouby et al., 2002; Baalousha and Lead, 2007; d’Orlyé and 

Reiller, 2012) with a fractal organization (Österberg et al., 1995; Senesi et al., 1997; Rice 

et al., 1999), which can clump together to form larger aggregates (Pinheiro et al., 1996; 

Manning and Bennett, 2000; d’Orlyé and Reiller, 2012). The ‘micelle-like’ or ‘membrane-

like’ paradigm proposed by Wershaw (1986, 1993, 1999, 2000) may initially appear too 

organized to reflect the inherent heterogeneity of NOM or HS, but the recognition of a 

degree of organisation in NOM aggregates undoubtedly stems from Wershaw’s work. 

Analyses by mass spectroscopy (Plancque et al., 2001; Kujawinski et al., 2002a; These et 

al., 2004) and nuclear magnetic resonance (NMR) techniques (Kim et al., 2003; Simpson 

et al., 2003) have shown the extensive heterogeneity of NOM, and this is also 

corrobarated by recent sequential extraction protocols using high performance size 

exclusion chromatography (HP-SEC) coupled to mass spectroscopy and NMR (Nebbioso 

and Piccolo, 2011, 2012). 
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Figure 1 shows a schematic representation of a humic acid aggregate. Following 

Nachtegaal (2003), carboxylic acid groups and other hydrophilic and fatty acids are 

located on the outside of the aggregates, whereas aromatic and hydrophobic groups 

occupy the centres. The compositions of NOM and HS are dominated by carbon, oxygen 

and hydrogen, with minor sulfur and nitrogen; their strong reactivity towards metal ions and 

minerals is mainly driven by carboxylate and phenolate functional groups, which imply a 

weak selectivity and comparable interaction for analogous cations (van Dijk, 1971; Reiller 

and Buckau, 2012). Although relatively large molecular masses have been reported for HS 

(mainly based on HP-SEC studies using globular proteins), the terms polymer or 

polyelectrolyte seem inadequate to describe them as no repetitive structure, or well-

defined building blocks, have been identified. Observations of sorbed HS by atomic force 

microscopy (AFM) have revealed that they occur as small entities that aggregate and 

disaggregate with changes in pH and ionic strength (Maurice and Namjesnik-Dejanovic, 

1999; Plaschke et al., 1999), rather than as the coiled or elongated structure that are 

typical of polymers (Ogoshi and Chujo, 2005). The distribution of charges and the binding 

strengths of the alkaline and alkaline-earth metals are also very different between 

polymers and humic acids (van den Hoop et al. (1990).  A reversible disruption of the 

structure under the influence of acids has been clearly demonstrated (Piccolo et al., 2000, 

2001). Nevertheless, the ionic strength dependence of HA sorption, and to a minor extent 

of FA sorption, has some commonalities with polyelectrolytes (Blaakmeer et al., 1990; 

Böhmer et al., 1990). 
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Figure 1. A schematic representation of a heterogeneous humic acid aggregate 
composed of different entities of different sizes. The entities can be viewed as 
molecules or aggregates of molecules. The grey shades represent the differences in 
hydrophobicity, with darker entities being more hydrophobic. 

A simple approach in modelling a complex system is to test the linear additivity of its 

different binary components (Zachara et al., 1994; Vermeer et al., 1999). In this case these 

systems are: (1) the metal/HS complexation system (which also includes systems in which 

metals are complexed by inorganic ligands, i.e. OH–, CO3
2–, PO4

3–…); (2) the HS/surface 

sorption system; and (3) the metal/surface sorption system. The assumption of linear 

additivity requires these systems to be acting simultaneously and independently, without 

deviation due to modifications of one of the constituents or the formation of a ternary 

surface complex. It is worthwhile noting that in some successful models of ternary systems 

(e.g. Zachara et al., 1994; Heidmann et al., 2005), the linear additivity of the binary 

systems does not always represent the behaviour of ternary systems on a sufficiently large 

parametric domain (e.g. pH, ionic strength, metal concentration; Robertson and Leckie, 

1994; Vermeer et al., 1999). Indeed, Tipping et al. (1983) came to the conclusion that 

there is a need to account for “the creation of extra uptake sites of relatively high affinity” 

when surface and HS interact to explain their results. Following Lavoisier (1789, chapter 

XIII), these sites cannot be created from nothing (creation ex nihilo), but are more probably 

produced (creation ex materia) by the sorption process (Janot et al., 2011; Janot, 2011) 

and conformational rearrangement (Amal et al., 1992; Au et al., 1999). 
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In this paper binary metal/HS and HS/surface systems are reviewed, and different ternary 

metal/HS/surface systems are described. The focus is primarily on radionuclides, but also 

includes illustrative examples of other metal ions. The reasons that prevent the linear 

additivity of binary system from properly described ternary systems are identified, and 

techniques that have the potential to produce more realistic models of the ternary systems 

are described. 

2. BINARY SYSTEMS 
2.1. The metal/HS binary system 

The interaction of HS with metal ions follows the Irving and Williams (1948) series 

(Schnitzer and Skinner, 1966, 1967; Kerndorff and Schnitzer, 1980): alkali-metal 

interactions are weak (van den Hoop et al., 1990; d’Orlyé and Reiller, 2012) and the 

strongest interaction is with M4+ elements (Reiller, 2005; Reiller et al., 2008). The 

interaction is weakly selective between analogous metals (vide supra). For the lanthanides 

(Ln) and actinides (An), the strength of interaction increases from M(V), NpO2
+ (Kim and 

Sekine, 1991; Seibert et al., 2001); to M(III) and M(VI), Eu3+, Sm3+, Am3+, Cm3+, UO2
2+ 

(Czerwinski et al., 1994, 1996; Sonke, 2006; Pourret et al., 2007; Sachs et al., 2007; 

Marang et al., 2008; Reiller et al., 2011a); to M(IV), Th4+, U4+, Np4+, Pu4+ (Nash and 

Choppin, 1980; Reiller et al., 2003; Reiller, 2005; Reiller et al., 2008; Beneš, 2009; Szabó 

et al., 2010; Stockdale et al., 2011). Modelling of the metal/HS binary systems is possible 

using semi-empirical techniques (Hummel, 1997; Tipping, 2002; Reiller and Buckau, in 

press). Due to the intrinsic heterogeneity of the systems, the strict application of 

thermodynamics is often awkward. In particular, it is difficult to produce thermodynamic 

models. In particular, it is difficult to unequivocally define a standard state for a mixture of 

molecules in which the composition and possible interactions between the components are 

unknown. Extra-thermodynamic assumptions are therefore made (e.g. varying operational 

constants with physico-chemical parameters such as pH and ionic strength), that hide the 

variation of an extensive parameter [e.g. number of available sites (Reiller and Buckau, 

2012)]. These models allow satisfactory operational description of the experimental results 

as long as the defined ‘HS object’ is not modified during the reaction (e.g. by complexation 

or sorption). However, due to the possible modification of HS during complexation 

reactions (Caceci and Billon, 1990; Plaschke et al., 2002; Christl and Kretzschmar, 2007), 

semi-empirical complexation models must be applied with great care. 

In some cases, modifications are not important. Reiller et al. (2011b) showed that both the 

Eu(III)-HS complexation strength and complex symmetry were comparable for different 

HP-SEC fractions of HA. In contrast, Claret et al. (2008) clearly showed that both the 

Eu(III)-HS complexation strength and complex symmetry were greatly modified for 

fractions of HA that have undergone sorption onto α-Al2O3. This leads to questions about 

the modifications during sorption in the HS/surface binary system. 
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2.2. The HS/surface system 

There is a large body of work which describes the sorption properties of HS using simple 

models including small organic molecules, polymers or polyelectrolytes, however, these 

simple representations do not adequatly represent the sorption behaviour of HS. Due to 

the relative abundance of carboxylate functional group, the sorption of HS reaches a 

maximum around the pK of carboxylic acids, and it decreases with increasing pH (Tipping, 

1981a, 1981b; Gu et al., 1994; Ochs et al., 1994; Vermeer et al., 1998; Reiller et al., 2002; 

Claret et al., 2008). In this respect it follows the behaviour of weak acids in general (Blesa 

et al., 1984; Dzombak and Morel, 1990; Marmier and Fromage, 2000) and of simple 

carboxylic organic acids in particular (Davis and Leckie, 1978; Gu et al., 1995; Evanko and 

Dzombak, 1998; Borah et al., 2011). The importance of catechol functional groups on the 

sorption behaviour of HS should not, however, be underestimated (Borah et al., 2011; Gu 

et al., 1995). 

Although the structure of HS is not strictly polymeric, the sorption behaviour of HS on 

minerals has commonalities with polyelectrolytes, particularly with respect to the influence 

of ionic strength. At low concentration [i.e. C < 10-3 mol/L (Szekeres et al., 1998)], when 

simple organic acids are undergoing competition with the background electrolyte, i.e., 

when a decrease of sorption when the ionic strength increases (Schulthess and McCarthy, 

1990; Mesuere and Fish, 1992; Ali and Dzombak, 1996), the sorption of HS, and 

particularly HA, increases with ionic strength (Murphy et al., 1994; Schlautman and 

Morgan, 1994; Au et al., 1999; Reiller et al., 2002; Weng et al., 2006; Janot et al., 2012). 

The influence of lateral hydrophobic interactions between the humic entities is also 

important (Ochs et al., 1994; Nachtegaal, 2003). Fulvic acids, which form aggregates of 

lesser dimension than those of HA, show intermediate behaviour as no, or only weak, 

influence of ionic strength has been demonstrated (Schlautman and Morgan, 1994; Filius 

et al., 2000; Reiller et al., 2002). This can be linked to the particulate nature of HA and the 

decrease in the Debye lengths of both the surface and HS aggregates (a charge screening 

effect). 

The combination of these specific and non-specific (aggregation, lateral interactions) 

properties that influence the sorption of HS onto surfaces produces a subtle balance 

between surface complex formation and electrostatic forces that depends on three factors: 

(1) the pH of the solution, which controls the ionization and surface charge of the HS 

aggregates and surface, respectively; (2) the ionic strength, which controls the surface 

potential and of the conformation of HS aggregates; and (3) the free energy of the specific 

adsorption of the HS aggregates. As long as the surface charges are opposite (pH < pHpzc, 

HS are negative and the surface is positive), the first two factors encourage sorption. The 

last factor implies an extension of this sorption domain, and explains why sorption is not nil 

at the point of zero charge of the mineral surface and why it extends up to more basic pH 

values, even if the electrostatic contribution is not favourable. This influence of the specific 

interaction is observed, for instance for sorption of borate or silicate onto iron oxides 
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(Blesa et al., 1984; Marmier and Fromage, 2000), for various benzoic acids (Davis and 

Leckie, 1978; Gu et al., 1995; Evanko and Dzombak, 1998), for polyelectrolytes  

(Chibowski and Wisniewska, 2002) and for humic substances (vide supra). As the sorption 

of HS is driven by interactions of carboxylate and to a lesser extent phenolate groups with 

hydroxylated surface sites (Gu et al., 1995; Yoon et al., 2004), but also by non-specific 

interactions, modelling is not trivial. 

Humic substances/surface binary systems have been extensively modelled. The largest 

proportion is surface complexation models that suggest ligand exchange on hydroxylated 

sites (e.g. Filius et al., 2000) based on spectroscopic evidence (Gu et al., 1995; Wershaw 

et al., 1995). In these studies, the HA were mostly defined as indistinct mixtures of entities 

that undergo surface complexation, although some authors have attempted to account for 

their complexity and heterogeneity. Humic substances can be conceptualized as particules 

that are chemically fixed to a surface by one or more of their functional groups. The 

remainder of the particle is weakly bound by lateral hydrophobic interactions. According to 

Ochs et al. (1994) the lateral interaction produces a membrane-like structure similar to that 

described by Wershaw (1986). In this model, the number of mineral surface sites is 

overcompensated by sorbed humic sites (Vermeer, 1996; Au et al., 1999; Reiller et al., 

2002). Such surface particles have been observed in atomic force microscopy (Maurice 

and Namjesnik-Dejanovic, 1999; Namjesnik-Dejanovic and Maurice, 2000). 

As NOM and HS are heterogeneous mixtures, sorptive fractionation occurs, and this 

depends on the nature of both the organic extract and the mineral surface  (Davis and 

Gloor, 1981; Gu et al., 1994; Kaiser and Zech, 1997; Meier et al., 1999; Namjesnik-

Dejanovic et al., 2000; Hur and Schlautman, 2003, 2004a, 2004b; Reiller et al., 2006; 

Claret et al., 2008; Pitois et al., 2008; Janot et al., 2012), and on equilibration time (Gu et 

al., 1994; van de Weerd et al., 1999). This has been characterized by techniques including 

SEC, UV-Visible, time-resolved luminescence spectroscopy, and asymmetric flow-field 

flow fractionation, for different ternary systems. As a result of the reduction in the dielectric 

constant of water at the surface of a mineral (Booth, 1951), one can also assume that the 

more hydrophilic entities have a low affinity for the surface, leading to an over 

representation of hydrophobic entities, and a higher molecular mass fraction on minerals. 

This has been observed experimentally (Gu et al., 1995; van de Weerd et al., 1999). The 

evolution of sorption with time is also of interest. Rapidly sorbed low molecular mass 

fractions (Ochs et al., 1994; Avena and Koopal, 1999), are replaced  by higher molecular 

mass fractions (Gu et al., 1994; van de Weerd et al., 1999; Pitois et al., 2008) following 

slow kinetics (Ochs et al., 1994; Avena and Koopal, 1998; Vermeer and Koopal, 1998) that 

are function of the NOM to mineral surface mass ratio (van de Weerd et al., 1999). In the 

case of metal oxides, exchange reactions between fractions of different molecular mass 

and hydrophobicity proceed more rapidly in the aromatic and low molecular mass fractions 

(Avena and Koopal, 1999; Pitois et al., 2008). The origin of the slow kinetics step can be 

viewed as slow exchange between non-sorbed hydrophobic humic entities and those that 

are already sorbed (Kaiser and Guggenberger, 2000). These mechanisms are thought to 
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be the cause of the modification of humic fraction during transport in sediment column 

experiments (Johnson et al., 2002). 

An important outcome of this sorptive fractionation is that the ‘HS object’, as defined in a 

model, contains material that can fractionate and therefore the properties of the HS can 

evolve. The differences reported by Claret et al. (2008) between their original Eu(III)-HA 

complex and Eu(III) complexed by HA fractionated onto α-Al2O3, result from these 

fractionation phenomena. In this case, the interaction between the fractionated HA and 

Eu(III) is less significant than that between the original HA and Eu(III). By contrast, 

Heidmann et al. (2005) showed that the Cu(II)-FA interaction after fractionation onto 

kaolinite was more significant than that before fractionation. This is reminiscent of the 

‘creation of sites’ in Tipping et al. (1983) for the Cu(II)/HA/goethite system. 

Different strategies can be used to model this apparent increase of affinity. Weng et al. 

(2007) proposed an adaptation of the metal/HA binary system free energy during sorption. 

A strong hypothesis is that the free energy change associated with humic substance 

aggregates at equilibrium has the same chemical potential, including electrostatic effects, 

sorbed to the surface and remaining in solution. In other words, the defined ‘humic object’ 

is the same in solution and at the surface but its free energy is changed due to sorption. It 

has been shown, however, that there are changes in the composition of HA due to sorptive 

fractionation (vide supra). A schematic view of the sorptive fractionation process is 

proposed in Figure 2; the humic acid aggregate leaves the more hydrophobic fraction onto 

the surface as the lower molecular mass and hydrophilic fractions are released in the bulk. 

The quantification of functionality after sorptive fractionation was proposed by Janot et al. 

(2010, 2011) for a HA by spectrophotometric titration. In the framework of the non-ideal 

competitive adsorption-Donnan (NICA-Donnan) model (Kinniburgh et al., 1999), it was 

shown that a substantial proportion of the more acidic functionality (those with the lower 

log10K
~

H in the framework of the NICA-Donnan model) remained in suspension, and that 

this has an influence on the metal-HSsorbed and metal-HSfree complexes, and on the 

metal/HS/surface ternary system. This quantification relies on the operational relationship 

between the optical properties of humic substances and the potentiometric titration. This 

operational relationship is less elegant and thermodynamically consistent than the 

proposition of Weng et al. (2007), but it accounts for the observed modification of 

functionality and composition of the ‘HA objects’ during sorption. It should be noted that 

this relationship still needs to be determined for each HS. 
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Figure 2. A schematic representation of sorptive fractionation of the NOM aggregate 
(see Figure 1) onto mineral surfaces. 

2.3. The metal/surface system 

The binary metal/surface system has been widely described in the literature and only the 

basic properties that are necessary to understand ternary systems will be discussed. 

The sorption pH-edge of metals on minerals is closely related to their first hydrolysis 

constant (Bradbury and Baeyens, 2005a, 2005b, 2009). As shown schematically in Figure 

3, at trace concentrations sorption commonly occurs at pH 8-10 for AnO2
+ (Turner et al., 

1998); at pH 5-7 for Ln/An3+ (Fairhurst et al., 1995; Rabung et al., 2000, 2005; Tan et al., 

2008; Janot et al., 2011); at pH 3-5 for UO2
2+ (Waite et al., 1994; Lenhart and Honeyman, 

1999); and at pH 2-3 for An4+ (Murphy et al., 1999; Takahashi et al., 1999; Reiller et al., 

2002, 2005; Romanchuk et al., 2011). The modelling was mainly done through surface-

complexation models of various kinds (Hiemstra et al., 1989a, 1989b; Davis and Kent, 

1990; Dzombak and Morel, 1990), with ion-exchange models (Alliot et al., 2005a, 2005b, 

2006; Motellier et al., 2003; Tertre et al., 2010), and also with mixed ion-exchange/non-

electrostatic surface-complexation strategies (Bradbury and Baeyens, 2002, 2005a; 

Bradbury et al., 2005; Bradbury and Baeyens, 2009). 

The influence of ionic strength depends on the nature of the minerals. For well-defined 

oxides there are mostly no influences on the sorption of metals (Zachara et al., 1994; 

Reiller et al., 2002; Janot, 2011). For clays, however, an ionic strength influence is clearly 

evident (Zachara et al., 1994; Bradbury and Baeyens, 2002). 
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Figure 3. A schematic comparison of actinides pH-edge at trace concentration for 
An(V) (AnO2

+), An3+, An(VI) (AnO2
2+), and An4+. 

3. THE TERNARY METAL/HS/SURFACE SYSTEMS 
3.1. Influence of sorptive fractionation of HS 

In ternary systems, in which metal cations, minerals and NOM coexist, there are 

complicated interactions among the three components; these interactions can be 

competitive or synergistic. The sorption of metals in these ternary systems generally 

increases before the mineral sorption edge compared to the metal/surface binary system, 

due the sorption of metal-HS complexes, and then decreases after the pH-edge due to 

desorption of HS. The metal sorption eventually decreases at more alkaline pH values. 

This general pattern is found for all metals and, in particular, for all the redox states of 

radionuclides (Figure 4) [e.g. Ln/An(III) (Fairhurst et al., 1995; Tan et al., 2008; Janot et al., 

2011), U(VI) (Payne et al., 1996; Zeh et al., 1997; Lenhart and Honeyman, 1999; 

Krepelova et al., 2006), and An(IV) (Takahashi et al., 1999; Reiller et al., 2002, 2005)]. 

The results of the modelling strategies depend on the nature of the mineral phases. For 

clay minerals, linear additive models are relatively successful (Dalang et al., 1984; 

Zachara et al., 1994; Heidmann et al., 2005). For oxides, linear additive binary models do 

not always produce reliable and adequate description of ternary systems across wide 

ranges of pH, ionic strength, metal and HS activities (Robertson and Leckie, 1994; 

Robertson, 1996; Vermeer et al., 1999; Christl and Kretzschmar, 2001). Tipping et al. 

(1983) proposed that the reactivity of sorbed HA was modified during sorption and that 

‘extra uptake sites’ with higher reactivity were created on the surface, or more probably, 



P. E. Reiller. Modelling Metal–Humic Substances/Surface Systems: Reasons for Success, Failure and 
Possible Routes for Peace of Mind 

- 11 - 

were exposed during sorptive fractionation. Binary linear additivity under-predicts metal 

sorption in the ternary systems above the sorption pH-edge (Vermeer et al., 1999; Christl 

and Kretzschmar, 2001). This may be related to the formation of ternary surface 

complexes, as is observed in many simple organic molecules (Schindler, 1990, and 

references therein; Alliot et al., 2005a, 2005b, 2006). 
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o
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C
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Figure 4. A schematic representation of the variation in metal sorption onto mineral 
surfaces with increasing concentration of humic substances (CHS). The dotted, 
dashed-dot-dot, and dashed line represent an increasing concentration of humic 
substances. 

In well-defined oxides minerals an increase of ionic strength leads to an increase in metal 

sorption, which can in turn be related to an increase in HS sorption – e.g. 

Co(II)/HA/gibbsite system (Zachara et al., 1994) and Eu(III)/HA/alumina system (Janot, 

2011). As there is a clear effect of ionic strength on metal sorption in the case of some 

clays – e.g. Co(II)/HA/clay (Zachara et al., 1994) –, it is not easy to discriminate between 

the different effects of ionic strength on both metal and HS. 

Another factor is the influence of metal/HS complexation on the sorption of HS onto 

minerals. This has been shown for some systems [e.g. the Pb(II)/FA system (Heidmann et 

al., 2005) and the Eu(III)/HA (Janot, 2011)], but is not common to all systems [e.g. the 

Cu(II)/FA system (Heidmann et al., 2005)]. Heidmann et al. (2005) noted that the 

difference between Cu(II)/FA and Pb(II)/FA systems was linked to the H+/M2+ molar 

exchange ratios [i.e., ~ 1 for Pb2+, and ~ 1.5 for Cu2+, respectively (Christl et al., 2001)]. 

The authors linked the differences in the ternary system evolution to the possible metal-

induced aggregation of their FA following the decrease in negative charge induced by 

metal complexation. The molar H+/Mn+ ratios requires that 1 mole of complexed M2+ leads 
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to the release of 1 mole of H+ for Pb2+, and 0.67 mole for Cu2+, respectively (Christl et al., 

2001; Heidmann et al., 2005). Hence, the reduction in negative charge due to 

complexation is greater for Pb2+ than Cu2+. In the case of Eu3+, Marang et al. (2006, 2008) 

and Janot et al. (2010, 2011) obtained H+/Eu3+ molar exchange ratios of ~ 1.3, and 1.6, 

respectively, which are comparable to those in the H+/Cu2+ system, but with a higher metal 

charge. The reduction in negative charge is thus more important for Eu3+ than for Cu2+, 

and is corroborates the proposition of Heidmann et al. (2005). Interestingly, the study of 

Heidmann et al. (2005) was on kaolinite whereas Janot et al. (2010, 2011) experimented 

on α-Al2O3. 

Another influential parameter is HA functionality modification during sorption. To examine 

this, it is important to compare the proposition of Tipping et al. (1983) for the creation of 

extra uptake HA sites upon sorption with the results obtained by Janot et al. (2010, 2012) 

and Janot (2011). it is clear in Janot et al. (2012) that after the HA sorption experiment 

onto α-Al2O3 the H+ affinity for non-sorbed HA is lower than for the original HA. Therefore, 

higher H+ affinity sites are present in the sorbed fraction. Applying the same reasoning on 

Eu(III)/HA/α-Al2O3 system, Janot et al. (2012) proposed that the sorbed-HA complex would 

have a higher affinity for Eu3+ than the original HA. Therefore, the higher than anticipated 

degree of sorption in ternary system is not due to the ‘creation of extra sorption sites’, but 

to their accessibility following sorptive fractionation. 

3.2. The particular case of tetravalent metals 

A further complication is present with (IV) redox states, which produce tetravalent cations 

(M4+), in systems in which the sequence of addition is important (Figure 5). Although an 

effect which depends on the addition sequence has been reported for some metals with 

(III) redox states, it is not long lived in Cm(III) (Wang et al., 2004). The sequence of 

addition is of particular importance for An(IV) (notably Th, U, Np, Pu) undergoing strong 

complexation reaction with HA (vide ante) as the corresponding An(III, V, VI)  may be 

oxidised or reduced to An(IV) in the presence of HS [e.g. Np(V) (Zeh et al., 1999; Artinger 

et al., 2000) or Pu(III, V, VI) (Nash et al., 1981; Sanchez et al., 1985; André and Choppin, 

2000; Marquardt et al., 2004; Dardenne et al., 2009)]. It has been shown (Figure 5) that if 

HS is sorbed onto a mineral surface, and M(IV) is added afterwards, the classical pattern 

of sorption hindrance after the sorption pH-edge is observed (Takahashi et al., 1999; 

Reiller et al., 2002, 2005; Bouby et al., 2011). However, if M(IV) is sorbed on a mineral 

surface before the addition of HS (Figure 5) M(IV) sorption is much less hindered 

(Takahashi et al., 1999; Reiller et al., 2002, 2005). A relatively weak dependence on 

equilibration time has also been demonstrated (Reiller et al., 2005).. The reasons behind 

this addition order effect are not yet clear. It is possible that the incorporation of M4+ into 

the mineral structure, or into a surface precipitate, would impede its removal by HA. 

Alternatively, the response of tetravalent metal to the fractionation of HS may induce a 

very high affinity of M4+ for surface-bound HA. 
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Figure 5. The effect of the addition order on M4+ sorption onto minerals in the 
ternary systems M(IV)/HA/surface: the solid line represents the M4+ pH-isotherm, 
dashed line represents the case where HA is equilibrated with the surface before the 
addition of M(IV), and dotted line represents the case where M(IV) is equilibrated 
with the surface before the addition of HA. 

4. CONCLUSIONS AND PERSPECTIVES  

The modelling of the ternary metal/HA/surface systems, at the laboratory scale or in the 

field, is not simple. The modelling of ternary systems using binary linear additivity meets 

with only partial success. This is due to the difficulty in defining an unambiguous standard 

state for aggregates of humic substances. Humic susbstances can form ternary complexes 

with metals and surfaces. The definition of ternary complexes in the case of HS is not 

straightforward (vide ante) but evidence exists for additional organic ligands that interact 

with metal/HA systems (Dierckx et al., 1994; Glaus et al., 1995; Morgenstern et al., 2000; 

Reiller and Buckau, 2012), and that metal/HA/oxide systems behave differently than the 

constituting binary systems (Tan et al., 2008; Janot et al., 2011). There is now strong 

evidence that a sorptive fractionation modifies the functionality of HS aggregates and  

hence that the ternary surface-bound and the bulk humic phases differ from those of the 

binary metal/HS and HS/surface systems. 

Possible ways of overcoming the change in functionality following sorptive fractionation 

include estimating the change in free energy from the deviation between the linear 

additivity and the ternary system, or directly quantifying the modification through titration. 

Both strategies have their advantages and drawbacks: in the former, no modification of 

functionality is imposed when clear experimental evidence exists for it; in the latter, the 
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functionality modifications rely on an operational function that is not based on a theoretical 

understanding of the sorptive fractionation. 

The need to better understand ternary metal–NOM–surface systems and to improve the 

accuracy and reliability of the modelling remains. More information about the molecular 

phenomena that produce sorptive fractionation and change the distribution of functionality 

is required. Important questions about ternary systems include (1) what are the main 

driving forces of sorptive fractionation? (2) Is sorptive fractionation driven by a change in 

conformation of the NOM aggregates due to polarity change between the bulk and the 

surface? (3) Is sorptive fractionation driven by the sorbed NOM fraction, which shows a 

higher affinity for the metal, which in turn induces a change in the composition of the NOM 

aggregates and finally a change in conformation of NOM aggregates? (4) Is sorptive 

fractionation controlled by kinetics? (5) What first-order phenomena are needed to model a 

particular metal–HS–mineral system? Answers to all of these questions are required to 

provide a satisfactory model of a ternary system, especially if more than an operational 

view is required. As long as these questions limit our understanding of the ternary metal–

NOM–surface system, however, we will be unable to produce satisfactory models. 
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