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Abstract— This paper presents the developments with the 

SAM robot, established in the ARMEN project. We are 

interested in cognitive robotics. We have developed two 

complementary modules. The first one deals with the 

representation of knowledge, while the second develops the 

scenario generation. Indeed, the representation of knowledge 

tells us about the scene, the current state of the robot and the 

strategy to be adopted by the robot to achieve goals specified by 

an assisted person. The information extracted from the 

knowledge representation is the starting point to generate the 

action plan and the implementation of the scenario by the robot. 

I. INTRODUCTION 

People losing their autonomy (disabled, elderly persons) 

and needing assistance in their everyday life generally 

resort to caretakers. In new approaches, some easy and 

frequent tasks can be done by a service robot in order to 

give more freedom and autonomy to those people.  

Let's imagine a mobile robot dedicated to servicing a 

person (dependent person or caretakers) in the apartment 

and that this person asks for an object. This will entail for 

the robot to go to the room, to deploy its arm, to grasp the 

object, to retract the arm, to come back to the person’s 

location and to hand the object over to the person. The 

ARMEN project is very ambitious for showing support to 

person. In this project we are working to implement a 

scenario regardless of the position and the location of the 

object. To respond to the desire of a person, the robot must 

know the environment and be able to generate and apply 

scenarios without the intervention of any technician, but 

with an intuitive interface with the person needing help. 

In this paper we present a knowledge representation 

approach to determine the current state of SAM;   we also 

show how to generate and execute scenarios for the robot 

SAM. 

SAM is certified to life with people. The arm of SAM is 

MANUS. It is manufactured by Exact Dynamics. This arm 
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is not heavy and does not represent a danger to person 

unlike other robotic arms. 

We start this section by presenting the ARMEN project 

and the robot SAM. Then we present the knowledge 

representation aspect for SAM. After deducing the current 

state of knowledge representation and the behavior to be 

performed by SAM, we show how we develop the 

generation of action to achieve goals imposed by a disabled 

person. 

II. CONTEXT 

1) The project ARMEN 

The goal of this project, developed by CEA-LIST, is to 

design a robotic assistant with a navigation system 

independent of location and obstacle avoidance.  Thanks to 

its sensors, the system is able to avoid obstacles by taking 

into account the volume occupied by the robot and the 

equipment it carries. Controlled by an intuitive man-

machine interface, the robot is able to move in a domestic 

environment, to recognize and to grasp an object and bring 

it to the desired location. The robot is easy to use, so that a 

person, not a specialist in robotics or computer science, can 

adapt and configure the robot as well as create usage 

scenarios tailored to each user. 

 

2) The robot SAM 

 
Fig 1: The robot SAM includes a 6 DOF arm and a 

gripper. 

 

The robot SAM (Smart Autonomous Majordomo [19]) 

is a non-holonomic mobile base ROBULAB 10 with a 6-

DOF MANUS arm ending with a gripper (see Fig1). Its 

sensors are forward- and backward-oriented sonars located 

on the base (for obstacle avoidance), a panoramic camera 

located on top of the base (for scene detection), 2 webcams 

located on the arm (for object recognition, distance stereo-

measurement, and visual servoing [15]) and an optical 
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barrier located in the gripper (for decision on clamp 

closure/opening). 

3) Software 

In the ARMEN project, the robot SAM must be able to 

know the environment and generate the appropriate action 

plans to achieve the goals set by the operator (dependent 

person or caregivers). Knowledge of the environment is 

made by the knowledge representation aspect of the robot. 

The knowledge representation is useful to know the state of 

the robot at any moment. The generation of action plans is 

the generation of a scenario to achieve the goals from the 

current state of the robot. The current state is issued from 

the knowledge representation. The major advantage of this 

method is that it is possible to avoid an obstacle by re-

planning a scenario. 
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Fig2: Software for SAM 

III. KNOWLEDGE REPRESENTATION 

We developed a knowledge representation for knowing 

the current state of the robot. As a branch of symbolic 

Artificial Intelligence, knowledge representation and 

reasoning aims at designing computer systems that reason 

about a machine-interpretable representation of the world, 

similar to human reasoning. Different technique of 

knowledge representation may be used. We will present in 

this paper some of the most popular approaches to 

knowledge representation and our approach.  

1) Rules 

This representation model is widespread. It can easily be 

understood by human. The rules allow dynamic knowledge 

representation. Syntax representation of rules is:  

IF Premise (s) THEN consequence (s). 

 In this approach, the attributes represent the internal 

data. The rules require the experience of developer. They 

are dynamic and can be archived and updated if necessary. 

In a system of automated reasoning, it is easy to apply this 

approach in building a robot. 

2) Frames [25] 

Frames assume that human knowledge is not 

complicated but structured around units of information. All 

scenarios of everyday life can be represented as frames. 

A frame is a data structure including both declarative and 

procedural information. It represents a typical situation and 

includes slots for objects. Each attribute (slot) has a unique 

aspect (facets) of the description of the concepts that it 

represents. 

3) Semantic network 

From psychological models of Quillian and Raphael 

[26], semantic networks are tools that simulate the 

performance of memory. This is a model that shows 1) how 

the information could be represented in memory and 2) how 

one can access this information. A semantic network 

consists of nodes whose interrelationships are established 

by labeled pointers. The nodes are the different types of 

information in memory. Every node can be associated 

proposals and statements that characterize the properties 

applying to the network nodes. The label attached to the 

pointer indicates what type of relationship between two 

nodes. There is no standard in relationships, but there are 

common relations:  

X Instance Y; X isa Y; X haspart Y 

Semantic networks use metadata to represent the 

definition of different information. 

4) Logic 

Logic is in a family of knowledge representation 

languages which can be used to represent the terminological 

knowledge of an application domain in a formal and 

structured. It was developed as an extension of frames and 

semantic networks, which did not have formal semantics 

based on logic. 

5) Ontology 

An ontology is an explicit specification of a 

conceptualization. The term is borrowed from philosophy, 

where Ontology is a systematic account for Existence. For 

A.I. systems, what “exists” is what can be represented. 

When the knowledge of a domain is represented in a 

declarative model, the set of objects that can be represented 

is called the universe of discourse. This set of objects, and 

the describable relationships among them, are reflected in 

the representational vocabulary with which a knowledge-

based program represents knowledge.  

This approach offers expressiveness and understanding 

in knowledge representation. An ontology represents a set 

of structured concepts, concepts are organized in a graph 

whose the relation can be semantic and / or composition 

and inheritance. An ontology offers the possibility to have a 

shared vocabulary to describe a domain as well as primitive 

typing classes and relationships. The most important is that 

the ontology can make reasoning (deduce new facts from 

existing ones). 



 

 

 

6) The choice of ontology for knowledge representation 

The different techniques of knowledge representation 

mentioned above have certainly been a contribution to the 

introduction of intelligence into robotic systems. They have 

at  least helped to the test feasibility.  

However, some drawbacks are noted, especially with 

techniques based on rules, frames, semantic networks, 

concept diagrams and logic. These gaps are actually due to 

a slow system, the increasing complexity when it is 

appropriate to consider the classification and all causal links 

and others that may exist in the representation of the context 

and environment in which the robot will move. 

With the need for more interactivity between the operator 

and the robot, the ontology is presented as an approach that 

could help remedy the negative findings of knowledge 

representation techniques mentioned above. In addition, 

working with ontology allows gaining interoperability by 

providing common access to information and a shared 

understanding of concepts. They allow the reuse of 

knowledge sources. 

IV. ONTOLOGY FOR SAM 

In this paragraph, we will demonstrate the use of Protégé 

for build our ontology and we present a conception of 

SAM’s ontology. 

MLCOF (The Multi-Layered Context Ontology 

Framework) describes the context of a robot. MLCOF 

includes six Knowledge Layers (KLayer): image, 1D 

geometry, 2D geometry, 3D geometry, object and space. 

The main propose of MLCOF is to help robots in object 

identification tasks. [30] 

OMRKF: Ontology-based Multi-layered Robot Knowledge 

Framework is an extension of MLCOF. This robot centered 

description ontology is organized in knowledge boards with 

four knowledge levels: perception, model, context and 

activity. [33] 

KnowRob, a knowledge processing framework based on 

Prolog. Its underlying storage is based on OWL ontology 

such as researchCyc and OMICS (indoor common-sense 

knowledge database) [32]. 

K-CoPMan (knowledge enable Cognitive Perception for 

Manipulation) system is an extension to KnowRob. This 

technology enables autonomous robots to grasp and 

manipulate object. K-CoPMan, uses CAD for matching 3D 

point clouds in order to identify the queried object in the 

environment. [31] 

ORO: The OpenRobots Ontology is a socket server aimed 

to be run on robots that maintains a consistent storage of 

facts, represented as RDF triples and runs several 

background processes, including ontology classification and 

reasoning, management of several independent models for 

each different agent the robot meets, and updating of 

statements according to bio-inspired memory models.[34] 

 

Our project is ambitious, we want that if the cameras are 

broken the robot will warn the person. So we find in this 

ontology a Robot concept. This concept is necessary 

because it allows SAM to do its self-assessment.  When one 

of sensor is broken the robot can know it and trigger a 

command for warning an operator. 

Also with this ontology we can know the interlocutor by the 

concept “user profile”. With this concept we have a GIR 

(Groupe Iso Ressource) of dependent person and the 

coordinate of his doctor.  

In this ontology, objects are categorized by their type (e.g., 

coca-type cans). Each object in the ontology has several 

properties. Among other properties there is a set of images 

of the object. Each image is an image of the object which 

depends on the point of view of the object relatively to the 

robot. Each image is associated to grip strategies. We use 

this method because our recognition method uses image 

indexing and allows estimating the angle or point of view 

on the object regarding the position of the arm [23]. So 

when SAM is in front of a scene, we load the images from 

the ontology and thus we recognize the current state (where 

is Sam, what its position is) and how we can achieve the 

goal by knowing the grip strategy of the objects. The grip 

strategy is propriety of each object and it depends on the 

point of view of object. Each image in our ontology is 

linked to this propriety. This propriety is essential to know 

how to behave with object. (Fig 3) is extracted from the 

ontology created for SAM to represent his knowledge.  

 

 
 

Fig 3: Ontology of SAM 

 

With this ontology we know a situation of the object which 

the robot should grasp. Now we turn to the generation of 

action plan (scenario) after having presented related work in 

the development of scenarios. 

V. SCENARIO GENERATION 

1) State of the art 

Many robots can carry out a single scenario (e.g., 

ROLLIN JUSTIN [6], NAO [9], TWENDY ONE [13], 

HRP-4 [1]). In these systems, a scenario is represented as a 



 

 

 

piece of source code which calls functions of a 

programming language for the robot to successively carry 

out all the prescribed actions. But to change a scenario 

(e.g., for a new demo), changing this source code is 

necessary. 

Other robots use a high level language for representing 

scenarios (e.g., CARE-O-BOT [10], among others). In these 

systems, high level actions can be synthetically encoded in a 

language, so reprogramming the robot for a new scenario is 

not necessary: Only the high level actions in the scenario 

have to be changed. The robot CARE-O-BOT uses a high 

level language, i.e., a module in Python, to encode 

scenarios using activities linked by discrete, cyclic or wait-

for relations [10]. A.I. planning is performed by a request to 

a database, which provides possible actions that fulfill a 

given task. When compared to our approach, CARE-O-

BOT’s high level language is subsumed by the ISEN one: 

The previous high level primitives can be encoded in ISEN, 

due to the absence of any constraint imposed by ISEN on 

the graph structure of states. Most importantly, CARE-O-

BOT does not include an A.I. task planner per se, hence 

leading to manually encoding all the possible actions for all 

the tasks. 

Still other robots’ designers acknowledge the fact that 

there are many scenarios which would have to be manually 

written in real applications (not only for demos). And that it 

is unpractical, if not impossible, to manually write all of 

them in advance (for that, even a high level language is not 

sufficient any longer). So these systems generate their own 

scenarios (e.g., SHAKEY [5], PR2 [24], DALA & LAMA 

[11]) using an A.I. task planner: Given goals, specified by a 

user, task planning generates a plan of actions (a sequence 

of instantiated action descriptions), this plan is considered 

as a scenario (a high level description of the successive 

actions to take) and then this scenario is executed by the 

robot (each action description in the scenario is linked to an 

executable function  in the underlying programming 

language, and these functions are executed sequentially).  

First of all, the robot SHAKEY pioneered the field of 

domain-independent A.I. task planning, with the STRIPS 

task planner and the PLANEX execution mechanism [5]. 

But nowadays A.I. planners, e.g. CPT, are degrees of 

magnitude faster. Indeed, CPT (Constraint Programming 

Temporal planner [22]) is an optimal temporal planner 

combining the connection using the causal links in the 

partial plans (Partial Order Causal Link or POCL) and 

pruning rules based on constraint programming [28]. CPT 

was awarded a second prize in the optimal planning of IPC-

2004.  

 The robot PR2 uses no specific high level language to 

represent scenarios, but uses a modified Hierarchical Task 

Network (HTN) planner (see [7] for an introduction) to 

generate them [24]. HTN planners represent additional 

knowledge on tasks (i.e., a sequence of low level subtasks 

decomposes a high level task) to reduce search complexity. 

In contrast, the CPT planner is domain-independent (hence 

does not need extra knowledge on task decomposition) and 

still performs fast --- it won the Distinguished Performance 

award at IPC’06 [12] 

 The robots DALA & LAMA [11] use an A.I. task 

planner, IxTeT [16], which is a domain-independent task 

planner based on constraint programming (CPT is based on 

the same underlying principle but with a different model). 

But IxTeT has a larger representation capability than PDDL 

--- it was designed before. As such, IxTeT is not involved in 

any International Planning Competition [12]. 

 Finally, Dornhege et al. [3] proposes to extend PDDL: 

The truth value of specific preconditions is not determined 

by the successive postconditions of previous operators, but 

is set by calling functions querying and analyzing sensors --

- symmetrically, postconditions can also own a call back 

function, to act on actuators. This approach merges plans 

and scenarios, hence leading to an architecture less clear 

than ours. 

Generating and executing scenarios for SAMIn this section, 

we describe the high level language ISEN, capable of 

representing and executing scenarios, and a way to generate 

these scenarios through an A.I. task planner (e.g., CPT). 

B. ISEN: a high level language and an engine 

The ISEN engine is a virtual machine which reacts to 

events sent by the application in which it is integrated, and 

triggers actions that can act on this application. And this, by 

conforming to scenarios which specify a behavior model. 

 At initialization time, the application must provide to 

ISEN a library of elementary actions which can be taken by 

the engine, and a behavior model, or scenario (provided as 

an XML file). At execution time, the application sends to 

the engine the events generated either by the application or 

by the external environment. The engine calls functions 

from the previous library of actions, as specified by 

scenarios, to act on the application and on the external 

environment.  

 A scenario specifies any number of state machines (or 

agents
1
), which autonomously react to events by changing 

states and/or triggering actions. Every event sent by the 

application is transmitted to all state machines included into 

the scenario. Only the state machines tailored for reacting to 

this event actually does --- the other state machines simply 

ignore it. 

 Programming a set of ISEN state machines hence sums 

up to: (1) specifying a list of states in which the state 

machine can fall into; (2) for each previous state, specifying 

the next state to which to branch (i.e., a transition); And (3) 

specifying the actions to take for each state transition or 

event reception. 

 
1 This term should not be confused with the term “agent” in the A.I. 

multiple agent systems community, for example. 



 

 

 

 A scenario is composed of a set of automata (or 

sequences), a set of agents and a list of global constants 

(visible by all states of all automata of all agents). An 

automaton is composed of a set of states and a set of 

transitions, or state change, which can be activated in the 

considered state. The target state of a transition can be 

another state of the current sequence, or the initial state of 

another sequence. Each agent specifies its initialization 

sequence and its local constants. 

Three kinds of actions can be attached to a state: 

ON_ENTRY actions (noted f1,1 to f1,n1 for state n in Fig. 4), 

which are activated in sequence just before the current state 

is activated; ON_DO actions (noted f2,1 to f2,n2 for the same 

state in the same figure), which are activated in sequence 

during the current state’s activation; and ON_EXIT actions 

(noted f3,1 to f3,n3 for the same state in the same figure), 

which are activated in sequence right after the current state 

is activated. As a consequence, from the time when a state  

is about to become active (state n, in green in Fig 4), the 

actions are called in the following order: f1,1, …, f1,n1, f2,1, 

…, f2,n2, f3,1, …, f3,n3. 

 
Fig 4: Actions and transitions in an ISEN sequence 

 

 Actions (noted fE,1 to fE,ne in Fig 4) related to an event 

(noted E in the same figure) can also be attached to a state. 

When event E is received by the active state, the actions fE,1, 

…, fE,ne are activated, in this order. And once these event-

related actions are all activated, the control flow passes 

from the current state (n) to the state specified by the 

transition (i.e., state n+1 in Fig 4)--- the same mechanism 

applies for the actions of this new state. Any number of 

events (and transitions) can be attached to a state of  an 

automaton. Therefore an automaton can exhibit any graph 

structure. 

C. Scenario generation 

A.I. task planners use operators, describing the actions 

which can be taken, an ontology-generated initial state and 

goals, to build a sequence of instantiated operators (a plan). 

A plan moves step by step a world state from the initial 

state to a final state that contains the goals [7]. All entities 

are described in the Planning Domain Definition Language 

(PDDL) syntax, e.g. version 2.1 [19] in our case. The 

shortest syntactic element is a fluent i.e., a term which can 

be positive or negative depending on the time of 

observation and on the operators’ postconditions 

(potentially changing the truth value of this fluent) before 

this observation time. A fluent contains a functor followed 

by variables or constants, e.g., “(position ?arm ?location)”, 

“(at SAM kitchen)”. An operator is composed of 

preconditions (i.e., fluents which must hold in the incoming 

state for the operator to apply) and postconditions (i.e., 

fluents the truth value of which changes when compared to 

those of the incoming state). 

CPT is a fast classical task planner, which turns a 

planning problem (i.e., the operators list, the initial state, 

the goals) into a constraint programming problem [22].  

The actions which can be taken by the robot are gathered 

in the SAM domain: this is a symbolic representation in 

PDDL of these actions in terms of preconditions and post 

conditions (see [20] for a first version of this PDDL 

domain). 

 

D. Turning plans into scenarios 

A plan, generated by the task planner, is first parsed and 

each instantiated operator of this plan is identified to a state 

in a sequence. Encoding instantiated operators as event-

triggered transitions (this way, ISEN states would be close 

to planning states) would prevent the robot from receiving 

action termination events during the execution of an action. 

So this option, although theoretically appealing, is not 

appropriate in practice. 

Low level ISEN functions are used to turn this internal 

representation into ISEN’s one. For each instantiated 

operator, the callback functions (the actions of section B) 

and the triggering event (to jump out of this ISEN state) are 

read from a handler file, by matching a handler name 

against the name of an operator. For example, the handler 

named “position-arm-for-grasping” is associated to the 

instantiated operator named “position-arm-for-grasping pt-

ref rot-ref kitchen pt-kitchen rot-kitchen” --- CPT is 

canonical (an operator appears only once in a plan) [22], 

which prevents from matching the same handler to several 

instantiated operators with this name. 

Finally, that internal representation is saved into a file 

describing all the states, transitions and sequences 

available: this is the generated scenario (a temporary file), 

which is dynamically re-loaded by ISEN for execution on 

the robot SAM.  

Errors during the execution of an action are handled by a 

specific, always active, state, called “all_states”, which is 

the default event-catcher. When this state is reached, it can 

branch to either CPT-generated states or additional states 

(not generated by CPT) dedicated to error recovery.  These 

additional states in the handler file are the ones which do 

not match against the name of actions in the generated plan 

--- the remaining handlers, e.g., a handler named 

“FailureState” typically is not part of a plan but anyway 

maps to an ISEN state to which planned states can branch to 

for error recovery. 

 



 

 

 

VI. CONCLUSION 

The work presented in this paper consisted of developing an 

ontology representing the environment in which the robot 

will evolve. This ontology is used to generate the initial 

state of a planning problem, which together with PDDL 

operatiors and goals, produce an action plan through an A.I. 

task planner. Execution of scenarios is performed through 

an event-based finite state automate executor (ISEN). In the 

remainder, we will focus on the learning of new objects and 

new scenes by the robot, to enable him to understand the 

wishes of the dependant person and be able to generate a 

suitable scenario. 
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