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ABSTRACT

Both parallel Magnetic Resonance Imaging (pMRI) and Compressed

Sensing (CS) are emerging techniques to accelerate conventional

MRI by reducing the number of acquired data in the k-space. So

far, first attempts to combine sensitivity encoding (SENSE) imaging

in pMRI with CS have been proposed in the context of Cartesian

trajectories. Here, we extend these approaches to non-Cartesian tra-

jectories by jointly formulating the CS and SENSE recovery in a hy-

brid Fourier/wavelet framework and optimizing a convex but nons-

mooth criterion. On anatomical MRI data, we show that HYR2PICS

outperforms wavelet-based regularized SENSE reconstruction. Our

results are also in agreement with the Transform Point Spread Func-

tion (TPSF) criterion that measures the degree of incoherence of k-

space undersampling schemes.

Index Terms— MRI, parallel imaging, Compressive sensing,

wavelets, nonsmooth optimization.

1. INTRODUCTION

Reducing scanning time in MRI exams remains a worldwide chal-

lenging issue. The expected benefits of a faster acquisition can be

summarized as follows: i.) limit patient’s exposure to the MRI en-

vironment for safety reasons, ii.) maintain a strong robustness in

the acquisition with respect to subject’s motion, iii.) limit geometric

distortions. The basic idea to make MRI acquisitions faster consists

of reducing the amount of acquired samples in the k-space and to

develop dedicated reconstruction pipelines. To this end, both par-

allel imaging (pMRI) and compressed sensing (CS) have been pro-

posed. pMRI relies on a geometrical principle involving multiple

receiver coils with complementary sensitivity profiles that makes the

reconstruction of MR images from multichannel k-space data sam-

pled below the Nyquist sampling rate feasible. Standard reconstruc-

tion methods include sensitivity-based single image approaches like

SENSE [1], SMASH [2] and autocalibrating coil-by-coil techniques

like GRAPPA [3] and the most recent SPIRiT algorithm [4], which

draws its inspiration from both GRAPPA and SENSE. Theoretically,

the acceleration factor R is upper bounded by the number of chan-

nels under ideal conditions. In practice this bound is never achieved

due the amount of noise and imperfect coil geometry.

CS-MRI relies on the Compressed Sensing theory [5,6] that pro-

poses a new framework for data sampling and signal recovery. It

has generated significant interest because it enables exact signal re-

construction from much fewer data samples than suggested by Shan-

non’s theorem. CS-MRI has been popularized because MR images

meet the two key assumptions underlying the CS reconstruction: a.)

MRI images are sparse in a given linear transform domain and b.)

the Fourier encoding is incoherent with this sparse transformation.

CS-MRI methods include SparseMRI for Cartesian trajectories [7]

and other approaches for alternative sampling schemes [8].

The idea of combining CS and pMRI has been proposed recently

in an attempt of further accelerating SENSE imaging because pMRI

and CS-MRI reduce sampling according to different ancillary infor-

mation (channel sensitivity vs. image sparsity). The SparseSENSE

method and its equivalence [9] have been developed as a straightfor-

ward combination method that reconstructs images from multichan-

nel data using the nonlinear SparseMRI solver, except that Fourier

encoding is replaced by the sensitivity encoding comprising Fourier

encoding and sensitivity weighting. In [10], a more efficient method

with guaranteed incoherence, called CS-SENSE, was proposed for

Cartesian trajectories only. Its principle is based on a two-step proce-

dure, where CS reconstruction is first carried out by SparseMRI for

the aliased image of each channel and second, Cartesian SENSE re-

construction is performed in the image domain. Here, we extend the

CS-SENSE approach to non Cartesian trajectories and in this respect

our algorithm is closer to SPIRiT. Our method named HYR2PICS is

hybrid in several respects: i.) it jointly formulates CS and pMRI

in the Fourier space (see Section 2) so as to address the reconstruc-

tion of full Field Of View (FOV) images in the wavelet domain from

uncoherent multichannel Fourier samples. ii.) It combines regular-

ization in the wavelet and image domains so as to promote sparsity

while avoiding ringing artefacts. iii.) It makes use of recent opti-

mal primal-dual convex but non-smooth minimization algorithm (see

Section 3). In section 4, the TPSF criterion expressed in the pMRI

context demonstrates the gain induced by incoherent sampling. Sec-

tion 5 is devoted to validation on anatomical data, where it is shown

that the HYR2PICS method outperforms wavelet-based regularized

SENSE reconstruction: the most accurate results are obtained for

2D random point or checkerboard sampling schemes, thus departing

from conventional pMRI undersampling.

2. PROBLEM STATEMENT

In this work, we consider discrete complex spin densities ρ ∈ C
n,

where n = nx · ny is the pixels number. ρ(x) denotes the value

of ρ at pixel x ∈ {1, · · · , n}. All the theory developed here also

applies to 3D densities, and then n = nx · ny · nz . The standard

inner product is denoted 〈·, ·〉. The associated norm is denoted ‖ · ‖.

The canonical basis of Rn is composed of the vectors e1, · · · , en.

Let A and B be two matrices [A,B] and [A;B] respectively de-

note a horizontal and a vertical concatenation of A and B (as in

Matlab). Idn = [e1, . . . , en] denotes the identity operator in R
n or

C
n. Let A be a linear application. A∗ denotes its adjoint (conjugate

transpose). F denotes the discrete Fourier Transform. It is a unitary

transform so that F ∗=F−1. ∂1 :C
n → C

n and ∂2 :C
n → C

n are

linear applications that design the discretized derivatives in the x, y



directions respectively. ∇ = [∂1;∂2] denotes the discrete gradient.

Let F : Rn → R ∪ {+∞} be a convex, closed function with

non-empty domain. F† refers to the Fenchel conjugate of F defined

by: F†(u)=supv∈Rn〈u, v〉 − F(v). The sub-differential of F at u
is the set defined by: ∂F(u)= {η ∈ R

n,F(v) ≥ F(u) + 〈η, v −
u〉, ∀v ∈ R

n}. The resolvent (or proximal operator) of F at point u
is defined by: (Id+∂F)−1(u)=argminv∈Rn F(v)+‖v−u‖2/2.

2.1. Parallel imaging

In parallel MRI, an array of L coils is employed to measure the spin

density ρ into the object under investigation. The signal dℓ ∈ ❈m

received by each coil ℓ (1 ≤ ℓ ≤ L) is the Fourier transform of the

desired 2D field ρ on the specified FOV weighted by the coil sensi-

tivity profile, evaluated at some location. This signal is deteriorated

by an additive Gaussian white noise nℓ of variance σℓ.

In this work, we consider the problem in the discrete setting.

We assume that the spin densities ρ are defined on a Euclidean grid

which is a discretization of the FOV. Under this assumption, the ac-

quisition process can be written in the condensed form:

dℓ = ΣsFSℓρ+ nℓ (1)

where Sℓ : C
n → C

n denotes a sensitivity operator. It is a diagonal

matrix the i-th diagonal element of which indicates the attenuation

at pixel i. Σs : Cn → C
m represents the sampling operator. This

matrix reads Σs = [ei1 , · · · , eim ]∗ where each ij indicates the in-

dex of the j-th measure on the Cartesian grid. Eq. (1) presents the

advantage to unify pMRI and compressive sampling by considering

different structures for matrix Σs: i.) A full k-space sampling would

correspond to Σs = Idn. ii.) Compressive sensing would lead to a

random choice of m indices {i1, · · · , im} in the set {1, · · · , n}.

2.2. Combining CS and pMRI reconstructions

Since the between-channel covariance is assumed diagonal Λ =
diag

[
σ2
1Id, · · · , σ

2
LId

]
, considering all incomplete data (dℓ)ℓ=1:L,

the SENSE solution amounts to minimizing the following criterion:

H(ρ) =

L∑

ℓ=1

σ−1
ℓ ‖dℓ −ΣsFSℓρ‖

2. (2)

This minimization boils down to the resolution of a linear system

which can be solved in O(n log(n)) operations using Fourier trans-

forms. However, the operator ΣsFSℓ is usually rank defficient or

has small singular values since the sensitivities have a fast spatial

decay. Minimizing (2) thus yields unstable results.

An appropriate remedy consists of regularizing the problem by

imposing sparsity constraints. As pointed out in [7], MR images are

usually sparse in certain transform domains, such as wavelets repre-

sentations. Let Ψi ∈ C
n design an atom and Ψ = [Ψ1, . . . , Ψp] ∈

❈
n×p, p ≥ n design a dictionary. In the following, we assume

that Ψ is surjective. A spin density ρ is said to be sparse in Ψ if

it can be written ρ =
∑p

i=1
ζ(i)Ψi = Ψζ where ζ ∈ ❈

n has

only a few non-zero entries. In the following, we employ a dyadic

2D orthonormal wavelet transformation over jmax resolution levels.

Hence, the coefficient field is defined as ζ = (ζa, ζo,j)o∈O,j=1:jmax
,

where O = {0, 1}2 \ {(0, 0)} ζa = (ζa,k) represents the vector of

approximation coefficients and ζo,j = (ζo,j,k)k=1:Kj
denotes the

vector of detail coefficients at resolution level j and orientation o,

with Kj = n2−2j . Note that in the dyadic case, there are three

orientations corresponding to the horizontal (h), vertical (v), and di-

agonal (d) directions.

The compressive sensing theory ensures that ρ can be recovered

precisely with only few observations d(k), with k ∈ {1, . . . ,m}

and m ≪ n, by computing ρ̂ = Ψζ̂ where

ζ̂ ∈ argmin
ζ∈Cp

‖ζ‖1 s.t. d(k) = 〈ρ,φk〉 , ∀k=1:m. (3)

In SparseMRI [7] where single coil acquisition is addressed, the ac-

quisition basis Φ = [φ1, . . . ,φn] identifies with F . In more recent

contributions [10] where parallel imaging is involved, the basis be-

comes channel-specific i.e., Φℓ = FSℓ. In the presence of noise,

the constraint d(k) = 〈ρ,φk〉 is relaxed. Moreover, regularizations

based solely on sparsity (synthesis) lead to spurious oscillations that

can be avoided using regularization in the spatial domain (analysis).

Hence, following [11], we look for the decomposition ζ of ρ in the

dictionary Ψ by minimizing the following criterion that embodies

hybrid regularization (in the wavelet and image domains):

ζ̂ ∈ argmin
ζ∈❈n

[JWLS(ΦΨζ)+JS(ζ)+λAJA(∇Ψζ)] . (4)

We then reconstruct the image solution as ρ̂ = Ψζ̂. In Eq. (4),

Φ = [ΣsFS1; . . . ;ΣsFSL] is the observation operator.

JWLS(Φρ) =
∑L

ℓ=1
σ−1
ℓ ‖dℓ − (Φρ)ℓ‖

2. JS is the penalization in

the wavelet domain that ensures sparsity of ζ:

JS(ζ) =

Kjmax∑

k=1

ϕa(ζa,k) +
∑

o∈O

jmax∑

j=1

Kj∑

k=1

ϕo,j(ζo,j,k), (5)

where we have ∀o ∈ O and j ∈ {1, . . . , jmax}, ϕo,j(ξ) = ϕRe
o,j(ξ)+

ϕIm
o,j(ξ) ∀ξ ∈ ❈, with ϕ⋄

o,j(ξ) = α⋄
o,j |⋄(ξ − µo,j)| + β⋄

o,j |⋄(ξ −

µo,j)|
2 and (⋄ = Re) or (⋄ = Im), µo,j = µRe

o,j + ıµIm
o,j ∈ ❈ and

α⋄
o,j , β⋄

o,j are some positive real constants. Hereabove, Re(·) and

Im(·) (or ·Re and ·Im) stand for the real and imaginary parts, respec-

tively. A quadratic penalty term ϕa is adopted for ζa.

In eq. (4), JA(∇ρ) =
∑n

i=1
ϕA

(√
(∂1ρ)(i)2 + (∂2ρ)(i)2

)
where

ϕA is a Huber function and λA a non-negative regularization param-

eter. JA(∇ρ) is thus a smooth approximation of the total varia-

tion, allowing to avoid staircase effect. As regards hyper-parameter

estimation, we used a Maximum Likelihood (ML) estimation strat-

egy on a reference image, typically the SENSE reconstruction, that

provides fair estimates for λA and (α⋄,β⋄) in a reasonable com-

putation time. As proposed in [12], more accurate but more costly

estimates can be achieved using stochastic sampling.

3. PRIMAL-DUAL OPTIMIZATION

3.1. A review of optimization methods

Minimizing criterion (4) is a hard task since the problem is convex,

but large scale, non differentiable and non strongly convex. Many

first order schemes were recently proposed or rediscovered by the

signal processing community to solve such problems.

Among them, let us cite proximal gradient descents (also called

Forward-Backward splitting) and their acceleration [13], Douglas-

Rachford algorithms, ADMM and their extension to more compo-

nents such as Parallel ProXimal Algorithm (PPXA) [14], or extra-

gradient Like methods [15]. All these methods rely on the ability to

compute resolvents of a part of the problem explicitely. Among the

above methods it seems that only Extra-gradient like methods can be

applied directly to problem (2). Indeed :

• Proximal gradient descents would require the computation of

the resolvents of JA(ρ) which cannot be done explicitely.

• ADM or Douglas-Rachford like methods rely on the ability to

solve linear systems of kind (S∗
ℓF

∗
Σ

∗
sΣsFSℓ + Id)x = b,



which is an open topic in linear algebra.

We thus decided to use extra-gradient like methods and more par-

ticularly the Chambolle-Pock (CP) primal-dual method, which has

an “optimal” O
(
1

k

)
convergence rate for the problem under con-

sideration and only requires matrix-vector multiplications. In con-

trast to most contributions (e.g. [16]), this scheme is not composed

of two nested iterative algorithms. Such methods usually have no

convergence proof due to the approximations made in the inner it-

eration. Note however that a few primal-dual alternative algorithms

have been proposed in the recent literature (see [17] and references

therein) that could possibly perform the same optimization task.

3.2. The Chambolle-Pock implementation

Problem (4) can be rewritten as:

min
x∈Cp

F(Ax) + G(x). (6)

where F(y) = JWLS(y1)+λAJA(y2) with y = [y1; y2] ∈ C
mL×

C
2n, G(x) = JS(x) and A = [ΦΨ;∇Ψ]. This formulation has

the nice property that both G and F are separable pixel-wise, mak-

ing their resolvent computation very easy. The primal-dual optimal-

ity conditions of this problem write Ax̂ ∈ ∂F†(ŷ) and −(A∗ŷ) ∈
∂G(x̂). These conditions amount to say that (x̂, ŷ) is a saddle-point.

Such equilibrium can be reached by iterating primal descents and

dual ascents sequentially. The CP implementation of this idea writes:




yk+1 =

=prox
σF†

︷ ︸︸ ︷
(Id+ σ∂F†)−1 (yk + σAx̄k+1)

xk+1 =
(Id+ τ∂G)−1

︸ ︷︷ ︸
=proxτG

(xk − τA∗yk+1)

x̄k+1 = 2xk+1 − xk

where the last step is a correction term (extra-gradient) and the pa-

rameters σ and τ should satisfy στ = L2 where L is the highest

singular value of A. In practice, this algorithm requires less than 50

iterations to give a solution precise enough for the visual system.

4. OPTIMIZING THE UNDERSAMPLING SCHEME

Once the acceleration factor R has been chosen, the remaining de-

grees of freedom lie in the k-space samples we really pick up for data

acquisition. In the pMRI context, the undersampling scheme is fixed

and consists of choosing one out of R phase encoding lines as illus-

trated in Fig. 1(a). In order to consider pseudo-random schemes (see

Fig. 1(b)-(f)) while allowing exact reconstruction in the CS context,

the concept of incoherence has been introduced in [5, 6].

(a) (b) (c)

(d) (e) (f)

Fig. 1. Various k-space sampling schemes for R = 4: selected

points appear in white color. (a) pMRI line undersampling. (b)-

(c): Pseudo-random line undersampling with uniform (b) and Gaus-

sian (c) distributions. (d): Radial scheme with uniformly random

angles. (e): 2D random points. (f): checkerboard scheme.

4.1. Incoherent sampling

Incoherence extends the duality between time and frequency and ex-

presses the idea that objects with a sparse representation must be

spread out in the domain in which they are acquired. There exists

different measures of coherence including restricted isometry prop-

erties [5] or mutual incoherence [6]. In this work, we use mutual

incoherence first introduced in [7].

The coherence between the sensing basis Φ and the representa-

tion basis Ψ can be measured by γ (Ψ,Φ) = max
1≤k,j≤n

|〈Φk,Ψj〉|
‖Φk‖·‖Ψj‖

,

where Φ = [Φ1, . . . ,ΦmL]
∗. In other words, coherence measures

the largest correlation between the lines of Ψ and columns of Φ.

This notion of coherence can also be captured by a variant called

mutual coherence that reads:

µ = µ(ΦΨ) = max
1≤i,j≤p,i 6=j

|〈ΦΨei,ΦΨej〉|

‖ΦΨei‖ · ‖ΦΨej‖
One of the typical results relating coherence to sparsity states that if

ρ = Ψζ is s-sparse and s ≤ 1+1/µ
2

then the exact recovery of ρ
can be achieved by solving Eq. (3). As a consequence, the smaller

the coherence, the fewer samples are needed. To reduce the number

of MRI samples, we can either play with Ψ so as to decrease S or

minimize the mutual coherence µ by varying the sampling scheme.

4.2. Coherence in parallel imaging

In this work, we distinguished different undersampling schemes like

those appearing in Fig. 1. As shown in Tab. 1, the trajectory that

presents the best coherence (lowest µ) is the random-points pattern

irrespective of R, while the worst one remains the Normally Dis-

tributed (ND) random rows pattern. This is quite surprising since

the k-space center contains most of the signal energy. As the random

point scheme is not physically feasible, we will select the closest one

i.e., the checkerboard downsampling, which consists of picking one

pixel over R per row, and shifting rows of one pixel one to another.

Results for radial schemes seem conflicting: for R = 2, the Uni-

formly Distributed (UD) angled scheme brings a lower µ value than

the equi-angled one, while the converse holds for R = 4. Finally,

whatever the scheme we look at in Tab. 1, the mutual coherence crite-

rion increases with R so that incoherence decreases illustratring the

negative impact of increasing R while keeping the sampling scheme

in a 2D setting (see [7] for more general 3D schemes).

Table 1. Mutual coherence µ in pMRI for R = 2 and R = 4.

Undersampling scheme µ (R = 2) µ (R = 4).

Regular lines 0.2770 0.6774

ND lines 0.4850 0.7471

UD lines 0.3336 0.4602

Random points 0.1040 0.1739

Checkerboard 02373 0.4020

UD angled radial 0.2526 0.6233

Equi-angled radial 0.2637 0.4234

Spiral scheme 0.3214 0.3499

5. RESULTS

5.1. Experimental data

For validation purpose, we acquired anatomical MRI data on a 3T

Siemens Trio magnet using a L = 32 channel head coil and parallel



imaging.We used a 3D T1-weighted MP-RAGE pulse sequence at a

1×1×1.1 mm3 spatial resolution (TE = 2.98 ms, TR = 2300 ms,
slice thickness = 1.1 mm, FOV = 256×240×176 mm3). To get a

ground truth and enable valid comparison, we considered the full

FOV dataset (R=1) that was downsampled a posteriori to simulate

different sampling schemes and assess their performance.

5.2. Reconstruction results: a comparative study

We first compared SENSE reconstruction (no regularization) with

the HYR2PICS method on a convential pMRI undersampling scheme

so as to emphasize the impact of hybrid regularization. As illus-

trated in Fig. 2, SENSE reconstruction shows strong and repeated

artifacts along the phase encoding direction (y-axis) that are per-

fectly removed using the HYR2PICS procedure. On this slice, our

approach coupled with conventional pMRI undersampling also en-

hances the cerebellum and brain stem. However, on other slices in-

coherent sampling schemes may appear more powerful. This point

is illustrated in Fig. 3 where 2D random points and checkerboard

undersampling schemes provide more accurate reconstructions than

any line-based undersampling alternative. Quantitative assessment

of reconstruction quality through the computation of Signal-to-Noise

Ratio (SNR) confirms our visual impressions.

(a) (b) (c)

SNR = 13 dB SNR = 14.6 dB

Fig. 2. Reconstruction results for R = 4 (slice 82): (a): Reference

image. (b):SENSE imaging. (c): ND random line undersampling.

(a) (b) (c)

SNR = 12.7 dB SNR = 12.9 dB

(d) (e) (f)

SNR = 15 dB SNR = 15.8 dB SNR = 15.2 dB

Fig. 3. Reconstruction results for R = 4 (slice 42): (a): Reference

image. (b): pMRI line undersampling. (c): ND random line under-

sampling. (d): Radial scheme with uniformly random angles. (e):

2D random points. (f): checkerboard scheme.

6. CONCLUSION

We proposed to unify CS and parallel imaging in a joint reconstruc-

tion framework that amounts to solving a large scale ill-posed inverse

problem. Our HYR2PICS approach therefore embodied hybrid pe-

nalization in the wavelet and image domains to regularize this prob-

lem. The ensuing convex but nonsmooth criterion was minimized by

the CP primal-dual algorithm. We illustrated the impact of regular-

ization and then demonstrated the interest of k-space undersampling

schemes that depart from selecting one phase encoding line out of

R in parallel imaging. Interestingly, our reconstruction results ap-

peared in agreement with the coherence assessment performed prior

to the reconstruction. Future work will investigate other sparsifying

transforms like tight frames.
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