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Abstract. We present a method for three-dimensional (3D) magnetic field
reconstruction based on Galerkin transforms. We test it over synthetic fields
and real solenoidal (velocity) fields, measured in a water experiment. Our
study shows that reliable reconstructions are possible provided that the probes
are sufficiently sampled and located in shifted configurations. A preliminary
application of our method is performed on results obtained in the VKS
dynamo experiment (Bourgoin et al 2002 Phys. Fluids 14 3046). We show
that the stationary dynamos obtained with counter-rotating impellers are mainly
axisymmetric, with a non-axisymmetric part that decreases with increasing
Reynolds numbers. Most of the azimuthal energy is localized near the (iron)
impellers, confirming their importance in the dynamo process.
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1. Introduction

The magnetic field is an essential ingredient of most natural objects, and numerous campaigns
of observations or experiments are devoted to its measurement or modeling. A problem
often encountered in this process is the sparsity of measurements: only a limited number of
measurements, at a limited number of positions, are usually available. Specific techniques must
then be implemented with the data to reconstruct the magnetic field outside the measurement
points, so as to get information about their geometry, intensity, direction, etc. Classic examples
are reconstruction of the terrestrial or solar magnetic field. In the first case, data are rather
numerous at the surface of the earth and reconstruction is achieved by fitting a set of
basis functions, usually spherical harmonics or spherical caps, to magnetic data. In the case
of the sun, data are sparser, and the reconstruction can usually only be achieved through
physical assumptions. For example, Solanki et al [1] use magnetic data issued from vector
spectropolarimetry of the He I 1083 nm multiplet, formed near the coronal base, and assume
that the He line is formed along tubes of magnetic flux as the active region emerges through
the chromosphere into the corona. The He line emission then forms in coronal-like loops.
With this assumption, a three-dimensional (3D) magnetic field can be constructed that can be
compared with extrapolations from deeper layers. Similar problems can be found in laboratory
experiments. For example, electromagnetic velocity probes usually require measurement of the
distribution of the 3D magnetic field in the whole measuring volume out of the probe. Clever
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Figure 1. (a) Sketch of the VKS experiment geometry, including the probe
locations. The z-axis of the cylindrical coordinates is taken as the x-axis of the
experiment, i.e. the axial extension of the cylinder. The gap in between the inner
and the outer cylinder is filled with sodium at rest. The inner container radius R
is taken as the length scale.

assumptions about exciting currents and numerical solution of a Laplace equation allow for
reconstruction of the 3D magnetic field from a mere measurement of the distribution of the
normal component of the magnetic field on the surface of the probe [2]. In this paper, we focus
on the case of the von Karman sodium (VKS) experiment, a laboratory facility designed for
studying the turbulent fluid dynamo effect, i.e. the spontaneous generation of a magnetic field
from turbulent motion of liquid sodium. In that experiment, the magnetic field measurements
are localized only along a few magnetic sensors, thereby avoiding large disturbances of the
measurements onto the flow of liquid sodium. The reconstruction of the full 3D magnetic field
from these sparse measurements therefore implies technical processing of the magnetic data.
Here, we describe a solution inspired by geophysical methods, involving fitting a set of suitable
Galerkin basis functions to magnetic data.

2. Method

2.1. Geometry

The setup corresponding to the VKS experiment is sketched in figure 1 [13]. A cylindrical vessel
has a fixed aspect ratio of h/R = 1.8, where R(h) denotes the radius (height) of the vessel that
is filled with liquid sodium. We consider a cylindrical coordinate system (r, ϕ, z) such that the
axial vessel extension lies along z. Choosing R as the length scale, and introducing L = h/2R =

0.9, the variation ranges of the dimensionless cylindrical polar coordinates (r, ϕ, z) inside the
experimental vessel are therefore (06 r 6 1, −π 6 ϕ 6 +π, −L 6 z 6 +L). Our magnetic field
reconstruction, however, also extends beyond the vessel boundaries, i.e. for r > 1, thanks to
suitable boundary conditions (see below).

The fluid is stirred by two independent rotating so-called TM73 impellers [15, 16]. The
impellers are fitted with curved blades, and can be rotated independently at frequencies F1

and F2.
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Magnetic measurements are carried out using 3D Hall probes, and recorded with a National
Instruments PXI digitizer. Both a single-point (three components) probe (hereafter labeled
G-probe) and custom-made arrays of 10 (three components) probes (hereafter called SM-array)
are used. The array is made of Sentron 2SA-1M Hall sensors located every 28 mm along a line.
The different possible locations of the probes are sketched in figure 1.

2.2. Brief overview

A given VKS experiment provides us with a set of measurements of the (three components of
the) magnetic field at N different sparse locations. To reconstruct the magnetic field in the whole
space, we expand it on a set of well-chosen (see below) Galerkin functions Gi ,

B(r, ϕ, z) =

M∑
i=1

bi Gi(r, ϕ, z), (1)

where M is the number of modes of the reconstruction. Then, by imposing that the expansion
matches the three components of the measured fields at the N measurement points, we obtain
a set of 3N equations with M unknown (the coefficients of the expansion bi ). Inverting the
systems thus provides the values of bi and thus the reconstruction at that resolution. Of
course, one cannot hope to reconstruct the field with a resolution larger than the number of
measurements (i.e. M < 3N to obtain good results). In addition, the possible non-uniqueness
of the solution suggests the use of M � 3N in order to allow for robustness of the inversion
through redundancy. Since N is typically of the order of 1–10 (41 at most), this means that only
a small number of Galerkin modes will be allowed in the reconstruction procedure. To obtain
meaningful results, it is therefore mandatory to choose an optimal Galerkin basis, such that a
small number of modes capture the large-scale structure of the experimental fields. This means
that the Galerkin basis satisfies both the solenoidal condition and the boundary conditions of the
magnetic field. We therefore now describe how to implement these constraints on the choice of
the basis, following the recent works [3, 4].

2.3. Boundary conditions

Through the cylindrical coordinate system, the system is naturally periodic in the ϕ-direction.
Boundary conditions must, however, be specified in the vertical and radial directions.

2.3.1. Vertical boundaries z = ±L. As in pseudo-spectral simulations [15], the inversion
procedure can be greatly simplified if one considers a ‘periodized’ version of the problem, in
which the magnetic field is assumed periodic in the axial direction. It is, however, not possible
to use the unit cell as the interval z ∈ [ − L; L] because the magnetic field is not naturally
periodic over this cell. To avoid discontinuities and Gibbs phenomena (artifact oscillations of
the reconstructed magnetic field near the discontinuity), we have thus chosen to use as a unit cell
the whole range z ∈ [ − L; 3L], which is twice the original physical domain. Doing so yields
magnetic field components that are continuous everywhere.

2.3.2. Radial boundary r = 1. The boundary conditions at r = 1 are set by the condition that
both the magnetic field components and the derivative ∂r Br are continuous at r = 1—the last
condition stems from the solenoidal nature of B-, i.e. they match continuously the exterior
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domain solution. Note that many numerical methods to deal with the r = 1 boundary conditions
have been developed, based e.g. on boundary element formalism [24], on integral equation [26]
or on spectral finite elements [25]. Here, we choose simple ways to manage these boundary
conditions, compatible with our Galerkin decomposition. In the following, we consider three
main possibilities:

• External insulating. If the medium surrounding the fluid is insulating, we obtain the
following condition for the exterior solution,

∇ × B = 0, ∇ · B = 0, ⇒ 1B = 0. (2)

In the case of the spatially homogeneous magnetic permeability we are considering, the
magnetic field must also be continuous and finite over all space, and vanish for r → ∞.

• Ferromagnetic (µr = ∞) wall at r = 1. In that case, we assume that the field is zero at
r > 1, and that Bz = Bφ = 0 at r = 1. This case mimics the situation where the fluid is
surrounded by a ferromagnetic wall.

• The general case. In that case, we do not specify the boundary conditions at r = 1 for Br

and Bφ.

2.4. Galerkin basis

2.4.1. General case. Following [3, 4], we first switch from the usual cylindrical components
B = (Br , Bϕ, Bz) to the new components B = (B+, B−, Bz) such that B± = (Br ± iBϕ)/2. Due
to the periodic conditions in ϕ and z, it is natural to introduce the general decomposition over
eigenmodes of the Helmoltz operator as

B =

B+

B−

Bz

 =

N∑
n=1

M∑
m=−M

Pπ/2L∑
k=−Pπ/2L


Cnmk

+ Jm+1(µnmkr)

Cnmk
−

Jm−1(µnmkr)

Cnmk
z Jm(µnmkr)

 exp(imϕ + ikz), (3)

with Cnmk
±,z = (Cn−m−k

±,z )∗ to enforce the reality of the field and the numbers µnmk have to be
chosen so as to respect boundary conditions. The coefficients Cnmk

±,z are the spectral coefficients
of our decomposition and are uniquely associated with our initial field B. We then write
symbolically the value of B in the Galerkin space as GT(B) (for Galerkin transform) with

GT(B) =


Cnmk

+

Cnmk
−

Cnmk
z

. (4)

For completeness, we introduce a similar decomposition for a scalar field 9 as

9 =

N∑
n=1

M∑
m=−M

Pπ/2L∑
k=−Pπ/2L

Qnmk Jm(µnmkr) exp(imϕ + ikz), (5)

so that we have

GT(9) = Qnmk. (6)
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2.4.2. Useful formulae. Our decomposition allows for an interesting representation of usual
derivatives, which are a generalization of similar operations in the Fourier space. Indeed, we
have for a scalar field

GT(19) = − (µ2
nmk + k2)Qnmk,

GT(∇9) =


−

1

2
µnmk Qnmk

1

2
µnmk Qnmk

ik Qnmk

. (7)

In a similar way, we have for a vector field

GT(∇ · B) = µnmk

(
Cnmk

+ − Cnmk
−

)
+ ikCnmk

z ,

GT(∇ × B) =


i

2
µnmkCnmk

z − kCnmk
+

i

2
µnmkCnmk

z + kCnmk
−

−iµnmk

(
Cnmk

+ + Cnmk
−

)

. (8)

These simple formulae show that once the field has been reconstructed, it is easy to perform
accurate derivative operations by working in the Galerkin space. Moreover, the formulae can be
used to select a useful special Galerkin basis for magnetic field reconstructions.

2.4.3. Useful basis. A general Galerkin transform of an arbitrary vector field requires three
independent coefficients for each (nmk). In the case of a solenoidal field, we must have
µnmk(Cnmk

+ − Cnmk
−

) + ikCnmk
z = 0 for any (nmk), so that only two independent coefficients

remain. In the following, we describe even simpler cases, with only one independent coefficient,
that are appropriate for fields and boundary conditions usually met in our von Karman
experiment.

2.4.4. The Beltrami case. In this case, the Galerkin transform reads

GT(B) = Dnmk


1

2
(λ± − k)

1

2
(λ± + k)

−iµnmk

, (9)

where the Dnmk are complex numbers such that Dnmk = D∗

n−m−k and λ± = ±

√
µ2

nmk + k2. This
corresponds to a decomposition into Beltrami waves, with polarization given by the sign of λ.
To guarantee some interesting orthogonality conditions, we further take µnmk as the nth root of
Jm . The corresponding field is solenoidal, and such that Bz = 0 at r = 1.
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2.5. The Marié–Normand–Daviaud field case

There are two cases depending on the axial wave number.

Case k 6= 0.

GT(B) = Dnmk

c+Km+1/Jm+1(µnmk)

c−Km−1/Jm−1(µnmk)

Km/Jm(µnmk)

, (10)

where the Dnmk are complex numbers such that Dnmk = D∗

j−m−k , Km expressed through the

modified Bessel function of order m as Km = Km(|k|), c± = i|k|/k
√

2, and the parameter µnmk

is determined as the nth root of the equation,
2|k|

µ

Km(|k|)

Jm(µ)
=

Km−1(|k|)

Jm−1(µ)
−

Km+1(|k|)

Jm+1(µ)
. (11)

For each k, there is an infinite set of real positive values µnmk , which we truncate to N , the
number of radial modes in the Galerkin expansions (3). Marié et al [3] determined the roots
of (11) for m = 1 and discrete values of the axial wave number (kπ/2L). The roots of (11) for
higher values of m, up to m 6 5, were computed later by Leprovost [7]. For a given value of k,
the successive roots of (11) take increasingly large values as n increases (µ(n−1)mk < µnmk). As
an example, for m = 1 and k = 1, their values range between µ111 = 2.217 and µn11 = 32.22 for
n = 20.

Case k = 0. In that case, there are two different families of modes.
The first family has the form

GT(B) = Dnm0


1

2m
µnm0/Jm+1(µnm0)

1

2m
µnm0/Jm−1(µnm0)

0

, (12)

where µnm0 is the nth root of Jm−1.
The second family has the form

GT(B) = Dnm0

 0
0

1/Jm(µ̄nm0)

 (13)

associated with a different set of eigenvalues µ̄nm0 that are the zeros of Jm .
This Galerkin basis is solenoidal and matches at r = 1 with a field such that 1B = 0. This

case is therefore suitable for describing a medium surrounded by an insulating fluid.

2.6. The Ferro case

For this case, we choose

GT(B) = Dnmk

−µnmk (k − γ )

µnmk (k − γ )

µ2
nmk

, (14)
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where the Dnmk are complex numbers such that Dnmk = D∗

n−m−k , with µnmk being the nth root
of Jm , and γ is the solution of the dispersion equation,

γ = k
Jm+1(µnmk) + Jm−1(µnmk)

Jm+1(µnmk) − Jm−1(µnmk)
. (15)

In this case, the field is solenoidal, and Bz = Bφ = 0 at r = 1, i.e. is perpendicular at the
boundary at r = 1. This case therefore describes the case where the fluid is enclosed inside
a ferromagnetic boundary.

2.7. The inverse problem

In the three cases we considered above, the final Galerkin expansion for the magnetic field at
a given resolution (N , M, P) requires 2N (M + 1)(2P + 2) independent real coefficients2. To
compute these coefficients, one writes the condition that the Galerkin expansion of B matches
the measured field Bmes, at different probe locations (rmes, ϕmes, zmes),

B(rmes, ϕmes, zmes) = Bmes. (16)

This procedure can be recast formally into the equation

Ai j X j = Yi , (17)

where X j , j = 1, . . . , 2N (M + 1)(2P + 2) is the vector formed with the real part and the
imaginary part of the unknown complex coefficients Dimk; Yi , i = 1, . . . , 3Nmes is the vector
formed by each of the components of the measured magnetic field at each probe location;
and Ai j is the matrix formed by the Galerkin basis evaluated at the probe locations. Inverting
formally (17), one then obtains the unknown coefficient of the Galerkin expansion through

X i =A−1
i j Y j , (18)

where A−1
i j is the pseudo-inverse of Ai j . Indeed, to ensure robustness of the procedure, we

choose in the following the resolution such that 2N (M + 1)(2P + 2)6 3Nmes (see the discussion
above). The problem is therefore overdetermined so that only the pseudo-inverse is defined (in
the sense that there is an infinite number of solutions for (18)). We have tested two Matlab
procedures for the pseudo-inverse, resulting in two sets of solutions that are both solutions in
the least square sense (i.e. minimizing the norm of Ai j X i − Y j ): one minimizing the norm of X i

(pinverse function) and one minimizing the number of non-zero components of X i (/function).
In addition, we have implemented a standard regularization procedure based on the Tikhonov
method using Matlab codes developed by Professor Per Christian Hansen [5] and provided in
http://www2.imm.dtu.dk/pch/Regutools/. All three procedures give similar results for smooth
fields (for example, time-averaged fields). The regularization method allows the elimination
of spurious noise in the case of rough fields (such as instantaneous fields). We have therefore
privileged this method in the following. To test the method and its sensitivity to the different
parameters, we use two types of fields: (i) synthetic fields, constructed from the Galerkin basis;
(ii) real fields, issued from stereoscopic particle image velocimetry (SPIV) performed on a
turbulent von Karman water flow, in a half-scale cylindrical vessel with respect to the VKS
experiment [17].

2 The factor 2 comes from the complex nature of the coefficients; the factor (M + 1) takes into account the reality
of the field, thereby imposing symmetry conditions on the Dnmk ; and the factor 2P + 2 takes into account the
existence of two families of modes at k = 0.
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1 23

45

Figure 2. Projection of synthetic fields at different resolutions (N , M, P) in a
meridional plane passing through the symmetry axis. The out of plane (toroidal)
component Bφ is coded with color and the in-plane (poloidal) component (Br

and Bz) are coded with arrows (this representation is used in the whole paper).
Top left: N = 1, M = 0, P = 0; top right: N = 1, M = 1, P = 1; bottom left:
N = 2, M = 1, P = 1; bottom right: N = 3, M = 2, P = 1. We represent five
possible probe locations in the top left figure.

3. Tests on synthetic fields

3.1. Description of synthetic fields

The synthetic fields are constructed from equation (3) by fixing a resolution (N , M, P) and
then choosing the 2N(M+1)(2P+2)-independent Dnmk so that the energy is concentrated in
the lowest modes and decreases with increasing mode number—the idea being to mimic
a ‘realistic’ experimental field. In practice, we set Dnmk = (−1)i/ i , where i = | j | + |m| +
|k|. An example of such synthetic fields is provided in figure 2, for different resolutions
(N , M, P).

The complexity of the synthetic field topology increases with the resolution. The synthetic
measurements are extracted from these fields by computing the value of the field at some
selected location. In the following, we test various reconstructions by using ‘measurements’
made at the location given by VKS magnetic probes. There are three probes in the vertical plane
(probes 1, 2 and 3) and three again in the central plane (probes 1, 4 and 5), at the location of
the velocity mixing layer in the exact contra-rotation regime. The location of these probes is
reported in figure 2 for illustration and clarity.
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3.2. Diagnostic

To quantify the quality of the reconstruction, we define scalar quantities inspired by the classical
residue definition as follows. We first divide our available measures into two distinct parts:
(i) a large set (X = {r j

meas}), including about 95% of the measures, that is kept to reconstruct the
field; and (ii) a second, smaller set (Y = {r j

test}) that is used to compute ‘residue-tests’.
From the first set X , we define a classical residue characterizing the quality of the

reconstruction from the measures in the set X as

r =

√√√√ N∑
j

3∑
i

(B i
real(r

j
meas) − B i

reconst(r
j

meas))2

(B i
real(r

j
meas))2

, (19)

with i = r , φ, z coordinates and j = 1, N the number of the measures in X . This residue
quantifies the ability of the reconstruction to fit the observed magnetic field with the set of
measures X .

From the second set Y , we define another residue based on the measures not involved in
the magnetic field reconstruction. This residue is named the Residue test and is defined as in
equation (19) by substituting r j

meas with r j
test.

Finally, we can define a third residue based on energy as 1E = (Esynth − Ereconst)/Esynth.
We refer to it as the energy residue.

3.3. Influence of mode numbers

We first explore the influence of the mode number on the reconstruction. Clearly, we cannot get
more reliable information than present in the field to be reconstructed. Therefore, the number
of modes used in the reconstruction Nr cannot be larger than the total number of measures
3Nmes. Also, in order to get stable results, it is interesting to use some redundancy, so that
Nr = (1 − fr)3Nmes where 0 < fr < 1 quantifies the percentage of redundancy of the data.

In order to get a hint of typical admissible values of fr, we use a given (N , M, P) synthetic
field with varying Nr = 2N (M + 1)(2P + 2) modes and extract 3Nmes = 120 synthetic measures
at the VKS sensor positions (ten sensors measuring three components per probe on the 2—3—
4—5 probes represented in figure 2). As a preliminary test to check our software, we then first
reconstruct the field from the synthetic measure with the same set (N , M, P) of modes. In all
cases, we found that the residues are very low (r ∼ 10−15), i.e. the reconstruction with the same
set of modes as the initial field always reproduces well the field at the measurement points.
The energy residue is fairly low until Nr ∼ 50 ( fr = 0.6), where the reconstructed energy starts
to diverge from the synthetic field energy. Therefore, the degree of redundancy necessary to
reconstruct the field in this case must be at least 60%. Respecting these redundancy limitations,
we always obtain a quasi perfect reconstruction, giving us good confidence in our software.

The previous situation is, however, quite ideal. In real experiments, the magnetic field has
a, presumably fairly large, unknown number of modes, and robust reconstruction attempts use a
smaller number of modes than in the experimental field. To test this effect, we choose a synthetic
field with a fairly large number of modes ((4, 2, 2) resulting in Nr = 144 modes) and reconstruct
it with different sets of modes, with Nr < 96.

The results are presented in figure 3. We see that the residue decreases fairly monotonically
with the energy residue until Nr ≈ 20( fr = 0.8). Above this, the energy residue starts diverging,
while the residue continues to decrease until Nr = 40 ( fr = 0.67), where it saturates towards
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Figure 3. Evolution of the residue (bottom left) and of the energy residue (bottom
right) with the magnetic field mode number. The (4, 2, 2) initial field with 144
modes is in the top left figure, the filtered version is represented in the top middle
figure and the reconstruction (3, 1, 1) with 48 modes is plotted in the top right
figure.

a value of the order of 0.5 (with big oscillations). Note that the oscillations are mainly due
to reconstructions that have either M = 2 or P = 2. These modes are difficult to capture in
our measurement setup, because we have a maximum of three values in both the φ- and z-
directions (see figure 2). Thus, introducing a number of modes superior to one in these directions
can lead to systematic error, coming from the low number of measurement points along the
z- and φ-coordinates. Keeping in mind this restriction, and focusing on reconstruction with
M 6 1, P 6 1, we get a ‘best’ reconstruction with (3, 1, 1) mode configuration, corresponding
to Nr = 48 and δE ∼ 0.03 shown in figure 3. One sees that the reconstruction captures the
‘large-scale’ structure of the initial field. To quantify this further, we may also compare the
reconstruction with a filtered version of the initial field, computed using a sgolay filter with
a length scale of the order of a tenth of the cylinder radius. One sees that the reconstruction
captures even finer details than the coarse version.

3.4. Influence of sensor numbers

In this section, we explore the dependence of the reconstruction quality with the number of
sensors (varying Nmes the number of measurement points). For this, we consider a (2, 1, 1)

synthetic field and reconstruct it with a varying number of measurements 3Nmes. In order to
minimize the influence of probe location, we always consider the same number of sensors
Ns/4 on each of the four probes (probes 2, 3, 4 and 5 reported in figure 2). The number of
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Figure 4. Evolution of the residue (right panel) and energy residue (left panel) of
the reconstruction with varying sensor number Ns. There are Ns/4 measurements
per probe. Here, both the initial and the reconstructed field have 32 modes.

measurements is then increased with increasing Ns. The total number of measurements is then
3Nmes = 3Ns. In the following, we vary Ns/4 from 1 to 4. The synthetic fields are reconstructed
with a (2, 1, 1) set of modes, with Nr = 32.

The influence of Ns on the reconstruction is given in figure 4. The residue is almost
constant, maintaining very low values (r ∼ 10−15). The energy residue 1E is more sensitive to
Ns and takes very large values for Ns 6 12, i.e. a total measurement number less than 36. This
corresponds precisely to a range of values for which Nr = 32 > 3(1 − 0.67)Nmes, confirming the
importance of keeping at least 60% of redundancy. Above the value Ns = 12, the energy residue
becomes quite low (∼10−5) and the reconstruction quality is excellent.

3.5. Influence of probe location

We have worked so far assuming that the measurements are carried out at the present VKS
probe location (see figure 2). It is, however, interesting to check the influence of the probe
location on the reconstruction, so as to potentially optimize experimental measurements. The
question is then how to optimize the probe location to get the maximal quality of magnetic
field reconstruction with minimal impact on the experimental sodium flow. Such an impact
is decreased with a decreasing number of probes and with a probe configuration respecting
as much as possible the symmetries of the flow. We thus consider now measurements carried
out with only two probes. Given the present experimental configuration, three different sets of
symmetric probe locations can then be constructed. They are reported in figure 5.

The three configurations are (i) the axial configuration with two probes in the same
vertical plane symmetric with respect to the meridional plane; (ii) the central configuration
with two probes in the meridional plane of the cylinder (z = 0) at two angles differing by π ; and
(iii) the shifted configuration with two probes at different z and different φ angles. We consider
ten sensors on each probe, and reconstruct the fields with the same increasing number of modes
for both the synthetic field and the reconstructed field.

The residue behavior for the three configurations is given in figure 5. The residue in
the central configuration is large and decreases with the mode number, while it is small or
close to zero for axial and shifted configurations. The energy residue for the axial and central
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Figure 5. Top figure: an example of a synthetic field with the indication of the
three-probe configuration (axial, central, shifted). Bottom: evolution of residue
(left) and energy residue (right) with number of initial field modes (equal to the
number of reconstructed modes) depending on the three sets of probes’ location
axial, central and shifted.

configuration increases significantly with the mode number. Thus, the reconstruction in this
geometry is not reliable with only two probes. In contrast, the shifted configuration provides
fairly reasonable results. We focus on this configuration from now on.

3.6. Influence of noise

So far, we have performed reconstruction using ‘perfect’ measures, matching exactly the
synthetic field. In real experiments, various noise sources pollute the measurements, and it is
important to test the sensitivity of the reconstruction to measurement noise. We therefore extract
artificial measurements from a synthetic (4, 2, 2) field (144 modes) in a shifted configuration
and superimpose on them a white noise of increasing amplitude Anoise = Rnoise/Rmeas before
reconstructing the field. We consider two cases: (i) a reconstruction with the same number of
modes as the synthetic field and varying noise amplitude. The results are provided on the left
panel of figure 6. (ii) A reconstruction using an under-sampled number of modes (Nr = 48 for
(3, 1, 1))—to remain close to actual experimental conditions—and varying noise amplitude.
The results are provided on the right panel of figure 6.

In all cases, we observe a decrease in the reconstruction quality with increasing noise.
The impact is larger for the under-sampled case but grows less rapidly. The energy residue,
however, stays close to the initial energy. Our conclusion is that the energy measurements from
reconstruction techniques are reliable up to 20% even in the presence of noise.
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Figure 6. Evolution of the residue and energy residue with the noise intensity. On
the left panel, the reconstructed and the initial field have the same set of modes;
on the right panel, the reconstructed field has a lower number of modes than the
initial field.

From our series of tests, we obtained two main conditions for reliable reconstruction:
shifted probe configuration and the number of reconstruction modes smaller than the number of
measurements. Furthermore, we observed that the residue by itself is not a reliable test of the
reconstruction quality, since we can get very good residue and poor energy residue. Since, in
experimental fields, we dot not have access to the energy of the field (i.e. we cannot compute
energy residue), we shall use the residue test to discriminate the reconstruction quality.

4. Test on a real field

Until this point, we have focused on tests of our inversion procedure using synthetic field
and artificial noise. Before implementing our procedure in actual data, we first tried to see if
it is experimentally sound, i.e. whether it is able to reconstruct a real and known soleinodal
field, from experimental measurements. We did not have at our disposal a known experimental
magnetic field. However, we had in store an experimental velocity field measured through
an SPIV on a Von Karman water flow. This provides an experimental picture of the three
components of a soleinodal field in a meridional plane passing through the axis of rotation,
which can be used to further test our reconstruction method. Indeed, we can introduce three
‘fictive probes’ in our device (see figure 7) and use them to extract 30 artificial measurements.
Using our inversion procedure, we can then reconstruct the field from these measurements, and
compare the result with the actual measurement to check the soundness of the result. This has
been done with an experimental velocity field measured in counter-rotation at a frequency of
16 Hz [23]. The time-averaged velocity field is shown in figure 7. It is obviously a fairly large-
scale axisymmetric field, with four recirculating cells. To test the reconstruction, we extract 30
artificial measurements from three fictive probes located at the locations of the VKS experiment,
shown in figure 7. We then reconstruct this field using the inversion procedure described in
section 2, using the Galerkin basis based on Beltrami waves (see section 2.4.4).

Since the flow is axisymmetric, we consider only cases with M = 0. The result of the
reconstruction is provided in figure 7, for (5, 0, 1) modes. The associated residue is 0.26,
while the energy residue is 0.25. Comparing with the full experimental field, we see that the
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Figure 7. On the left panel, a real Von Karman water velocity field (F = 16 Hz);
on the middle panel, the filtered version; and on the right panel, the reconstructed
field. The out of plan (toroidal) component Vφ is coded with color (red is positive
values while blue is negative values) and the in-plane (poloidal) component (Vr ,
Vz) is coded with arrows. The three probes of ten sensors used to reconstruct the
field are represented in gray on the left panel.

main topology of the velocity field is well captured: the cell limits are close to reality and
their amplitudes near the center are well reproduced. However, the positions of the maxima
of each cell are not well reproduced and the velocity amplitude of in-plane components is
overestimated near the discs. To check whether this is an effect of ‘under-resolution’, we also
made a comparison with a filtered version of the experimental field, using a sgolay filter, so as
to keep only the largest scale. One sees that indeed the position of the maxima of each cell is
closer to that of the filtered field.

Note that we reconstructed this topology from an axial configuration of probes (the only
one available in this situation), which is not as reliable as a shifted configuration, as proved in
section 3.5.

From this test over an experimental field, we conclude that the reconstruction is able to
extract general behavior (energy and global topology) of a given field from a restrained number
of measures. Smaller-scale details, such as the exact maxima positions, or the field amplitudes
near the boundaries, require a much larger number of measurements, which are for the moment
unavailable in the VKS experiment.

5. Application to the von Karman sodium (VKS) experiment

In this section, we finally apply the reconstruction method to the magnetic field in a particular
VKS experiment. We consider a setup with two iron impellers. The flow is surrounded by
sodium at rest in an outer cylinder (radius Rc = 289 mm, length 604 mm) delineated by a
copper cylinder. This configuration is discussed at length in [20]. In exact counter-rotation, it
leads to a statistically stationary dynamo for F1 = F2 > 16 Hz. Measurements are made through
three probes: one probe with ten sensors, located at position 5 in figure 2 (SM1), one probe
with eight sensors, at position 2 (SM2), and a Gaussmeter (one sensor), in position 3 (G).
Due to failure of some experimental probes, we can consider only a restricted number of
reliable measures for reconstruction. Here, we focus on seven exact contra-rotation regimes
at frequencies (F1 = F2 = 12, 17, 18, 19, 20, 21, 22 Hz) corresponding to a magnetic Reynolds
number Rm = 0.6 µ0σ(F1 + F2)/2π R2

C at temperature 120 oC Rm = 24, 34, 36, 38, 40, 42 and
44. The last six regimes in this study correspond to the dynamo regime. For each regime,

New Journal of Physics 13 (2011) 023037 (http://www.njp.org/)

http://www.njp.org/


16

32 34 36 38 40 42 44
0.1

0.15

0.2

0.25

Rm

R
es

id
ue

 a
nd

 R
es

id
ue

 te
st

 

 

Residue
Residue test

0 0.2 0.4 0.6 0.8 1 1.2
–5

0

5

10

r

B
r

0 0.2 0.4 0.6 0.8 1 1.2
–10

0

10

20

r

B
ph

i

0 0.2 0.4 0.6 0.8 1 1.2

0

10

20

r

B
z

+

+
SM1 reconstruction
SM1
SM2 reconstruction
SM2

32 34 36 38 40 42 44
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Rm

T
ot

al
 E

ne
rg

y

32 34 36 38 40 42 44
0

1

2

3

4

5

6

7

8

Rm

E
m

0/
E

m
1

Figure 8. Top left: reconstruction residue (in blue) and residue test (in
red) for different magnetic Reynolds number in a VKS2 experiment. Top
right: comparison between reconstructed field (lines) and real probe measures
(crosses); one sees that the reconstruction captures the behavior well. Bottom
left: total energy of the reconstruction as a function of magnetic Reynolds
number. Bottom right: ratio of the energy of m = 0 modes on the energy of m = 1
modes as a function of the magnetic Reynolds number. We also add the error bars
extracted from the residue.

measurements are made during 60 s at a frequency of 2000 Hz. In order to extract a general
large-scale behavior, we average in time the measurements at each frequency. According to the
results of the previous section, our measurement number prevents reconstruction of the magnetic
field with more than 54 modes.

We then reconstruct the field with a non-axisymmetric set of modes: (2, 1, 1)

corresponding to 32 modes (the maximum number of modes we can reconstruct the magnetic
field with). We compute the residue and the residue test taken on one of the sensors of SM1 (as
defined in section 3.2). These residues for different Rm are shown in figure 8. The (2, 1, 1) set
of modes gives a residue ∼0.2 and a residue test ∼0.15 for the dynamo regimes. This set of
modes provides a reasonable fit of the measurement, as seen in figure 8. Its corresponding total
energy as a function of Rm is given in figure 8. The total energy growth is roughly quadratic in
Rm.

A first striking result of our reconstruction is that the time averaged dynamo field is not
purely axisymmetric: m = 1 mode is needed to fit the measurements. To quantify this result, we
show in figure 8 the ratio of the energy of the m = 0 mode to the energy of the m = 1 mode.
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Figure 9. Left: total reconstructed magnetic field in a VKS experiment at Rm =

34, just above dynamo onset. The out-of-plane (toroidal) component Bφ is coded
with color and the in-plane (poloidal) component (Br , Bz) is coded with arrows.
Right: corresponding stream lines and energy density at 25% of the maximum.

Figure 10. Left: mode m = 0 of the reconstructed magnetic field in a VKS
experiment at Rm = 34, just above the dynamo onset. The out-of-plane (toroidal)
component Bφ is coded with color and the in-plane (poloidal) component (Br ,
Bz) is coded with arrows. Right: corresponding stream lines and energy density
at 25% of the maximum.

We see that this ratio increases with Rm: the dynamo becomes more and more axisymmetric.
However, the mode m = 1 does not disappear and still contains a significant amount of energy
at the largest Rm: for Rm = 34, Em=0/Em=1 = 1.8; for Rm = 44, Em=0/Em=1 = 5.4.

The corresponding dynamo field structure is given in figure 9 at Rm = 34 close to the
dynamo onset. It is mainly an axial dipole, with a concentration of azimuthal energy near the
iron propellers. Taking a closer look at this phenomenon through iso-density of energy surface
at 25% of the maximum energy (figure 9), we observe that the energy distribution is asymmetric,
with more energy close to the left disc than close to the right disc. At present, we do not know
whether this is an artifact of the reconstruction due to the lack of measurements or if this reflects
an actual breaking of the axial symmetry across the z = 0 plane, generated by the dynamo. More
measurements are needed.

To try and determine the nature of the two modes, we plot them separately in figure 10 for
the m = 0 mode and in figure 11 for the m = 1 mode. The m = 0 mode is clearly an axial dipole,

New Journal of Physics 13 (2011) 023037 (http://www.njp.org/)

http://www.njp.org/


18

Figure 11. Left: mode m = 1 of the reconstructed magnetic field in a VKS
experiment at Rm = 34, just above the dynamo onset. The out-of-plan (toroidal)
component Bφ is coded with color and the in-plane (poloidal) component (Br ,
Bz) is coded with arrows. Right: corresponding stream lines and energy density
at 25% of the maximum.

as already discussed in [13]. The m = 1 mode has a meridional dipole component, localized
near the propeller which concentrates the largest energy. It does not, however, resemble the
neutral mode predicted by kinematic dynamos based on the mean velocity flow [3]. This result
is interesting, because it may provide some hints about the origin of the m = 0 and m = 1
modes in our reconstruction. In the absence of any probes in our device, the mean velocity
field is perfectly axisymmetric, and can only support kinematic growth of an m = 1 mode. In
the presence of non-axisymmetric helical fluctuations, however, an m = 0 dynamo mode can
grow through a simple α–ω mechanism [27, 28, 30]. In the presence of a soft iron impeller, the
growth of the m = 0 mode is favored against the m = 1 mode [29]. In the present case, we have
an additional source of non-axisymmetry, via either the earth magnetic field or the presence of
the probes that break the axisymmetry of the flow. Our observation that the m = 1 mode does
not resemble the kinematic m = 1 mode suggests that it is a perturbation linked with external
non-axisymmetry of the experiment (through either probes or the earth field). This means that
we may be in an intermediate Reynolds number regime, where the m = 0 dynamo mode is
permitted but not the m = 1 kinematic mode.

To quantify further how the repartition between the m = 0 and m = 1 modes proceeds
during dynamo instability, we apply a reconstruction procedure during the growth of the
magnetic field. For this, we consider dynamical measurements at Rm = 32, during a growth
stage, and apply a moving average over 0.1 s upon all measurements. We then reconstruct in
time the magnetic field in order to get the mode topology during the growth. The result is given
in figure 12, where the normalized magnetic energy measured in the experiment is compared
with the relative energy ratios Em=0/(Em=0 + Em=1) and Em=1/(Em=0 + Em=1) obtained through
the reconstruction. In this measurement, the experiment is tuned at a value of Rm larger than
critical at t = 0. The magnetic field then increases in time due to the dynamo instability. One
sees that at the very early stage of the growth, the mode m = 1 dominates, with an occasional
crossover with the mode m = 0 corresponding to a localized magnetic energy burst. Then, after
about 30 s, the magnetic field growth accelerates, corresponding to a crossover between the
m = 1 and m = 0 modes, which predominates after this stage. Note further that the magnetic
field growth proceeds in roughly three steps: one between t = 0 and t = 30 where the magnetic
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Figure 12. Total energy, m = 0 and m = 1 mode relative energies as a function
of time during the initial growth of the magnetic field (Rm = 36). Inset: zoom of
the evolution at early time, to capture the crossover behavior.

field is small, with only one energy burst (corresponding to the first crossover in between the
m = 0 and m = 1 modes); a second stage, corresponding to the crossover between the m = 0 and
m = 1 modes, with larger fluctuations, but still moderate values of the magnetic field; and a third
stage, from t = 60, where the energy explodes and the dynamo settles, with a predominance of
the m = 0 mode.

This interesting step-by-step dynamo onset suggests that the dynamo mechanism is non-
trivial, and may involve the action of the m = 1 as a catalyst. Further analysis with more
measurements will be necessary in order to clarify this point.

6. Discussion

We have presented a method of reconstruction for 3D magnetic field reconstruction based on
Galerkin transforms and tested it over synthetic fields and real solenoidal (velocity) fields,
measured in a water experiment. Our study shows that reliable reconstructions are possible
provided that the probes are sufficiently sampled and located in shifted configurations. The
present sets of available measurements in VKS experiments prevent reconstruction of modes
higher than m = 1. In that respect, it would be interesting to develop azimuthal belt probes
around the cylinder in order to extract m > 1 modes without perturbing the flow with intrusive
sensors. To illustrate the possibility of our method, we have applied it to an old VKS
experimental configuration. Due to the fairly low available number of measurements, we could
only obtain rough results regarding the dynamo geometry, confirming previous results. In future
VKS dynamo campaigns, as many as four probes with ten sensors each will be available. We
therefore hope that reconstruction in such a case will be more reliable, and that we can gain
interesting results concerning the magnetic field geometry during dynamical events (reversals,
periodic cycles, extinction, bursts, etc. [14]) that can help in improving our understanding of
turbulent dynamos.
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