
HAL Id: cea-00679955
https://cea.hal.science/cea-00679955v1

Submitted on 1 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Framework for context analysis and planning of an
assistive robot

Mohamed Walid Ben Ghezala, Philippe Morignot, Amel Bouzeghoub,
Christophe Leroux

To cite this version:
Mohamed Walid Ben Ghezala, Philippe Morignot, Amel Bouzeghoub, Christophe Leroux. Framework
for context analysis and planning of an assistive robot. [Rapport de recherche] Télécom SudParis.
2012. �cea-00679955�

https://cea.hal.science/cea-00679955v1
https://hal.archives-ouvertes.fr

Abstract— This paper presents the developments with the

SAM robot, established in the ARMEN project. We are

interested in cognitive robotics. We have developed two

complementary modules. The first one deals with the

representation of knowledge, while the second develops the

scenario generation. Indeed, the representation of knowledge

tells us about the scene, the current state of the robot and the

strategy to be adopted by the robot to achieve goals specified by

an assisted person. The information extracted from the

knowledge representation is the starting point to generate the

action plan and the implementation of the scenario by the robot.

I. INTRODUCTION

People losing their autonomy (disabled, elderly persons)

and needing assistance in their everyday life generally

resort to caretakers. In new approaches, some easy and

frequent tasks can be done by a service robot in order to

give more freedom and autonomy to those people.

Let's imagine a mobile robot dedicated to servicing a

person (dependent person or caretakers) in the apartment

and that this person asks for an object. This will entail for

the robot to go to the room, to deploy its arm, to grasp the

object, to retract the arm, to come back to the person’s

location and to hand the object over to the person. The

ARMEN project is very ambitious for showing support to

person. In this project we are working to implement a

scenario regardless of the position and the location of the

object. To respond to the desire of a person, the robot must

know the environment and be able to generate and apply

scenarios without the intervention of any technician, but

with an intuitive interface with the person needing help.

In this paper we present a knowledge representation

approach to determine the current state of SAM; we also

show how to generate and execute scenarios for the robot

SAM.

SAM is certified to life with people. The arm of SAM is

MANUS. It is manufactured by Exact Dynamics. This arm

Manuscript received March 10, 2012. This work was supported by the

DGE of the French Ministry of Economy, Finance and Industry through

contract ITEA 2 MIDAS, as part of a EUREKA European project.

M.W. Ben Ghezala (mohamedwalid.benghezala@cea.fr , phone +33

(0)1 46 54 91 98, fax : +33 (0)1 46 54 89 90), P. Morignot

(philippe.morignot@cea.fr , phone : +33 (0)1 46 54 97 27, fax : +33 (0)1

46 54 89 90), C. Leroux (christophe.leroux@cea.fr) are with CEA, LIST,

Interactive Robotics Laboratory, 18, route du panorama, B.P. 6, 92265

Fontenay -aux-Roses, France.

A. Bouzeghoub (amel.bouzeghoub@it-sudparis.eu), phone +33 (0) 1

60 76 47 14 is with Institute TELECOM, TELECOM & Management

SudParis, 9, Rue Charles Fourier, 91000 Evry, France.

is not heavy and does not represent a danger to person

unlike other robotic arms.

We start this section by presenting the ARMEN project

and the robot SAM. Then we present the knowledge

representation aspect for SAM. After deducing the current

state of knowledge representation and the behavior to be

performed by SAM, we show how we develop the

generation of action to achieve goals imposed by a disabled

person.

II. CONTEXT

1) The project ARMEN

The goal of this project, developed by CEA-LIST, is to

design a robotic assistant with a navigation system

independent of location and obstacle avoidance. Thanks to

its sensors, the system is able to avoid obstacles by taking

into account the volume occupied by the robot and the

equipment it carries. Controlled by an intuitive man-

machine interface, the robot is able to move in a domestic

environment, to recognize and to grasp an object and bring

it to the desired location. The robot is easy to use, so that a

person, not a specialist in robotics or computer science, can

adapt and configure the robot as well as create usage

scenarios tailored to each user.

2) The robot SAM

Fig 1: The robot SAM includes a 6 DOF arm and a

gripper.

The robot SAM (Smart Autonomous Majordomo [19])

is a non-holonomic mobile base ROBULAB 10 with a 6-

DOF MANUS arm ending with a gripper (see Fig1). Its

sensors are forward- and backward-oriented sonars located

on the base (for obstacle avoidance), a panoramic camera

located on top of the base (for scene detection), 2 webcams

located on the arm (for object recognition, distance stereo-

measurement, and visual servoing [15]) and an optical

Framework for context analysis and planning of an assistive robot

Mohamed Walid Ben Ghezala, Philippe Morignot, Amel Bouzeghoub and Christophe Leroux

barrier located in the gripper (for decision on clamp

closure/opening).

3) Software

In the ARMEN project, the robot SAM must be able to

know the environment and generate the appropriate action

plans to achieve the goals set by the operator (dependent

person or caregivers). Knowledge of the environment is

made by the knowledge representation aspect of the robot.

The knowledge representation is useful to know the state of

the robot at any moment. The generation of action plans is

the generation of a scenario to achieve the goals from the

current state of the robot. The current state is issued from

the knowledge representation. The major advantage of this

method is that it is possible to avoid an obstacle by re-

planning a scenario.

Intention of
the

operator

Choice of
dedicated
Strategy to
achieve a

goal

Supervision of
action

execution

Ontology of assistance

•Semantic
•Geometric model
•Grip Strategy
•Weight
•Texture,
•Relation between
object

Anomaly
detection

Man-Machine Interface

Fig2: Software for SAM

III. KNOWLEDGE REPRESENTATION

We developed a knowledge representation for knowing

the current state of the robot. As a branch of symbolic

Artificial Intelligence, knowledge representation and

reasoning aims at designing computer systems that reason

about a machine-interpretable representation of the world,

similar to human reasoning. Different technique of

knowledge representation may be used. We will present in

this paper some of the most popular approaches to

knowledge representation and our approach.

1) Rules

This representation model is widespread. It can easily be

understood by human. The rules allow dynamic knowledge

representation. Syntax representation of rules is:

IF Premise (s) THEN consequence (s).

 In this approach, the attributes represent the internal

data. The rules require the experience of developer. They

are dynamic and can be archived and updated if necessary.

In a system of automated reasoning, it is easy to apply this

approach in building a robot.

2) Frames [25]

Frames assume that human knowledge is not

complicated but structured around units of information. All

scenarios of everyday life can be represented as frames.

A frame is a data structure including both declarative and

procedural information. It represents a typical situation and

includes slots for objects. Each attribute (slot) has a unique

aspect (facets) of the description of the concepts that it

represents.

3) Semantic network

From psychological models of Quillian and Raphael

[26], semantic networks are tools that simulate the

performance of memory. This is a model that shows 1) how

the information could be represented in memory and 2) how

one can access this information. A semantic network

consists of nodes whose interrelationships are established

by labeled pointers. The nodes are the different types of

information in memory. Every node can be associated

proposals and statements that characterize the properties

applying to the network nodes. The label attached to the

pointer indicates what type of relationship between two

nodes. There is no standard in relationships, but there are

common relations:

X Instance Y; X isa Y; X haspart Y

Semantic networks use metadata to represent the

definition of different information.

4) Logic

Logic is in a family of knowledge representation

languages which can be used to represent the terminological

knowledge of an application domain in a formal and

structured. It was developed as an extension of frames and

semantic networks, which did not have formal semantics

based on logic.

5) Ontology

An ontology is an explicit specification of a

conceptualization. The term is borrowed from philosophy,

where Ontology is a systematic account for Existence. For

A.I. systems, what “exists” is what can be represented.

When the knowledge of a domain is represented in a

declarative model, the set of objects that can be represented

is called the universe of discourse. This set of objects, and

the describable relationships among them, are reflected in

the representational vocabulary with which a knowledge-

based program represents knowledge.

This approach offers expressiveness and understanding

in knowledge representation. An ontology represents a set

of structured concepts, concepts are organized in a graph

whose the relation can be semantic and / or composition

and inheritance. An ontology offers the possibility to have a

shared vocabulary to describe a domain as well as primitive

typing classes and relationships. The most important is that

the ontology can make reasoning (deduce new facts from

existing ones).

6) The choice of ontology for knowledge representation

The different techniques of knowledge representation

mentioned above have certainly been a contribution to the

introduction of intelligence into robotic systems. They have

at least helped to the test feasibility.

However, some drawbacks are noted, especially with

techniques based on rules, frames, semantic networks,

concept diagrams and logic. These gaps are actually due to

a slow system, the increasing complexity when it is

appropriate to consider the classification and all causal links

and others that may exist in the representation of the context

and environment in which the robot will move.

With the need for more interactivity between the operator

and the robot, the ontology is presented as an approach that

could help remedy the negative findings of knowledge

representation techniques mentioned above. In addition,

working with ontology allows gaining interoperability by

providing common access to information and a shared

understanding of concepts. They allow the reuse of

knowledge sources.

IV. ONTOLOGY FOR SAM

In this paragraph, we will demonstrate the use of Protégé

for build our ontology and we present a conception of

SAM’s ontology.

MLCOF (The Multi-Layered Context Ontology

Framework) describes the context of a robot. MLCOF

includes six Knowledge Layers (KLayer): image, 1D

geometry, 2D geometry, 3D geometry, object and space.

The main propose of MLCOF is to help robots in object

identification tasks. [30]

OMRKF: Ontology-based Multi-layered Robot Knowledge

Framework is an extension of MLCOF. This robot centered

description ontology is organized in knowledge boards with

four knowledge levels: perception, model, context and

activity. [33]

KnowRob, a knowledge processing framework based on

Prolog. Its underlying storage is based on OWL ontology

such as researchCyc and OMICS (indoor common-sense

knowledge database) [32].

K-CoPMan (knowledge enable Cognitive Perception for

Manipulation) system is an extension to KnowRob. This

technology enables autonomous robots to grasp and

manipulate object. K-CoPMan, uses CAD for matching 3D

point clouds in order to identify the queried object in the

environment. [31]

ORO: The OpenRobots Ontology is a socket server aimed

to be run on robots that maintains a consistent storage of

facts, represented as RDF triples and runs several

background processes, including ontology classification and

reasoning, management of several independent models for

each different agent the robot meets, and updating of

statements according to bio-inspired memory models.[34]

Our project is ambitious, we want that if the cameras are

broken the robot will warn the person. So we find in this

ontology a Robot concept. This concept is necessary

because it allows SAM to do its self-assessment. When one

of sensor is broken the robot can know it and trigger a

command for warning an operator.

Also with this ontology we can know the interlocutor by the

concept “user profile”. With this concept we have a GIR

(Groupe Iso Ressource) of dependent person and the

coordinate of his doctor.

In this ontology, objects are categorized by their type (e.g.,

coca-type cans). Each object in the ontology has several

properties. Among other properties there is a set of images

of the object. Each image is an image of the object which

depends on the point of view of the object relatively to the

robot. Each image is associated to grip strategies. We use

this method because our recognition method uses image

indexing and allows estimating the angle or point of view

on the object regarding the position of the arm [23]. So

when SAM is in front of a scene, we load the images from

the ontology and thus we recognize the current state (where

is Sam, what its position is) and how we can achieve the

goal by knowing the grip strategy of the objects. The grip

strategy is propriety of each object and it depends on the

point of view of object. Each image in our ontology is

linked to this propriety. This propriety is essential to know

how to behave with object. (Fig 3) is extracted from the

ontology created for SAM to represent his knowledge.

Fig 3: Ontology of SAM

With this ontology we know a situation of the object which

the robot should grasp. Now we turn to the generation of

action plan (scenario) after having presented related work in

the development of scenarios.

V. SCENARIO GENERATION

1) State of the art

Many robots can carry out a single scenario (e.g.,

ROLLIN JUSTIN [6], NAO [9], TWENDY ONE [13],

HRP-4 [1]). In these systems, a scenario is represented as a

piece of source code which calls functions of a

programming language for the robot to successively carry

out all the prescribed actions. But to change a scenario

(e.g., for a new demo), changing this source code is

necessary.

Other robots use a high level language for representing

scenarios (e.g., CARE-O-BOT [10], among others). In these

systems, high level actions can be synthetically encoded in a

language, so reprogramming the robot for a new scenario is

not necessary: Only the high level actions in the scenario

have to be changed. The robot CARE-O-BOT uses a high

level language, i.e., a module in Python, to encode

scenarios using activities linked by discrete, cyclic or wait-

for relations [10]. A.I. planning is performed by a request to

a database, which provides possible actions that fulfill a

given task. When compared to our approach, CARE-O-

BOT’s high level language is subsumed by the ISEN one:

The previous high level primitives can be encoded in ISEN,

due to the absence of any constraint imposed by ISEN on

the graph structure of states. Most importantly, CARE-O-

BOT does not include an A.I. task planner per se, hence

leading to manually encoding all the possible actions for all

the tasks.

Still other robots’ designers acknowledge the fact that

there are many scenarios which would have to be manually

written in real applications (not only for demos). And that it

is unpractical, if not impossible, to manually write all of

them in advance (for that, even a high level language is not

sufficient any longer). So these systems generate their own

scenarios (e.g., SHAKEY [5], PR2 [24], DALA & LAMA

[11]) using an A.I. task planner: Given goals, specified by a

user, task planning generates a plan of actions (a sequence

of instantiated action descriptions), this plan is considered

as a scenario (a high level description of the successive

actions to take) and then this scenario is executed by the

robot (each action description in the scenario is linked to an

executable function in the underlying programming

language, and these functions are executed sequentially).

First of all, the robot SHAKEY pioneered the field of

domain-independent A.I. task planning, with the STRIPS

task planner and the PLANEX execution mechanism [5].

But nowadays A.I. planners, e.g. CPT, are degrees of

magnitude faster. Indeed, CPT (Constraint Programming

Temporal planner [22]) is an optimal temporal planner

combining the connection using the causal links in the

partial plans (Partial Order Causal Link or POCL) and

pruning rules based on constraint programming [28]. CPT

was awarded a second prize in the optimal planning of IPC-

2004.

 The robot PR2 uses no specific high level language to

represent scenarios, but uses a modified Hierarchical Task

Network (HTN) planner (see [7] for an introduction) to

generate them [24]. HTN planners represent additional

knowledge on tasks (i.e., a sequence of low level subtasks

decomposes a high level task) to reduce search complexity.

In contrast, the CPT planner is domain-independent (hence

does not need extra knowledge on task decomposition) and

still performs fast --- it won the Distinguished Performance

award at IPC’06 [12]

 The robots DALA & LAMA [11] use an A.I. task

planner, IxTeT [16], which is a domain-independent task

planner based on constraint programming (CPT is based on

the same underlying principle but with a different model).

But IxTeT has a larger representation capability than PDDL

--- it was designed before. As such, IxTeT is not involved in

any International Planning Competition [12].

 Finally, Dornhege et al. [3] proposes to extend PDDL:

The truth value of specific preconditions is not determined

by the successive postconditions of previous operators, but

is set by calling functions querying and analyzing sensors --

- symmetrically, postconditions can also own a call back

function, to act on actuators. This approach merges plans

and scenarios, hence leading to an architecture less clear

than ours.

Generating and executing scenarios for SAMIn this section,

we describe the high level language ISEN, capable of

representing and executing scenarios, and a way to generate

these scenarios through an A.I. task planner (e.g., CPT).

B. ISEN: a high level language and an engine

The ISEN engine is a virtual machine which reacts to

events sent by the application in which it is integrated, and

triggers actions that can act on this application. And this, by

conforming to scenarios which specify a behavior model.

 At initialization time, the application must provide to

ISEN a library of elementary actions which can be taken by

the engine, and a behavior model, or scenario (provided as

an XML file). At execution time, the application sends to

the engine the events generated either by the application or

by the external environment. The engine calls functions

from the previous library of actions, as specified by

scenarios, to act on the application and on the external

environment.

 A scenario specifies any number of state machines (or

agents
1
), which autonomously react to events by changing

states and/or triggering actions. Every event sent by the

application is transmitted to all state machines included into

the scenario. Only the state machines tailored for reacting to

this event actually does --- the other state machines simply

ignore it.

 Programming a set of ISEN state machines hence sums

up to: (1) specifying a list of states in which the state

machine can fall into; (2) for each previous state, specifying

the next state to which to branch (i.e., a transition); And (3)

specifying the actions to take for each state transition or

event reception.

1 This term should not be confused with the term “agent” in the A.I.

multiple agent systems community, for example.

 A scenario is composed of a set of automata (or

sequences), a set of agents and a list of global constants

(visible by all states of all automata of all agents). An

automaton is composed of a set of states and a set of

transitions, or state change, which can be activated in the

considered state. The target state of a transition can be

another state of the current sequence, or the initial state of

another sequence. Each agent specifies its initialization

sequence and its local constants.

Three kinds of actions can be attached to a state:

ON_ENTRY actions (noted f1,1 to f1,n1 for state n in Fig. 4),

which are activated in sequence just before the current state

is activated; ON_DO actions (noted f2,1 to f2,n2 for the same

state in the same figure), which are activated in sequence

during the current state’s activation; and ON_EXIT actions

(noted f3,1 to f3,n3 for the same state in the same figure),

which are activated in sequence right after the current state

is activated. As a consequence, from the time when a state

is about to become active (state n, in green in Fig 4), the

actions are called in the following order: f1,1, …, f1,n1, f2,1,

…, f2,n2, f3,1, …, f3,n3.

Fig 4: Actions and transitions in an ISEN sequence

 Actions (noted fE,1 to fE,ne in Fig 4) related to an event

(noted E in the same figure) can also be attached to a state.

When event E is received by the active state, the actions fE,1,

…, fE,ne are activated, in this order. And once these event-

related actions are all activated, the control flow passes

from the current state (n) to the state specified by the

transition (i.e., state n+1 in Fig 4)--- the same mechanism

applies for the actions of this new state. Any number of

events (and transitions) can be attached to a state of an

automaton. Therefore an automaton can exhibit any graph

structure.

C. Scenario generation

A.I. task planners use operators, describing the actions

which can be taken, an ontology-generated initial state and

goals, to build a sequence of instantiated operators (a plan).

A plan moves step by step a world state from the initial

state to a final state that contains the goals [7]. All entities

are described in the Planning Domain Definition Language

(PDDL) syntax, e.g. version 2.1 [19] in our case. The

shortest syntactic element is a fluent i.e., a term which can

be positive or negative depending on the time of

observation and on the operators’ postconditions

(potentially changing the truth value of this fluent) before

this observation time. A fluent contains a functor followed

by variables or constants, e.g., “(position ?arm ?location)”,

“(at SAM kitchen)”. An operator is composed of

preconditions (i.e., fluents which must hold in the incoming

state for the operator to apply) and postconditions (i.e.,

fluents the truth value of which changes when compared to

those of the incoming state).

CPT is a fast classical task planner, which turns a

planning problem (i.e., the operators list, the initial state,

the goals) into a constraint programming problem [22].

The actions which can be taken by the robot are gathered

in the SAM domain: this is a symbolic representation in

PDDL of these actions in terms of preconditions and post

conditions (see [20] for a first version of this PDDL

domain).

D. Turning plans into scenarios

A plan, generated by the task planner, is first parsed and

each instantiated operator of this plan is identified to a state

in a sequence. Encoding instantiated operators as event-

triggered transitions (this way, ISEN states would be close

to planning states) would prevent the robot from receiving

action termination events during the execution of an action.

So this option, although theoretically appealing, is not

appropriate in practice.

Low level ISEN functions are used to turn this internal

representation into ISEN’s one. For each instantiated

operator, the callback functions (the actions of section B)

and the triggering event (to jump out of this ISEN state) are

read from a handler file, by matching a handler name

against the name of an operator. For example, the handler

named “position-arm-for-grasping” is associated to the

instantiated operator named “position-arm-for-grasping pt-

ref rot-ref kitchen pt-kitchen rot-kitchen” --- CPT is

canonical (an operator appears only once in a plan) [22],

which prevents from matching the same handler to several

instantiated operators with this name.

Finally, that internal representation is saved into a file

describing all the states, transitions and sequences

available: this is the generated scenario (a temporary file),

which is dynamically re-loaded by ISEN for execution on

the robot SAM.

Errors during the execution of an action are handled by a

specific, always active, state, called “all_states”, which is

the default event-catcher. When this state is reached, it can

branch to either CPT-generated states or additional states

(not generated by CPT) dedicated to error recovery. These

additional states in the handler file are the ones which do

not match against the name of actions in the generated plan

--- the remaining handlers, e.g., a handler named

“FailureState” typically is not part of a plan but anyway

maps to an ISEN state to which planned states can branch to

for error recovery.

VI. CONCLUSION

The work presented in this paper consisted of developing an

ontology representing the environment in which the robot

will evolve. This ontology is used to generate the initial

state of a planning problem, which together with PDDL

operatiors and goals, produce an action plan through an A.I.

task planner. Execution of scenarios is performed through

an event-based finite state automate executor (ISEN). In the

remainder, we will focus on the learning of new objects and

new scenes by the robot, to enable him to understand the

wishes of the dependant person and be able to generate a

suitable scenario.

ACKNOWLEDGMENT

The authors thank Vincent Vidal (ONERA, Toulouse)

and Christophe Leroy (CEA LIST LSI, Fontenay-aux-

roses).

REFERENCES

[1] K. Akachi, K. Kaneko, N. Kanehira, S. Ota, G. Miyamori, M.
Hirata, S. Kajita, F. Kanehiro, “Development of humanoid robot
HRP-3P”. 5th IEEE-RAS International Conference on Humanoid
Robots, pages 50-55, 2005.

[2] O. Bartheye, E. Jacopin, “A real-time PDDL-based planning
component for video games”. In Proceedings of 5th Artificial
Intelligence for Interactive Digital Entertainment Conference,
Stanford, California, 2009, pages 130-135.

[3] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, B. Nebel.
“Semantic attachment for domain-independent planning systems”. In
Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS’09), Thessaloniki, Greece, 2009.

[4] J. Dumora. “Design of behaviors for a robot assisting handicapped
persons” (“Conception de comportements pour un robot d’assistance
aux personnes handicapées”). Technical Report, CEA, LIST,
DTSI/SRI/08-XXX, August 2008, unpublished.

[5] R. Fikes, N. Nilsson, “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving”, Artificial Intelligence,
Vol. 2 (1971), pp 189-208.

[6] M. Fuchs, Ch. Borst, P. Robuffo Giordano, A. Baumann, E.
Kraemer, J. Langwald, R. Gruber, N. Seitz, G. Plank, K. Kunze, R.
Burger, F. Schmidt, T. Wimboeck, G. Hirzinger. “Rollin’ Justin –
Design considerations and realization for a humanoid upper body”,
in Proceedings opf the IEEE International Conference on Robotics
and Automation (ICRA), Kobe, Japan, 2009, pages 4131-4137.

[7] E. Gat, “On three-layer architectures”, D. Kortenkazmp et als eds.,
A.I. and Mobile Robots, AAAI Press, 1998.

[8] M. Ghallab, D. Nau, P. Traverso. “Automated planning : theory and
practice”. Morgan Kaufmann, Elsevier, San Francisco, 2004, 635
pages.

[9] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P.
Lafourcade, B. Marnier, J. Serre, B. Maisonnier. “Mehatronic design
of NAO humanoid”. IEEE International Conference on Robotics and
Automation, Kobe, Japan, 2009, pages 769-774.

[10] B. Graf, M. Hans,, R. Schraft, “Care-o-bot II development of a next
generation robotic home assistant”. Auton. Robots, 16(2), pp, 193—
205, 2004.

[11] F. Ingrand, S. Lacroix, S. Lemai, F. Py, « Decisional autonomy of

planetary rovers ». Journal of Field Robotics, vol. 24, n° 7, pages

559-580, 2007.

[12] International Planning Competition, http://ipc.icaps-conference.org/

[13] H.Iwata, S.Sugano: “Design of Human Symbiotic Robot TWENDY-
ONE,” Proc. of IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 580-586, 2009.

[14] F. Jammes, A. Mensch, H. Smit. “Service-oriented device
communications using the devices profile for web services”, In
AINA Work., pages 947–955, Washington, USA, May 2007.

[15] M. Joint, P.-A. Moëllic, P. Hède, P. Adam, “HEKA : A general tool
for multimedia indexing and research by content”. 16th Annual
Symposium Electronic Imaging (SPIE), San Jose 2004, Image
Processing, Algorithms and Systems III.

[16] P. Laborie, M. Ghallab. “Planning with sharable resource

constraints”. International Joint Conference on Artificial

Intelligence, Montreal, Canada, 1995, pages 643-1651.

[17] C. Leroux, I. Laffont, B. Biard, S. Schmutz, J. - F. Désert, G.

Chalubert. « Robot grasping of unknown objects, description and

validation of the function with quadriplegic people ». in Proceedings

of the 2007 IEEE 10th International Conference on Rehabilitation

Robotics. Noordwijk, The Netherlands, 2007.
[18] C. Leroy. ISENEdit: User Manual. CEA, LIST, LRI, Technical

Report, 2005, unpublished.

[19] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M.

Veloso, D. Weld, D. Wilkins. “PDDL – The Planning Domain

Definition Language”, http://cs-www.cs.yale.edu/homes/dvm/

[20] P. Morignot, M. Soury, C. Leroux, H. Vorobieva, P. Hède.

Generating Scenarios for a Mobile Robot with an Arm. Case study :

Assistance for Handicapped Persons. Eleventh International

Conference on Control, Automation, Robotics and Vision

(ICARCV’10). Singapore, December 2010, P1054.

[21] A. Remazeilles, C. Leroux , G. Chalubert, “SAM: a robotic butler for

handicapped people”, 17
th IEEE International Symposium on Robot

and Human Interactive Communication (RO-MAN - 2008),

01/08/2008-03/08/2008, Munich, Germany.
[22] V. Vidal, H. Geffner, “Branching and Pruning: An Optimal

Temporal POCL Planner based on Constraint Programming”,
Artificial Intelligence 170 (3), pp. 298-335, 2006.

[23] H. Vorobieva, C. Leroux, P. Hède, M. Soury, P. Morignot, “Object

Recognition and Ontology for Manipulation with an Assistant

Robot”, In Proceedings of the Eighth International Conference on

Smart Homes and Health Telematics (ICOST’10), L.N.C.S., Aging

Friendly Technology for Health and Independence, Springer, Berlin -

Heidelberg, Germany, vol. 6159, 2010, pages 178-185.

[24] J. Wolfe, B. Marthi, S. Russell, “Combined Task and Motion
Planning for Mobile Manipulation”. International Conference on
Automated Planning and Scheduling, Toronto, Canada, 2010.

[25] Minsky, M. & Papert, S., Perceptrons. MIT Press, Cambridge, MA,
1969.

[26] Quillan, M.R. Semantic Memory. In SIP, pp.216-270, 1986.

[27] Remazeilles, A., Leroux, C., Chalubert, G.: SAM: a robotic butler
for handicapped people. In: IEEE RO-MAN, Munich, Germany
(2008).

[28] Zied Loukil, Abdelmajid Ben Hamadou, Pierre Marquis, Vincent
Vidal, “ Les resources et la planification temporelle”, 2005.

[29] Geffner H. and Haslum P., « Admissible heuristics for optimal
planning », Proceedings of the Fifth International Conference on AI
Planning Systems (AIPS-2000), 2000.

[30] W. Hwang et al. , “pp. 596 – 606, Springer-Verlag Berlin
Heidelberg“ 2006.

[31] K.M. Varadarajan and M. Vincze, “Ontological Knowledge
Managment Framework for grasping and Manipulation”,2011.

[32] M.Tenorth and M. Beetz, “KNOWROB — Knowledge Processing
for Autonomous Personal Robots”, 2009.

[33] Wonil Hwang and al. “Ontology-Based Framework of Robot
Context Modeling and Reasoning for Object Recognition”,2006.

[34] S Lemaignan and al. ,”ORO, a knowledge management platform for
cognitive architectures in robotics”,2010.

