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ABSTRACT

The analysis of scale-free (i.e., 1/f power spectrum) brain ac-

tivity has emerged in the last decade since it has been shown that

low frequency fluctuations interact with oscillatory activity in elec-

trophysiology, noticeably when exogenous factors (stimuli, task) are

delivered to the human brain. However, there are some major dif-

ficulties in measuring scale-free activity in neuroimaging data: they

are noisy, possibly nonstationary ... Here, we make use of multifrac-

tal analysis to better understand the biological meaning of scale-free

activity recorded with Magnetoencephalography (MEG) data. On a

cohort of 20 subjects, we demonstrate the presence of self-similarity

on all sensors during rest and visually evoked activity. Also, we re-

port significant multifractality on the norm of gradiometers. Finally,

on the latter signals we show how self-similarity and multifractality

are modulated between ongoing and evoked activity.

Index Terms— MEG, scale-free activity, scaling, multifractal

analysis

1. INTRODUCTION

Starting with the discovery of brain oscillations in electroencephalog-

raphy (EEG) and later in magnetoencephalography (MEG),many stud-

ies have attempted to explain their mechanism and their possible

functional role in behavior and cognition. Some frequency bands

were particularly conspicuous and were given names such as δ (1-

3Hz), θ (4-8Hz), α (8-12Hz), β (12-30Hz) and γ (>40Hz). On the

other hand, very low frequency activity (< 1Hz) (also named “in-

fraslow”) did not attract as much attention due to the power-law dis-

tribution of the spectral density in the range of low frequencies. This

property is very ubiquitous in dynamic systems (fully developed tur-

bulence, internet traffic, earthquakes, stock market exchange, ...) [1].

In the context of brain imaging, such activity was initially attributed

to the intrinsic 1/f electronic device noise and was systematically

removed by high-pass filtering or normalization of M/EEG data.

However, several authors have shown that ongoing activity, the

major part of brain activity [2,3], has scale-free dynamics -i.e. a 1/f
power spectrum [1, 3–5]. Since then, the study of scale-free proper-

ties has emerged as a new research topic in neuroscience and brain

neuroimaging. A major finding is that scale-free activity recorded

with EEG interacts with ongoing oscillatory activity [6]. More-

over, the surprising correlation between EEG microstates and fMRI

resting-state networks (RSN) could be explained by the scale-free

properties of these microstates [7]. Other experiments have shed

light on the modulation of scale-free activity by exogenous (drugs,task)

and endogenous (brain state, pathology) factors [1, 8, 9].

Nonetheless, some major difficulties remain when assessing scale-

free properties in neuroimaging data: they are noisy, multivariate,

nonstationary, and possibly corrupted by physiological artifacts (eye

movements, heartbeats...). In particular, the nonstationarity and the

long range dependence yield a lack of statistical consistency when

estimating scaling properties in the time or frequency domain using

methods like Detrended Fluctuation Analysis (DFA) [11]. To over-

come this difficulty, one solution is to use wavelet-based analysis of

scaling properties.

Wavelet analysis implies a major change of paradigm: frequency

(and hence the frequency shift operator) is no longer considered as

the relevant descriptor and is replaced instead by scale (and hence

by a dilation, or scale change operator). This enables to correctly

estimate scale invariance parameters even when data present vari-

ous forms of non-stationarity. Moreover, some empirical results [5]

suggest that ongoing brain activity may be better modeled by the

class of multifractal (MF) processes. This class contains and extends

that of self similar processes (e.g. fractional Brownian motion, fBm)

thereby offering a more versatile and richer description of the data in

terms of scaling properties and departures from Gaussian property.

In Section 2, we summarize spectral and multifractal analyses.

In Section 3, we show the presence of scaling in MEG data at the sen-

sor level and compare standard spectral estimators with the wavelet-

leader based multifractal (WLMF) analysis [10]. Additionally, we

study the modulation of multifractal attributes between two cogni-

tive states: i.) Rest (R), and ii.) visualization of Random Dots

Kinematograms (RDK). Although no significant difference could be

found when analyzing direction-specific gradio- or magneto-meters

(see Section4.1), statistical differences are exhibited when analyzing

the norm of gradiometers (see Section 4.2). A criterion is derived in

Section 4.3 to explain this surprising difference and an interpretation

is suggested. Conclusions are drawn in Section 5.

2. SCALING ANALYSIS

2.1. Spectral analysis

Scaling is classically analysed using standard spectrum estimation

such as windowed-averaged periodograms (e.g. Welch’s estimator)

or detrended fluctuation analysis (DFA) [11]. The information is

supposed to be mainly contained in the power spectrum ΓX(f) of

the signal X for f → 0, which behaves as a power law:

ΓWelch(f) =
1

n

n∑

k=1

Γ̂X(f, tk) ≃ C|f |−γ , γ > 0. (1)

This implicitly requires the data to be stationary. Accordingly, frac-

tional Gaussian noise (fGn) is used as the paradigm model for such

analysis if γ ∈ (−1, 1). However, on real neuroimaging data, the

measured exponent γ usually satisfies γ ∈ (1, 3) [1], the data are

thus better modelled by the non-stationary fBm process, whose in-



crements follow a fGn. For both fBm and fGn, H takes values in the

range of (0, 1), hence corresponding to γ = 2H + 1, for the former

and to γ = 2H − 1 for the latter. However, if analysed data fol-

lows a fGn with H > 0.5, the underlying process is said long range

dependent, meaning that its autocorrelation function decreases very

slowly, while if the analysed time series follows a fBm andH > 0.5,

the corresponding process is self-similar, hence nonstationary.

The fBm/fGn pair is intrinsically coupled to Gaussian processes.

However, empirical results on brain imaging data [12] have shown

that data often departs from Gaussian distribution, hence ruling out

these models. Also, empirical evidence on brain electrical field [1]

indicates that the estimated γ takes values oscillating around the

fBm/fGn γ = 1 limit, hence suggesting a constant switch between

nonstationary selfsimilarity and stationary long memory, a very un-

satisfactory situation for data modeling and interpretation. By using

wavelet transforms, the nonstationarity issue can be overcome. Fur-

thermore, the wavelet-based scaling properties (eg, Hurst parameter)

are known to be more accurately estimated. Last but not least, depar-

ture from Gaussianity can be captured by analyzing statistical prop-

erties of the wavelet coefficients at different statistical orders ( 6= 2)

and interpreting such results in the context of multifractal processes.

2.2. Multifractal Analysis

Let dX(j, k) denote the discrete wavelet transform coefficients of a

signalX , where j denotes the analysis scale (a = 2j) and k the time

position (t = 2jk), computed from a Daubechies mother-wavelet

ψ0(t). Scale invariance is now commonly and operationally defined

as the power law behaviors of the (time average of the q−th power of

the) dX(j, k), with respect to the analysis scale j, for a given (large)

range of scales j ∈ [jm, jM ], jM > jm:

Sd(j, q)
∆
=

1

nj

nj∑

k=1

|dX(j, k)|q ≃ cq2
jζd(q). (2)

Sd(j, q) is the structure function at the scale j and order q. ζd(q)
refers to the scaling exponents. If X is monofractal (or self-similar),

ζd(q) is linear and can be simply characterized by one parameter

(namely, the Hurst exponent H). However, if X is multifractal,

ζd(q) is a concave function and its description is more complex. It

is worth noting that the only use of the power spectrum (i.e. Sd(j, q)
for q = 2) does not give any information on the multifractal proper-

ties. Ideally, we should assess ζd(q) for all values of q (positive and

negative). It has been shown recently that replacing wavelet coef-

ficients dX(j, k) by the so-called wavelet Leaders LX(j, k) would

improve the estimation of ζd(q), especially for negative values of q.

Wavelet Leaders LX(j, k) are defined as the local suprema of

wavelet coefficients within a local neighborhood, and over all finer

scales: [10]: LX(j, k) = supλj′,k′⊂3λj,k
|dX(j′, k′)|, where λj,k =

[k2j , (k+1)2j) and 3λj,k = ∪m{−1,0,1}λj,k+m. Eq. (2) still holds

by replacing |dX(j, k)|q with LX(j, k)q and ζd(q) with ζL(q). In

practice, estimating of ζL(q) for all values of q turns out very diffi-

cult. We make use of a polynomial expansion of ζL(q) instead:

ζL(q) =
∑

p≥1

cLp q
p/p ! = cL1 q + cL2

q2

2
+ cL3

q3

6
+ · · · .

As detailed in [10], the cLp coefficients are estimated by linear

regressions, where cL1 reflects the self-similarity (or long memory)

of the process, especially for monofractal processes, where cL1 = H
and ∀p ≥ 2 cLp = 0. For multifractal processes, we specifically

have cL2 < 0 to quantify the amount of singularities and cL3 ∈ ❘ for

describing the assymetric nature of the singularity distribution. In

this study, we have focused on cL1 and cL2 .

The WLBMF toolbox has been designed to robustly estimate

these cLp parameters [10]. it has been already used successfully to

analyse multifractal properties of fMRI signals [5] and scale-free

dynamics in EEG microstates [7]. In the following, it allows us to

accurately characterize scale-free properties of MEG time series and

their modulation by external stimulus.

3. POWER LAW SPECTRUM ON MEG RECORDINGS

3.1. Data acquisition

Brain magnetic fields were recorded in a magnetically shielded room

using the whole-head Elekta Neuromag MEG system (Elekta LTD,

Helsinki) with 102 triple-sensor elements (two orthogonal planar

gradiometers and one magnetometer) in upright position. Data were

sampled at 2000Hz and pass-band filtered between 0.03Hz and 600Hz.

Signal Space Separation (SSS) was carried out with Max-Filter (Elekta

LTD) to remove external interferences. Occular and cardiac arti-

facts were removed using principal component analysis based on the

recorded electrooculograms (EOG) and electrocardiograms (ECG).

Twenty healthy right-handed subjects (aged 19-27 years) with

normal or corrected-to-normal vision participated in this experiment.

Each participant provided an informed consent in accordance with

the Declaration of Helsinki (2008) and the Ethics Committee on Hu-

man Research at NeuroSpin (Gif-sur-Yvette, France). Before each

experiment, empty room MEG recordings were acquired for 5 min-

utes. The experiment consisted of two sessions: 1) ‘Rest’ (R) ses-

sion: the subject was asked to keep eyes open and to stare at the black

screen in front of him during 5 minutes. 2) ‘RDK’ session: The sub-

ject fixated a cross on the center of the screen, while a random dot

kinematogram of 2.5 s was presented continuously 120 times (radius

of the annulus: 4-15 deg, dot radius: 0.2 deg , dot flow: 16.7 dots

per deg2.s, dot speed: 10 deg/s). Initially, all dots were moving in-

coherently (i.e., each dot moves in a different direction). In half of

the trials, 95% of dots took a coherent direction (ie move in the same

direction) after the stimulus onset. In the other half, dots remain in-

coherent. Moreover, at each frame, 5% of all dots were reassigned

to new positions with new motion directions for incoherent dots.

3.2. Empirical evidence of long memory

For each subject, each session and each sensor, we computed Welch’s

power spectrum estimate derived in Eq. (1). A representative spec-

trum computed by averaging all radial gradiometers is shown in

Fig. 1 in black and dark blue lines for the R and VM sessions, respec-

tively. The presence of scaling or 1/f behaviour clearly appears as a

linear slope in this log-log plot over the (0.1-3Hz) frequency range.

In addition, this 1/f power spectral density is clearly different from

that measured during the empty recording (light blue line in Fig. 1),

thus ruling out the hypothesis that the 1/f is simply driven by the

electronic device noise. Interestingly, the power of acquisition noise

is upper bounded by that measured during brain activity recordings.

Finally, α- and β-band oscillations emerge during the presentation

of visual motion stimuli and even more during the rest, while they

do not appear in the empty recording.

As a comparison with the previous method, we also estimated

the structure fonctions Sd(j, q) for q = 2 only. Structure fonc-

tions at this 2nd statistical order are indeed equivalent to the power

spectrum while estimated using discrete wavelets. f and j are re-

lated one another by f = 3
4

fs
2j

, where fs is the sampling frequency.

The resulting wavelet-based spectrum also named log-scale diagram

(log2 S
L(j, 2) vs. log2 2

j = j) averaged over all radial gradiome-

ters is shown in Fig. 1 where green, red and yellow lines represent



respectively the R, VM and empty recordings. In contrast to Welch’s

periodogram ΓWelch(f), the Sd(j, 2) estimates are less sensitive to

oscillation peaks. Discrete wavelets are thus more appropriate to

analyse the 1/f behaviour in low frequencies.

This preliminary result confirmed the presence of scaling in the

data, which cannot be attributed to the sensor noise. It also shows the

advantage of using discrete wavelets for analyzing the 1/f spectrum.

Although spectral analysis provides restricted information on the

scale invariance properties, it allows us to determine the scale range

on which the WLBMF analysis is applied. In the following, we anal-

yse the multifractal properties in the scale range [jm, jM ] = [9, 14]
(i.e. in the frequency range 0.1-3Hz). The log-scale diagram is ac-

tually linear in this part.

lo
g
2
Γ̂
(f

)[
lo
g
2
S
L
(j
,
2
)]

in
d

B

log2 f [j]
Fig. 1. Log-log plot of spectrum estimates averaged across all ra-

dial gradiometers. Welch’s periodograms are plotted in black (R),

dark blue (VM) and light blue (Empty). Wavelet-based estimates are

plotted in green (R), red (VM) and yellow (Empty).

4. MODULATION OF MULTIFRACTAL PROPERTIES

4.1. WLBMF analysis on all sensors

For each subject s = 1 : 20, considering N = 3 as the number of

vanishing moments of the Daubechies mother wavelet we estimated

ĉL,r
1,k,c(s) and ĉL,r

2,k,c(s) on the integrated time series (i.e. the cumu-

lative sum) measured in each sensor (k = 1 : 102) and for each

channel type c: magnetometers (mag) and gradiometers along the ra-

dial (gradR) and tangential (gradT) directions. The same estimation

was done for the rest (r = R) and visual motion (r = VM) sessions.

The mean values µr
i,k,c =

∑20
s=1 ĉ

L,r
i,k,c(s)/20 (i = 1 : 2), are plot-

ted for all sensor types in Fig. 2. In both sessions, all sensors exhibit

large self-similarity: µr
1,k,c > 0.75. Moreover, the µr

1,k,c-values ap-

pear systematically larger in the frontal regions (meaning more self-

similar) than in the occipito-parietal ones. Note also that µr
i,k,c>1 in

certain sensors, which violates the validity of fBm model.

µVM
1,k,· µR

1,k,·

c = gradR

c = gradT

c = mag

Fig. 2. Group-level µr
1,k,c-topographies computed for all sensors

k, all channel types c and the two sessions r = R,VM.

In the same manner, Fig. 3 shows the topographies of the mean

µr
2,k,c-values. Multifractality (µr

2,k,c < 0) is observed on the gra-

diometers located in the occipito-parietal regions.

µVM
2,k,· µR

2,k,·

c = gradR

c = gradT

c = mag

Fig. 3. Group-level µr
2,k,c-topographies computed for all sensors

k, all channel types c and the two sessions r = R,VM.

Then, we perform the following one-sided group-level statistical tests:

H0r(1,k,c) : µ
r
1,k,c 6 δ1, where δ1 = 0.5 (White noise),

H0r(2,k,c) : µ
r
2,k,c = δ2, where δ2 = 0. (self-similarity),

}
(3)

To this end, we computed the t-statistics T r
i,k,c = (µr

i,k,c −
δi)/σ

r
i,k,c, where the latter term denotes the group-level standard de-

viation. RejectingH0r(1,k,c) clearly amounts to localizing regions (k)

and sensor type (c) eliciting self-similarity in session r while re-

jecting H0r(2,k,c) enables to discriminate multifractality from self-

similarity. Statistical results (not shown) demonstrate that H0r(1,k,c)
was rejected everywhere even after Bonferroni correction for multi-

ple comparisons (p-values pcorr < 10−6). However, due to a large

between-subject variability, H0r(2,k,c) was not rejected after Bonfer-

roni correction (puncorr ≈ 10−2) for a False Positive Rate (FPR) of

5%. Paired t-tests were also computed to compare the R and VM

sessions, where the null assumption consists in assuming the same

mean values: µR
i,k,c = µVM

i,k,c The null hypotheses H0R,VM
(1,k,c) and

H0R,VM
(2,k,c) were never rejected indicating that no significant differ-

ence can be exhibited between ongoing and evoked activity. How-

ever, in several MEG studies, the signal of interest is usually con-

sidered as a non-linear combination of both types of gradiometers,

namely the ℓ2-norm of gradiometers. Therefore, we decided to anal-

yse the norm of gradiometers too.

4.2. WLBMF analysis on the norm of gradiometers

As each pair of gradiometers is orthogonal, their norm is simply de-

fined by ‖ ~grad‖ =
√

grad2
R + grad2

T. As already done, we estimated

ĉL,r

1,k,‖.‖(s) and ĉL,r

2,k,‖.‖(s) for ‖ ~grad‖ and then computed mean val-

ues µr
i,k,‖.‖ (i = 1, 2). A very noticeable result (Fig. 4[left]) is the

global reduction of self-similarity shown by the decrease of µr
1,k,‖.‖

in both sessions. Nonetheless, the self-similarity remains large enough

to be statistically significant everywhere. We then compared the

two sessions by computing ∆µ1,k,‖.‖ = µR
1,k,‖.‖ − µVM

1,k,‖.‖ (see

Fig. 4[Mid.]) and testing the statistical significance of this differ-

ence using a paired t-test where the null hypothesis was H0R,VM:

µR
1,k,‖.‖ 6 µVM

1,k,‖.‖. As shown in Fig. 4[right], significant differ-

ences (pcorr < 10−2) emerges in the occipital area where ∆µ1,k,‖.‖>
0. This finding is consistent with the literature dealing with the task-

induced modulation of scale-free properties [4] observed in fMRI.

The multifractal behaviour of ‖ ~grad‖ measured through negative

values of µr
2,k,‖.‖ is emphasized in Fig. 5. As shown in Fig. 3[Mid.],

∆µ2,k,‖.‖ < 0 in the occipito-parietal (MT) area. This means that

multifractality decreases in the target region (MT) of the delivered

stimuli during evoked activity (cold spots in Fig. 5[Left]) in compar-

ison with resting-state. The statistical paired t-test performed with

H0R,Vm : µR
2,k,‖.‖>µ

VM
1,k,‖.‖ is significant in the MT region but not

enough to survive to Bonferroni correction for FPR=5%.



µVM
1,k,‖.‖ µR

1,k,‖.‖ ∆µ1,k,‖.‖ puncorr (in -log10)

Fig. 4. Left: Group-level µr
1,k,c-topographies computed for the

norm of the gradiometers and the two sessions r = R,VM. Middle:

mean difference ∆µ1,k,‖.‖ between the R and VM sessions. Right:

Uncor. p-values resulting from the between-session paired t-test.

µVM
2,k,‖.‖ µR

2,k,‖.‖ ∆µ2,k,‖.‖ puncorr (in -log10)

Fig. 5. Left: Group-level µr
2,k,c-topographies computed for the

norm of the gradiometers and the two sessions r = R,VM. Middle:

mean difference ∆µ2,k,‖.‖ between the R and VM sessions. Right:

Uncor. p-values resulting from the between-session paired t-test.

4.3. Simulation with fGn

To understand the impact of the ℓ2 norm on the multifractal proper-

ties, we synthesized 10000 fGn processesX (H = .75) with the cir-

culant embedded method [13]. We considered a simplified problem

where gradR = gradT, meaning that ‖ ~grad‖ ∝
√

grad2
R = |gradR|.

Hence, our simulation amounts to estimating the multifractal prop-

erties of X and |X|. We systematically observed a decrease of long

memory: ∆ĉ1 , ĉ1|X|
− ĉ1X < 0, which is consistent with our exper-

imental results. Likewise, multifractality appeared in |X| whereas it

is absent in X (fGn process). Given that the number of sign changes

nsign in X is the only parameter that induces regularity changes in

|X| (i.e. no addition of irregularity if X is always positive or nega-

tive), nsign was expected to be the main cause of these observations.

This hypothesis is validated in Fig. 6 when plotting ∆ĉ1 with respect

to the proportion of sign changes psign in X . ∆ĉ1 decreases almost

systematically (i.e. with a low variance) as a function of psign. It

goes down dramatically when psign > 0.3. Regarding the multi-

fractality (i.e. ∆ĉ2), the observation is similar but less pronounced

owing to the higher estimator variance (figure not shown).

∆
ĉ 1

psign
Fig. 6. ĉ1 variation when analyzing |X| as a function of psign.

10000 fGn processes synthesized (in blue). Fitted curve in red.

Therefore, the apparent contrast in the occipital area when an-

alyzing the norm of gradiometers can be explained by the number

of sign changes in the gradiometers or by their phase. Because gra-

diometers measure the spatial derivative of the magnetic fields in two

orthogonal directions, a change of sign suggests a change of source

orientation or even perhaps of the source itself.

5. DISCUSSION AND CONCLUSION

We have demonstrated the presence of long memory in MEG data

over all sensors. A small amount of multifractality was observed on

the gradiometers in the occipital and parietal scalp regions. Inter-

estingly, only the norm of gradiometers exhibits a modulation of the

multifractal properties between ongoing and evoked activity. Ad-

ditionally, this modulation was very localized to an area probably

sensitive to the nature of the stimuli (as assessed by additional ex-

perimental work in progress). It would be very interesting to change

the sensory context (e.g. auditory stimuli) in order to check whether

the modulation moves to the expected auditory regions in order to

further show the specificity of our results.

The norm of gradiometers seems to capture more information.

This is largely due to the nonlinear nature of the norm and the num-

ber of sign changes in the gradiometer signals. The contrast between

R and RDK in the occipital area can be interpreted as a higher rate

of source orientation changes in hMT+/V5 during the presentation of

RDK. Importantly, we propose that this result extends to a more gen-

eral concept: in any imaging modality (e.g. fMRI), the knowledge

of any nonlinear transformation in the generative model [14] of the

data can be crucial to correctly interpret its multifractal properties.
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