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ABSTRACT

It has been know for at least one decade [1] that functional MRI

time series display long-memory properties, such as power-law scal-

ing in the frequency spectrum. Concomitantly, multivariate model-

free analysis of spatial patterns , such as spatial Independent Com-

ponent Analysis (sICA) [2], has been successfully used to segment

from spontaneous activity Resting-State Networks (RSN) that cor-

respond to known brain function. As recent neuroscientific stud-

ies suggest a link between spectral properties of brain activity and

cognitive processes [3], a burning question emerges: can temporal

scaling properties offer new markers of brain states encoded in these

large scale networks? In this paper, we combine two recent method-

ologies: group-level canonical ICA for multi-subject segmentation

of brain network, and wavelet leader-based multifractal formalism

for the analysis of RSN scaling properties. We identify the brain net-

works that elicit self-similarity or multifractality and explore which

spectral properties correspond specifically to known functionally-

relevant processes in spontaneous activity.

Index Terms— spatial ICA, multifractality, scaling, resting

state, fMRI

1. INTRODUCTION

The presence of scale invariance in functional MRI (fMRI) data has

been considered as confound or noise for a long time. Prelimi-

nary evidence that fMRI time series have long memory in time or

1/f spectral properties has been demonstrated on “resting state”

motion-corrected datasets [1]. Physiological factors such as car-

diac beat or breathing cycle may also contribute to this scaling phe-

nomenon since they contaminate the Blood Oxygenated Level De-

pendent (BOLD) signal with properties depending on the sampling

period of data (i.e. short/long time of repetition (TR)) [4]. Early in-

vestigations therefore considered these space-varying low frequency

components as noise, responsible for potential non stationarities.

Other authors pointed out that the BOLD signal itself contains

power at virtually all frequencies, notably in randomized event-

related designs [5]. Interestingly, recent studies have reported that

low-frequency spatial fluctuations in cortical BOLD signals may

be indicative of synchronized long memory neuronal oscillations

rather than merely noise [6, 7]. Concomitantly, greater persistence

during brain activation has been found in normal subjects in [6].

Also, higher predictability summarized in terms of scaling exponent

(controlling the power law decrease of 1/f spectra) has been re-

ported in patients with Alzheimer disease or with major depressive
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disorder, especially in brain regions implicated in the early stages

of the degeneracy process [7, 8]. More recently, scale invariance

has been demonstrated to be an intrinsic property of ongoing brain

activity. It may thus provide a new insight on how the brain works

provided that quantitative parameters can be mapped with good

specificities to cognitive states (resting or awake states), task per-

formance, or neurological disorder (epilepsy) [3]. These last works

relied on tools such as windowed-averaged periodograms which are

grounded on assumptions self-similarity. However, the empirical

results in [3] (Hurst parameter larger than 1) show that the data

cannot be considered as realizations of fractional Brownian motion

noise, for which scaling properties are controlled by the sole self-

similarity (or Hurst) parameter lying in the range [0, 1]. A richer

description is thus needed to reflect the signal properties.

Inspired by the connection between 1/f and long range depen-

dence, several groups have argued that the analysis of fMRI time

series should be performed in the wavelet domain [9–11]. A first at-

tempt to identify stimulus-induced signal changes from scaling pa-

rameters was proposed in [6, 12]. These authors developed a voxel-

based fluctuation analysis (FA) and applied it to high temporal res-

olution fMRI data. Interestingly, they showed that fractal features

of voxel time series can discriminate active from inactive brain re-

gions [6, 12]. Also, to decide whether scaling analysis can help to

distinguish motion artifacts from true BOLD responses, complemen-

tary analyses were conducted in [13]. They are based on detrended

fluctuation analysis (DFA) and conclude that DFA succeeds in dis-

tinguishing amongst three types of voxels, noise, motion artifacts,

and true BOLD responses when the classical FA fails to robustly rec-

ognize which active regions in the brain are truly involved in certain

tasks. However, it has been argued in [14] that wavelet tools perform

better than DFA. Moreover, while scale invariance was first mod-

eled with 1/f processes and long range dependence, these classes of

models have fruitfully been embodied into the larger description of

self-similar processes. More recently, multifractal (MF) processes

were proposed has another versatile class of models for scale in-

variance. Therefore, akin to [11, 15], in the present contribution,

the analysis of scale invariance is based on the recently introduced

wavelet Leaders [16], a tool which, compared to those listed above,

brings in two major benefits: i) it shows by far the best estimation

performance, and ii) it enables to discriminate efficiently multifrac-

tality from self-similarity or long memory.

However, in [11, 15], due to voxelwise analysis and between-

voxel variability, the MF spectra suffered from a lack of robust-

ness in certain brain regions. To overcome these drawbacks, here

we make use of a multivariate approach, i.e. spatial Independent

Component Analysis (sICA), which has been popularized in the last

decade as an exploratory or model-free approach for analyzing fMRI



data [2, 17]. Hence, it appears as the method of choice for studying

resting-state datasets. At the group-level however, classical sICA

schemes (group ICA, tensor ICA,...) lack of reproducibility due to

between-subject variability. Also, statistical decision rules may ap-

pear too conservative. This has motivated the development of the

canonical ICA (canICA) methodology, which relies on a general-

ized canonical analysis to find out reproducible components across

subjects [18]. In this paper, canICA is used to segment salient fea-

tures from multi-subject resting-state datasets, thus decomposing the

multivariate datasets in a product of K spatial components and as-

sociated time series. The wavelet leader based multifractal analysis

is applied to these time-series, to differentiate functional processes

encoded in RSNs from other brain regions in terms of scaling expo-

nents.

The remainder of the paper is organized as follows. Section 2

summarizes the canICA framework we rely on. Then, Section 3

introduces the key notions underlying multifractal analysis as well

as the wavelet Leader-based multifractal formalism that permits to

analyze precisely the scaling properties in empirical data. Section 4

is devoted to experimental results and group-level statistical analysis

on the multifractal parameters. Conclusion are drawn in Section 6.

2. FROM SPONTANEOUS-ACTIVITY RECORDINGS TO

BRAIN-NETWORK TIME SERIES

In this section, we describe how the time-series used to perform mul-

tifractal analysis are extracted from multi-subject fMRI resting-state

datasets. Let us denote
{
Y

s ∈ R
T×P , s = 1 : S

}
S datasets com-

posed of T images with P voxels. We apply an ICA-based analy-

sis [19] to decompose the original voxelwise signals into K subject-

specific time series X
s ∈ R

T×K and group-level spatial compo-

nents A ∈ R
K×P , with residuals Ns:

∀s = 1 : S, Y
s = X

s
A+N

s. (1)

The spatial maps A segment salient and reproducible features of

resting-state fluctuations such as brain functional networks or struc-

tured noise (eg physiological or movement artifacts). Note however

that no ICA ever guarantees any independence (or gives a p-value).

The corresponding subject-specific time series X
s will be used in

subsequent scaling analysis.In the following, we summarize how A

is derived.

2.1. Generative model for the spatial patterns

The spatial features of interest A are observed mixed together and

confounded by unstructured background noise, inter-subject vari-

ability, and observation noise. More specifically, following [18, 19],

the observed signal can be written as a generative model made of

hierarchical decompositions with different noise terms at each level.

First, we model group-level patterns, C ∈ R
K×N , as generated by

the set of sources A ∈ R
K×N , confounded by additive unstructured

noise E ∈ R
K×N , and observed as a random linear mixture in the

group-level signal sub-space spanned by C:

C = MA+E,

where M is an orthogonal mixing matrix. Each subject s is de-

scribed by patterns P
s, generated from linear combinations of the

group-level patterns C and additional within-subject variability R
s:

∀s = 1 : S, P
s = Λ

s
C +R

s,

where Λ
s is a subject-specific loading matrix. Finally, each image

in the observed data is a combination of different subject-specific

patterns P s confounded by observation noise:

∀s = 1 : S Y
s = W

s
P

s + T
s.

To summarize, Eq. (1) holds provided that Xs = W
s
Λ

s
M and

N
s = W

s
Λ

s
E +W

s
R

s + T
s.

2.2. CanICA estimation procedure

Starting from the available datasets {Y s, s = 1 : S}, we first se-

lect P s using Principal Component Analysis (PCA) to maximize

subject-level explained variance. Second, group-level components

C are computed using generalized canonical correlation to select

only components reproducible across subjects [19]. Finally, sparse

and non-overlapping spatial sources A are extracted using ICA on

C followed by thresholding to control for unstructured noise E [18].

The number of components K and the threshold are set with a p-

value of 5·10−2 according to [18, 19].

Note that spatial ICA procedures favor high kurtosis, and thus

components that are either super-Gaussian or sub-Gaussian. Super

Gaussian components can be seen as sparse components confounded

with Gaussian noise. In this regards, CanICA is not special, and

the importance of sparsity in ICA analysis of fMRI data has been

outlined elsewhere [20].

3. SCALING AND MULTIFRACTAL ANALYSIS

3.1. Scale invariance (or scaling)

In numerous modern applications, real-worl data are well-described

by the scale invariance (or scaling) paradigm. Conventional mod-

eling of time series relies on the identification of a single, or a few,

characteristic time scales or frequency bands, that play a central role.

Conversely, in the scale invariance paradigm, the modeling stems

from a mechanism that gives a relationship between all the scales in

the data, that hence are all of equal importance. The intuition beyond

scale invariance is often quantified through wavelet coefficients. In

this section we give the mathematical formalism underlying the scal-

ing properties we wish to investigate, but also and most-importantly,

we outline state-of-the-art analysis tools to estimate the correspond-

ing parameters on short time series, such as those encountered in

fMRI.

3.2. Scaling, wavelet coefficients and multifractal analysis

In what follows, we drop the subject superscript s. Let dX(j, n)
denote the (L1-normalized) discrete wavelet transform coefficients

of a componentwise subject-specific time series X (eg column xc

in X in Eq. (1)), where j refers to the analysis scale (a = 2j) and

n to the time position (t = 2jn), computed from a mother-wavelet

ψ0(t). Scale invariance often refers to the fact that Sd(j, q), the

time averages of the q-th power of the wavelet coefficients dX(j, n),
behave as power-laws with respect to the analysis scales a = 2j ,

over a large range of scales (cf. e.g., [16]):

Sd(j, q)
∆
=

1

Nj

Nj∑

n=1

|dX(j, n)|q ≃ cq2
jζd(q). (2)

The function ζd(q), usually termed the scaling exponents, is then

commonly used into data classification tasks. Its popularity stems

from its deep relationship to the multifractal properties of the time



series X . Indeed, another important quantity often used to char-

acterize the complexity of empirical data is the multifractal spec-

trum D(h). It consists of the Haussdorf dimension of the set of

time positions, tk, on the real line, where the local regularity of X
is well described by the same regularity (or Hölder) exponent h.

Therefore, D(h) measures globally and statistically how wide are

the fluctuations in time of the local regularity h(t) of X [21]. A

Legendre transform of ζd(q) yields a concave upper bound ofD(h):
minq 6=0(1+ qh− ζd(q)) ≥ D(h) [21]. It is here crucial to note that

a correct estimation of D(h) requires the use of both positive and

negative values of q. For further introduction to multifractal analy-

sis, the reader is referred to e.g. [16, 21]. It is however well-known

that this upper bound is poor, especially for negative values of q.

Recently, it has been shown [16] that this can be significantly im-

proved, both theoretically and practically, by replacing the wavelet

coefficients dX(j, n) by wavelet Leaders LX(j, n).

3.3. Wavelet Leaders and multifractal analysis

Let λj,n denote the dyadic intervals, λj,n = [n2j , (n + 1)2j), and

3λj,n =
⋃

m{−1,0,1} λj,n+m. The wavelet leaders LX(j, n) are de-

fined as LX(j, n) = supλ′⊂3λj,n
|dX(λ′)| [16]. Thus, they consist

of the local suprema of the wavelet coefficients located within a cer-

tain spatial neighborhood, and over all finer scales. Scale invariance

can now be reformulated as:

SL(j, q)
∆
=

1

Nj

Nj∑

n=1

LX(j, n)q ≃ cq2
jζL(q). (3)

The wavelet Leader based scaling exponents, ζL(q), have been

shown to offer, compared to the wavelet coefficient based ones [16]:

i.) a better mathematically grounded analysis of the multifractal

and scaling properties of the data; ii.) a much tighter bound for

D(h), notably by allowing the efficient use of negative qs; iii.)

a significantly improved estimation of the scaling exponents, in

terms of statistical performance. In practice, this permits to address

efficiently important issues such as: a.) are the data short-range

dependent (SRD) or long-range dependent (LRD)? b.) are the data

monofractal (or self-similar) or truly multifractal? This latter ques-

tion can be recast practically into that of testing whether ζL(q) (or

ζd(q)) consists of a linear or concave function of q or not [16, 21].

3.4. Log-cumulants and estimation

Measuring the scaling exponents for all q leads to a large collection

of highly correlated estimates that may turn uneasy to use practi-

cally. Instead, it has been proposed to use polynomial expansions of

ζL(q) =
∑

p≥1 c
L
p q

p/p !. It has further been shown [16] that the cLp
can be obtained from the scale dependence of the cumulant of order

p ≥ 1, CL(j, p), of the random variable lnLX(j, ·):

∀p ≥ 1, CL(j, p) = cL0,p + cLp ln 2j . (4)

Therefore, the
{
cLp , p ≥ 1

}
summarize efficiently the function

ζL(q) and hence of D(h). In practice, for short time series, such as

those commonly processed in the fMRI context, cL1 and cL2 gather

most of the information actually available from data. This is of ma-

jor practical interest because self-similar processes are characterized

by ∀p ≥ 2 : cLp ≡ 0, while for multifractal processes of interest

cL2 6= 0. Also, cL1 is closely related to Hurst parameter characteriz-

ing self-similarity and LRD [11, 16, 21]. Eqs. (3)–(4) above led to

estimate the ζL(q) and cLp by linear regressions:

ζ̂L(q) =

j2∑

j=j1

wj log2 S
L(j, q), ĉLp = log2 e

j2∑

j=j1

wj Ĉ
L(j, p).

This has been thoroughly studied in [11, 16] and is not further de-

tailed here. The same expansion can be conducted for he wavelet

coefficient based ζd(q) =
∑

p≥1 c
d
pq

p/p ! and therefore the same

estimation procedures can be used.

4. EXPERIMENTAL RESULTS

4.1. Description of the datasets

We consider the set of brain resting-state time series used in [19].

Twelve healthy volunteers were scanned twice at rest (TR = 1.5s.),

eyes closed, for a period of 20 minutes during each session. Each in-

dividual dataset consists of of two sessions, each being made of n =
820 volumes (time points) with a 3mm isotropic resolution, corre-

sponding to approximately 50 000 voxels within the brain. Stan-

dard neuroimaging preprocessing was applied using the SPM5 soft-

ware1: after motion correction, cerebral volumes were realigned

to an inter-subject template and smoothed with a 6mm isotropic

Gaussian kernel. Next, as explained in Section 2, CanICA was ap-

plied to the whole dataset to exhibit the group-level spatial compo-

nents (or sources) A and the subject- and source-specific time series

X
s. As indicated in Section 2, our tresholding procedure gener-

ated K = 42 components for A. Finally, the multifractal spectrum

D(h) associated with each component-specific time series in matrix{
X

s, s = 1 : S
}

was computed. To this end, we only focused

on the leader-based scaling exponents ζL(q) for a range of statis-

tical orders q ∈ [−10, 10]. Scale invariance was observed within

a 3-octave range of scales corresponding to [12, 192] seconds. In

practice, we restrited the polynomial expansions of ζL(q) to the es-

timation of (cL1 , c
L
2 ) from each time series. In what follows, we drop

the superscript L for conciseness and derive group-level statistical

tests to assess the scaling properties of the spatial components and

to localize which of them exhibit multifractal behaviour or not.

4.2. Group-level Statistical analysis

The goal now consists in assessing the statistical significance at the

group level of the two first multifractal coefficients (cs1,k, c
s
2,k) com-

puted for every spatial component k and subject s. More precisely,

we perform the following one-sided tests, ∀k = 1 : K :

H
(1,k)
0 : c1,k 6 0.5, (White noise or SRD)

H
(2,k)
0 : c2,k = 0., (H-sssi process),

}
(5)

where H-sssi stands forH self-similar process with stationary incre-

ments (or monofractal). On the one hand, rejecting H
(1,k)
0 clearly

amounts to localizing brain areas or components eliciting temporal

long range dependencies. On the other hand, rejecting H
(2,k)
0 en-

ables to discriminate multifractality from self-similarity.

Since there is no evidence in the data that the scaling parameters

are normally distributed across subjects, we use nonparametric tests

and different statistics (Student t, Wilcoxon’s signed rank (WSR)

statistic, Empirical Likelihood Ratio), the t-score statistics being

only optimal in terms of sensitivity/specificity trade-off for Gaussian

1Wellcome Department of Cognitive Neurology;
www.fil.ion.ucl.ac.uk/spm
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Fig. 1. Componentwise c1 value, averaged across subjects.

populations. This means that potentially other statistics may provide

more sensitive results in a nonparametric setting. Also, nonparamet-

ric testing refers here to the computation of the distribution under the

null hypothesis using permutations [22].

Due to lack of space, we only report the t-score computations to

test Assumptions (5):

∀p = 1 : 2, ∀k = 1 : K, Tp,k = µp,k/
√
Sσ2

p,k (6)

with µp,k =

S∑

s=1

ĉsp,k/S, σ2
p,k =

S∑

s=1

(
ĉsp,k − µp,k

)2
/(S − 1).

To account for the multiple comparison problem (K tests performed

simultaneously) and apply correct specificity control (control of

false positives), a proper calibration was elaborated using permuta-

tions [22]. However, given that only a few spatial components are

involved in the statistical analysis, the Bonferroni correction alterna-

tive is not too conservative in the present study. The latter consists

in dividing the componentwise t-score in Eq. (6) by K since K tests

are performed for each cumulant (cp,k)
K
k=1.

The abovementioned tests allows one to perform nonparametric

random-effect analysis. Since our analysis relies on [16], confidence

intervals were also derived using bootstrap in addition to the log-

cumulant estimates (ĉsp,k). This enables the use of Mixed Effect

group (MFX) statistics in which intra-subject variance also enters

in the computation of group statistics, whatever its nature (t-score,

WSR,...). The reader is referred to [22] for the computation of such

statistics. In what follows, we only report MFX results.

4.3. Results and discussion

MFX statistical analysis on c1,k reveals that all components reject

the null hypothesis H
(1,k)
0 (see Fig. 1). In other words, LRD (or

self-similarity) exists in the resting-state data whatever the spatial

component of interest. This means that 1/f behaviour in the power

spectral density is a feature common to fMRI datasets of physiolog-

ical artifacts, resting-state functional networks, white matter, ... This

motivates the need for further and more precise investigation of the

scaling properties: first, the use of a more stringent tests on c1,k ;

second, taking into account of higher-order scaling (or multifractal)

parameters. To cope with the first issue, we have investigated the

null hypothesis H̃
(1,k)
0 : c1,k 6 0.85, and observed that it is rejected

by only six components, found to correspond to the Dorso-parietal

network and the primary visual areas, the Thalamus, the language

network, the Parieto-cingulate network, and vascular noise in the

circle of Willis. The first two regions are labeled respectively 2.)

and 5.) in Fig. 2, while the last four ones are not referenced. For

precise localization, see details in [19]. Regarding the second point,

we have performed MFX analysis on c2,k to test H
(2,k)
0 . Results

are reported in Fig. 2. It appears that about 20 out of K = 42 spa-

tial components significantly reject the null hypothesis H
(2,k)
0 . For

visualization purpose, the significant components, which have sur-

vived to a p = .05-thresholding, are color-coded, the less and most

significant being displayed in yellow and purple/black, respectively.

In general, mutlifractality is found to be significant (very nega-

tive c2) for components located in the gray matter and correspond-

ing to functional networks, while self-similarity (or monofractality,

c2 = 0) is usually observed only in artifactual components or in

the cerebro-spinal fluid. For instance, the component showing the

most prominent multifractality (ĉ2 = −0.075) corresponds to the

dorsal fronto-parietal functional RSN, referenced as 2.) in Fig. 2.

Significant multifractality has also been found in the primary vi-

sual areas (V1 and V2 mainly), which are referenced as 5.) in

Fig. 2. Nonetheless, there may exist significant multifractal com-

ponents that do not bring any relevant information on the cognitive

side: for instance, artifact signals due to partial volume effects (see

1.) in Fig. 2) or times series associated with white matter (see 3.) in

Fig. 2) or ventricles (cerebro-spinal fluid, see 4.) in Fig. 2) also ex-

hibit non zero c2 parameter. This suggests that our test is not strictly

specific to resting-state functional connectivity networks.

Nonetheless, combining both tests, on c1,k and c2,k using

H̃
(1,k)
0 (with c1,k ≤ 0.85) and H

(2,k)
0 , seems relevant to detect

functional networks, as only the functional RSN 2.) and 5.) pass

them. To bring evidence for this, we examine the group-averaged

multifractal spectra D(h) in Fig. 3, plotted for each of the five com-

ponents reported in Fig. 2. Note that MF spectra D(h) are actually

computed as parametric functions of the statistical order q: D(q) vs.

h(q) [11, 16] and that group-averaging takes place for each q value.

Also, the horizontal and vertical error bars indicate incertainty or

between-subject variability on h(q) and D(q), respectively. As

expected theoretically, the larger |q|, the larger the uncertainties on

D(q) and h(q). As expected empirically from the previous results,

the MF spectra for components 2.) and 5.) are shifted to the right

part of the x-axis because of larger c1. These curves also emphasize

a large Full-Width at Half Maximum (FWHM), which corroborates

the high level of multifractality (large |c2|). Note that component 1.)

also exhibits a large value of |c2| but at the expense of a lower c1,

hence of a weaker long memory. The narrow spectra of compo-

nents 3.) and 4.) and the location of their maximum confirm that

they would not survive to more conservative hypothesis testing on

c2 and c1, respectively.
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6. CONCLUSIONS

In this contribution, we have proposed to combine a group-level spa-

tial ICA approach [19] with a recent multifractal analysis method

based on wavelet leaders [16] to derive a multivariate scaling anal-

ysis approach of resting-state fMRI networks. Because the study

takes place on a cohort of 12 subjects, group-level inference on mul-

tifractal parameters allows us to segregate brain regions that only

generated strong long range dependence from those that exhibit mul-

tifractality as well. Among the latter, well-known functional resting-

state networks were found as well as artifactual regions. A more

thorough analysis of multifractal properties brings into light that the

combination a large c1 (strong long memory) and of a very neg-

ative c2 (strong multifractality) appear specific of brain functional

RSN, a potentially very important finding. Since the underlying

mechanism of the BOLD signal and related vascular effects might

also influence the mono vs multifractal behaviour, future work will

also be devoted to the use of sparser spatial decompositions in order

to better disentangle vascular and neural effects and to the analysis

of activation datasets to investigate the impact of the hemodynamic

variability [23] on MF attributes.
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