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ABSTRACT

Standard Bayesian analysis of event-related functional Magnetic

Resonance Imaging (fMRI) data usually assumes that all delivered

stimuli possibly generate a BOLD response everywhere in the brain

although activation is likely to be induced by only some of them

in specific brain areas. Criteria are not always available to select

the relevant conditions or stimulus types (e.g. visual, auditory, etc.)

prior to estimation and the unnecessary inclusion of the correspond-

ing events may degrade the results. To face this issue, we propose

within a Joint Detection Estimation (JDE) framework, a procedure

that automatically selects the conditions according to the brain ac-

tivity they elicit. It follows an improved activation detection that we

illustrate on real data.

Index Terms— Model specification, Stimulus type selection,

Joint detection-estimation, Bayesian hierarchical modelling, Func-

tional magnetic resonance imaging

1. INTRODUCTION

Functional MRI is based on the analysis of Blood Oxygen Level

Dependent (BOLD) signals that reflect neuronal mass activity in

the brain [1]. Within-subject analysis relies on both (i) a detection

step to localize which brain regions are activated by a given stim-

ulus type, and on (ii) an estimation step to recover the underlying

BOLD signal dynamics through the estimation of the Hemodynamic

Response Function (HRF). In [2], a Bayesian detection-estimation

approach (JDE) which jointly addresses (i)-(ii) in a brain region

(parcel)-based manner, has been proposed for event-related exper-

imental designs. An important challenge in designing and analyzing

such event-related fMRI experiments is how to optimize the accu-

racy with which the activation probabilities can be evaluated and the

event-related hemodynamic response to different stimuli estimated.

Most approaches have related this issue to the optimization of the

inter-stimulus-interval (ISI) as this is one of the only relevant factors

genuinely under the experimenter’s control [3]. Once the data has

been acquired, a crucial issue concerns the design of the activation

model: most often, this question is addressed in the General Linear

Model (GLM) context by comparing different model structures us-

ing Fisher tests between reduced and full models. In the JDE frame-

work, this model definition becomes parcel-specific so as to account

for spatial hemodynamic variability. Then, to optimize the activa-

tion probabilities, it makes sense to consider the most sparse model

by assessing the relevance to include or not each of the experimental

conditions in a specific parcel. The activation of interest is likely to

be induced by only a subset of these conditions that may depend on

the functional segregation of local brain areas and the cognitive task.

The relevant stimulus types may fluctuate across regions making this

optimization procedure a complex combinatorial task.

In this paper, we address this issue as a model specification prob-

lem within the JDE framework. By contrast to model selection ap-

proaches (such as in [4]) that require to compare the performance

of several models and select the most appropriate one, we propose a

single parsimonious procedure that includes the automatic selection

of the experimental conditions that best explain brain activity. This

is done by introducing for each stimulus type an additional binary

variable as a measure of its relevance (in terms of evoked activity).

In a regression context, the idea of adding such indicator variables is

usually referred to as variable selection (see e.g. [5]) and has been

used in [6, 7] to assess evoked brain activity. In the JDE framework,

this activity detection task is already handled within the model in a

more general way. Activated and unactivated voxels are modelled

using a two-class Gaussian mixture instead of a Bernoulli-Gaussian

prior [6, 7]. Our use of binary variables is then rather oriented to-

ward the selection of stimulus types which has to be done across the

whole set of voxelwise regressions.

In Section 2, we detail how the JDE framework allows a straight-

forward characterization of relevant stimulus types, and therefore

how we optimize the degree of model sparsity by selecting the appro-

priate variables. Section 3 is devoted to the stochastic inference of

our adaptive model. In Section 4, the proposed approach is validated

on a real fMRI dataset acquired during fast event-related design: we

show a better determination of activated brain regions from noisy

fMRI time series. A conclusion is drawn in Section 5.

2. PARSIMONIOUS JOINT DETECTION ESTIMATION

A vector is by convention a column vector. The transpose is denoted

by t. Unless stated otherwise, subscripts j, m and i are respectively

indexes over voxels, stimulus types and mixture components (acti-

vation classes). The Gaussian distribution with mean µ and variance

Σ is denoted using N (µ,Σ).

2.1. Missing and observed variables

The parcel-based model of the BOLD signal described in [2] can be

recast in a missing data framework. For a given brain parcel γ, the

observed data is denoted by y = {yj , j ∈ γ} where yj is a N -

dimensional vector representing the fMRI time course measured at

voxel j ∈ γ. Additional non observed variables are introduced:

1) The Neural Response Levels (NRLs) a = {am,m = 1 : M}
with am =

{

am
j , j ∈ γ

}

where M is the number of experimen-

tal conditions (or stimulus types) and aj =
{

am
j ,m = 1 : M

}

;

2) The HRF function denoted by h = [h0, h∆t, , . . . , hD∆t]
t

is a

(D+1)-real valued vector with ∆t the sampling period of the HRF;

3) The activation class assignments q = {qm,m = 1 : M} where

qm =
{

qmj , j ∈ γ
}

represent the activation classes with qmj = i

meaning that voxel j lies in activation class i for the mth experi-



mental condition. Typically the number of classes is 2 for activated

(i = 1) and unactivated (i = 0) voxels, while the case of deactiva-

tions has been addressed in [8].

In addition, in our parsimonious context, our goal is to account

for the fact that only a subset of the M stimulus types are necessary

to explain the evoked BOLD signal in a given parcel. A stimulus type

will be identified as irrelevant for the data under consideration if the

number of activated voxels for this stimulus type is too small. In this

case, we consider that such evoked activity is artifactual and decide

that the stimulus type should be discarded from the model definition.

To encode such information, we then add another set of M missing

binary variables w = {wm,m = 1 : M} where wm = 1 means

that the mth stimulus type is relevant while wm = 0 means that

it can be discarded. The observed and missing variables are then

linked through the following generative model implying additional

parameters to be estimated or fixed as specified bellow.

∀j ∈ γ, yj =

M
∑

m=1

w
m
a
m
j X

m
h+ εj , (1)

where Xm denotes the N × (D + 1) binary matrix that codes

the arrival times of the events of type m which are approximated

to fit a ∆t-sampled grid, εj’s stand for the noise (σ2
j ) and physio-

logical artifacts (as accounted for by P a low frequency orthogo-

nal N × L matrix) and are independent and normally distributed,

εj ∼ N (0,Q−1

j ), with Qj = 1

σ2

j

(

IN − PP t
)

(IN is the N ×N

identity matrix). More details can be found in [2].

2.2. Hierarchical model of the complete data distribution

With standard additional assumptions, not detailed here and denot-

ing by θ the whole set of unknown parameters, the joint distribution

p(y, w, a, h, q, θ) can be decomposed as follows:
p(y |w, a, h, θ) p(a |w, q, θ) p(w | q, θ) p(h | θ) p(q|θ) p(θ).

To fully define the model, we now specify each term in turn.

The p(y |w, a, h, θ) term. From (1), it comes that:

p(y |w, a, h, θ) =
∏

j∈γ

p(yj |w, aj , h, θ)

with (yj |w, aj , h, θ) ∼ N
(
∑M

m=1
wmam

j Xmh,Q−1

j

)

.

The p(a |w, q, θ) term. As usually assumed [2], different types of

stimuli induce statistically independent NRLs. The assignment vari-

ables qmj are then introduced to segregate activated from unactivated

voxels. Among voxels, the NRLs are assumed to be independent

conditionally on the qmj ’s so that putting together all stimulus types

we get: p(a |w, q, θ) =

M
∏

m=1

∏

j∈γ

p(am
j |wm, qmj , θ), where we

further assume that
(

am
j |wm=1, qmj = i, θ

)

∼ N (µm
i , vmi ) for

i ∈ {0, 1} and
(

am
j |wm = 0, qmj = i, θ

)

∼N (µm
0 , vm0 ). The Gaus-

sian parameters {µm
1 , vm1 , vm0 ,m = 1 : M} need to be estimated

but we set µm
0 = 0 for all m. The idea is that for a relevant stimulus

type (wm = 1), the distribution of am
j depends on the activation

state qmj in voxel j while for an irrelevant stimulus type (wm = 0),

qmj has no influence on am
j , which is distributed around 0 to account

for the absence of response to stimulus type m.

The p(w | q, θ) term. The binary variables w are independent

across stimulus types, p(w | q, θ) =
M
∏

m=1

p(wm | qm, θ) and fol-

low Bernoulli distributions whose probabilities of success are given

via a logit link to the number of activated voxels as given by qm,

P (wm = 1 | qm, θ) = F(
∑

j∈γ
qmj ),where F is the sigmoid func-

tion F(x; τ1, τ2) = (1 + exp(−τ1(x− τ2)))
−1 with τ1 controlling

the slope of the sigmoid and τ2 the inflection point that can be seen

as a relevance threshold above which the stimulus type will be con-

sidered as relevant with a high probability.

The p(h|θ) term. Akin to [9, 2], we introduce constraints in the

HRF prior that favor smooth variations in h (see [9] for details).

The p(q | θ) term. As in [2], we assume prior independence between

stimulus types regarding the activation class assignments. It follows

that p(q | θ) =
M
∏

m=1

p(qm |βm) where we assume in addition that

p(qm |βm) is a 2-class Potts model with interaction parameter βm

(see [2] for details).

The p(θ) term. θ = {σ2
j , µ

m
1
, vm

1
, vm

0
, τ1, τ2, β

m, j ∈ γ,m=1 :M}.

Following [2], these parameters will be inferred upon the posterior

distribution except for the additional parameters τ1 and τ2 involved

in the F logit link which are fixed as indicated in Section 4.

3. MARKOV CHAIN MONTE CARLO ESTIMATION

Our Bayesian model is too complex to be amenable to analytical

calculations. Hence, we resort to Gibbs sampling to sample from

the posterior distribution p(w, a, h, q, θ | y). Compared to [2], this

implies adding a sampling block for the binary variables w and dis-

cussing their impact on other blocks. Here, of particular interest are

the estimates of the posterior probabilities p(wm = 1 | y) for the

stimulus types and p(qmj = 1 | y) for the voxels class assignments.

Both are obtained by averaging after some burn-in period a series of

Monte Carlo iterates from the joint posterior distribution. We can

then derive respectively a relevance profile (a M -dimensional vec-

tor of 0 and 1 depending on whether a stimulus type is relevant or

not) and an activation map for each stimulus type by thresholding

the corresponding probability estimate. Following [6], the thresh-

old is in practice set to 0.872 which approximately corresponds to a

p-value of 0.05.

To focus on the relevance variables, within the Gibbs sam-

pler, the wm iterates are sampled from p(wm | y, w\m, a, qm, h, θ)

(where w\m = {wm′

,m′ 6= m}) which is proportional to

p(wm | qm, θ)
∏

j∈γ

p(yj |w, aj , h, θ)
∏

j∈γ

p(am
j |wm

, q
m
j , θ) .

To compute the probability of wm to be sampled at 0, we set

wm = 0 in the above expression that then simplifies:

p(wm = 0 | qm, θ) = 1−F(
∑

j∈γ
qmj ), p(yj |w, aj , h, θ) does not

depend on am
j anymore and p(am

j |wm, qmj , θ) = N (am
j ; 0, vm0 )

does not depend on qmj . It follows that the probability to gener-

ate wm = 0 can be impacted in turn by the number of activated

voxels for type m i.e.
∑

j∈γ
qmj via the first term above, by the

NRLs for type m i.e. {am
j , j ∈ γ} via the third term and by

{yj , a
m′

j ,m′ 6= m, j ∈ γ, h} via the second term. Each of these

groups of variables act independently on different parts of the

sampled conditional probability. More specifically, the first term in-

creases when the number of activated voxels decreases but the other

terms are not affected by qm. Similarly, if am
j → 0 , the third term

increases but the others are not impacted. Then, the second term

increases when the yj’s are well explained by the model without

type m or equivalently when the current noise model parameters can

accommodate the absence of stimulus type m.

The generated values of wm have in turn an effect on the other

simulated variables and in particular on the activation class assign-

ments qm which are more likely to favor inactivity when wm = 0
(this is illustrated in Figs. 1-2). If wm = 1, wm has no direct ef-

fect on the class assignments as both inactivity and activity can arise

depending on the observed data.



4. RESULTS ON REAL FMRI DATASETS

We considered real unsmoothed fMRI data recorded during an ex-

periment designed to map auditory, visual and motor brain functions

as well as higher cognitive tasks such as number processing and

language comprehension. It consists of a single session of N =
128 scans lasting 2.4s each, yielding 3-D volumes composed of

79×95×46 voxels. The paradigm is a fast event-related design com-

prising eighty auditory, visual and motor stimuli of ten types (audi-

tory and visual sentences, auditory and visual calculations, left/right

auditory and visual clicks, horizontal and vertical checkerboards).

The average ISI is of 3.76s with a standard deviation of 1.99s.

To better assess the impact of the relevance variables w, it is nec-

essary to focus on a brain region γ where some of the types above

are likely to be irrelevant. To this end, we focused on the left vi-

sual area (390 voxels) where it is well known that visual stimuli are

more likely to induce activity than auditory ones. We compared the

proposed model referred to as the parsimonious model with the com-

plete model where all the 10 stimulus types are included without in-

troducing w and allowing selection. Posterior mean estimates have

been computed over 150000 realizations of the Gibbs sampler after

a burn-in period of 50000 iterations. For our first model assessment,

we did not investigate the efficiency of the MCMC sampling scheme.

Regarding the model specification, we set τ1 = 1 and τ2 = 273
which is equivalent to 70% of the studied region. The value of τ2
impacts the prior probability of a stimulus type to be relevant. For

illustrative purposes and to emphasize differences between the two

models, τ2 is set to a relatively high value which a priori slightly fa-

vors the apparition of irrelevant stimulus types. The exact influence

of τ2 depends on the underlying Potts models for the activation class

assignments q and would required more investigations to be speci-

fied in more details. Note however, that for smaller τ2 values, the

relevant stimulus types are still detected but possibly with additional

ones.

The parsimonious model reports as irrelevant the auditory cal-

culation, left/right auditory clic and auditory sentence types with es-

timated posterior probabilities p(wm = 0 | y) of 0.822, 0.859, 0.940

and 0.935. The other 6 visual stimulus types are estimated as rel-

evant with probability 1. This observation is consistent with our

prior knowledge and suggests the ability of the parsimonious model

to correctly select the relevant stimulus types and discard the others.

The corresponding activation class assignments (qmj ’s) are then more

likely estimated to 0 for irrelevant types (see Fig. 1(b) and Fig. 2(a)

where no voxels are above the 0.872 threshold). In contrast, the com-

plete model tends to find meaningless activations for all conditions

as illustrated in Fig. 1(a) and Fig. 2(a) where activations are found

for a number of voxels (301 are above the 0.872 threshold) in the

left visual region for auditory calculation, which should not induce

evoked activity. Fig. 2 also shows the histograms of the estimated

p(qmj = 1 | y) for a relevant stimulus type (vertical checkboard). In

this case, the activation maps and the numbers of voxels over the

0.872 threshold are similar for the parsimonious (264 voxels) and

complete (267 voxels) models.

To further demonstrate the gain induced by selecting stimulus

types, we focus on the improvement provided by the parsimonious

model on relevant stimulus types compared to the complete model

whose estimates can be degraded by overfitting i.e., by modelling

the numerous irrelevant stimulus types. Fig. 3 shows normalized

contrasts maps of the 6 visual conditions versus the 4 auditory con-

ditions. The parsimonious model leads to more sensitive results as

activations in the left visual region are better highlighted with the

parsimonious model than with the complete model. A larger number

of voxels shows close to maximum contrasts with a lower disper-

sion in the parsimonious case as also emphasized in Fig. 4 with the

histograms of the normalized contrasts for values greater than 2.

Considering the estimation of the Gaussian prior mixture model,

as shown in Fig. 5(a), for the auditory stimulus types (suspected

as irrelevant for the brain region under consideration), the complete

model leads to very overlapped estimated components with a higher

variance for the unactivated class. In addition, for relevant visual

stimulus types (e.g. Fig. 5(c)), the complete model shows more un-

certainty with higher variances. In contrast, the parsimonious model

yields consistent and better separated estimates of the Gaussian com-

ponents for all stimulus types (Fig. 5(b)-(d)). Note that for visual

stimuli, the two models give similar mean values.

Finally, Fig. 6 shows the estimated HRF shapes for both models

in the visual area under study. The proximity of the main HRF

features (peak value, time-to-peak and time-to-undershoot) sug-

gests that the modifications introduced in our parsimonious model

act more on the spatial features of the activation maps than on the

recovery of the HRF shape.
(a) Complete model (b) Parsimonious model

Fig. 1. Maps of activation class assignments for irrelevant auditory calcu-

lation stimuli within the considered left occipital region of interest superim-

posed to the anatomical image: the complete model (a) misleadingly shows

a lot of activated voxels (in red) while the parsimonious model (b) shows

unactivated ones (in yellow). Neurological convention: left is left.

(a) Auditory calculation (b) Vertical checkboard

Fig. 2. Histograms of the estimated posterior probabilities of activation

p(qmj = 1 | y) for an irrelevant (a) and a relevant (b) stimulus type.

5. CONCLUSION AND FUTURE WORK

We proposed to go beyond the standard event-related fMRI data

analysis which assumes that all delivered stimuli induce a BOLD

response and models them as effects of interest in the GLM con-

text. Using a Bayesian hierarchical approach we further explored the

variable selection principle, used previously to detect evoked brain

activity [6], as a tool to perform relevant condition selection. Ex-

periments on real data suggested the ability of our model to accu-

rately select and exploit the most relevant stimulus types. Our par-

simonious model improves the statistical significance of the detected



(a) Complete model (b) Parsimonious model

Fig. 3. Normalized contrast maps of the 6 visual conditions vs the 4 auditory

ones in the left occipital region superimposed on the anatomical image: (a)

complete model and (b) parsimonious model. More voxels show close to

maximum contrasts in the parsimonious case. Neurological convention: left

is left.

Fig. 4. Superimposed normalized contrast histograms for contrasts greater

than 2 for the complete and parsimonious models. Higher contrasts are ob-

served for the complete model but the majority of the contrasts show smaller

values than in the parsimonious case.

voxels and limits false positive detection compared to the complete

model while preserving a robust HRF estimation. Inference was per-

formed using an MCMC procedure derived as a simple Gibbs sam-

pler whose mixing and convergence properties have not been thor-

oughly investigated in this paper. The Bayesian variable selection

literature is rich with a number of tools to improve the MCMC esti-

mation part. Our goal is then to study in more details the properties

of the possible chains so as to design one that optimally fits our stim-

ulus type selection goal. Faster alternatives to simulation intensive

procedures are also of interest such as variational Bayes implemen-

tations that have shown good performance in particular in the JDE

framework [10]. Another potentially important feature of our frame-

work is the automatic setting of parameter τ2. Its precise value does

not seem to be so sensitive but assessing the extent of its impact

would deserve more careful investigations. Eventually, further real

data analysis would be necessary for an extended study with a par-

ticular emphasis on the group-level impact of parcel-wise adaptive

definition of parsimonious models.
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