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ABSTRACT 
We present here MINARET a deterministic transport solver for nuclear core calculations to solve 
the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the 
energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM 
to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured 
in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved 
elements, two different sets of basis functions can be used. Transport solver is accelerated with a 
DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep 
in the source iteration. The transport calculations are parallelized with respect to the angular 
directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, 
JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are 
compared. 
 
Key Words: Neutron Transport, Applied Mathematics, Discontinuous Galerkin FEM, Parallel 
computation. 

1 INTRODUCTION 

MINARET is a 2D/3D transport solver developed in the frame of APOLLO3 code [20]. The one 
group transport equation is solved using a SN approximation and a Discontinuous Galerkin 
Finite Element Method (DGFEM) on an unstructured mesh composed by triangles in 2D and 
prisms in 3D. The multi-group calculations are performed using a standard expansion of the 
scattering cross sections on Legendre polynomials of any order. 
 
The phase space of the steady state Boltzmann equation contains the energy variable, angular 
directions and spatial variables. The energy variable is discretized following the multi-group 
formalism. For the angular variable, various quadrature formulae are available as level 
symmetric, equiweight and product angular formulae. For the spatial variables, the DGFEM can 
be used with polynomials of degree zero or one (P0 or P1 spaces). The DGFEM was introduced 
by Reed and Hill in [1]. The mathematical well-posed approximated problem and the error of the 
numerical solution have been set by Lesaint and Raviart in [2]. The error between the 
approximation and the exact solution has been refined in [3] leading to the following estimation: 
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+

Ω
≤− ψψψ  (1) 

where k is the degree of the polynomial interpolation andψ  is the angular flux for a given 

angular direction Ω
r

 and the norm 
Ω,

.
h

 contains the norm L2 of the function, the derivative with 
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respect to Ω
r

 and the jumps on the mesh edges, see [18] chap. 5. However, this estimate needs 
the angular flux to be sufficiently regular, what is not true for as simple geometry as the circle for 
a constant source problem. In [4], an example is built to prove that the superscript k+1/2 is 
optimal. We will present some examples of h-convergence for the scalar flux and the eigenvalue. 
 
Due to the size of nuclear reactors and the precision demanded, computation time is a crucial 
point. To speed up calculations, numerous acceleration methods have been developed, see [6-11]. 
We use one DSA (Diffusion Synthetic Acceleration) method proposed by Adams and Martin in 
[8] and we modified it after reading [10]. SPn and diffusion calculations are made possible by 
using DSA matrices. Parallel computations become also a tool to get results in a reasonable time 
of calculation. The calculations are distributed with respect to the angular directions. It is also 
possible to distribute them according to the layers in the propagation process. 
 
As the geometry is approximated with a triangular mesh, one can wonder if the results can be 
improved if we make calculations on the exact geometry. To fit the exact geometry we study 
curved triangles. One side is a circle’s arc. In fact, one could expect 2 benefits from curved finite 
elements in addition to a better accuracy (which is not granted): if the degree of approximation is 
increased the geometrical error needs to be less than the numerical one, so curved elements seem 
necessary for higher order calculations. The other benefit would be to use less curved triangles 
than straight ones to mesh fuel cells when core calculations are performed without cell 
homogenization and thus calculations would be faster. In this objective, triangles with several 
curved edges will be needed.  
 
Section 2 presents the unstructured mesh and the spatial solver. Section 3 gives some details on 
the DSA and what was changed from [8]. Section 4 deals with parallelization and how the data 
are exchanged. In section 5, the curved elements are introduced: 2 kinds of basis functions can be 
used. Numerical results are given in the section 6: first on a homogeneous disk and a large cell, 
and then on the JHR and the ESFR reactors. We compare the powers of the C5G7 Benchmark in 
2D and 3D with MCNP results. The bibliography contains references about other transport codes 
[12, 13]. 

2 MESH GENERATION AND TRANSPORT ALGORITHM USING DGFEM 

The quality of the finite element approximation is based on a well-structured mesh. A specific 
geometrical component generates automatically the triangulation of the different physical regions 
of the core domain. All elements in the radial plane are conforming triangles obtained by a mesh 
generator which will be described first. The axial direction is discretized into planes. The 
DGFEM is then used for the approximation of the angular flux on the different elements. 

2.1 Mesh Generation 

The physical geometry is described in 2D as a collection of volumes where edges are either 
straight lines or segments of circle. The 3D geometry is supposed to be cylindrical by extrusion 
of a 2D geometry into planes; 3D elements are prisms obtained by extrusion of the 2D triangles. 
The mesh generation is performed from the 2D physical geometry; it is done in several steps. 
First, for each physical region of the geometry, a surface mesh is defined to approximate the 
border of the region. The positions of the border points of the triangulation are automatically 
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settled in order to preserve the volume of the physical regions. The surface mesh size can vary 
according to its position in the core. Second, a set of points is generated inside the physical 
region. The inner points are uniformly set out so that the distances between two neighboring 
points are close to the average distance between the surface points. Then, a triangulation is 
generated by tessellation of the previous point distribution using a Delaunay algorithm. Finally, a 
smoothing algorithm recalculates the distribution of the internal points by a harmonic 
transformation in order to improve the quality of the triangle (maximization of the minimal 
angle). 

2.2 Transport Algorithm 

For one angular directionΩ
r

, the mono-kinetic transport equation is: 

RonS=+∇Ω σϕϕ
rr

.  (2) 

where ϕ  is the angular flux. The equation is closed with vacuum or reflexion boundary 
conditions. The triangles to be solved are sorted so that each cell is solved following a 
propagating front from the lightened side to the dark side of the domain. 
 

 
The numerical equation solved on each triangle is: 

∫∫∫∫ =+∇Ω+−Ω
∂

−+

TTTT

eee Sn ψσϕψψϕψϕϕ ).()(.
_

rrrr
 (3) 

where T  is the mesh, _T∂ the lightened boundary, en
r

 the outgoing normal to the boundary, ψ  a 

basis function in the projection space (polynomial), ϕ the unknown angular flux to be solved, σ  

the total cross section of the medium, and S is the source term. The+
eϕ  term is the angular flux on 

the edge e from neighbour mesh (upwind flux), −eϕ  is the flux of the mesh being solved. This 

scheme is applied with basis functions which are polynomials of degree 0 (P0) or 1 (P1).  

2.2.1 P0 solver 

The flux is supposed to be constant on each mesh. An explicit expression of the flux of the being 
solved mesh is obtained after few calculations: 

Ω
r

2 

1 
4 

5 

6 

3 +∂R

Figure 1. Propagation principle with the calculation order 
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where some geometrical data of the cell are present like the area V. 

2.2.2 P1 solver 

In the linear approximation, the angular flux is represented thanks to a nodal basis. The flux is 
calculated at each vertex of the triangle and approximated with a linear combination of these 
values inside the triangle. 

 
The flux on the triangle is found by solving a 3x3 system: 

),()( 1 S
e

ext
e

e

+−++−= ∑∑ − ϕσϕ ee MMTM  (5) 

with ∫=
T

jiϕψM the mass matrix, ∫ ∇Ω=
T

ji ).( ϕψ
rr

T the transport matrix, ∫Ω=
e

jien ϕψrr
.eM the 

mass matrix on the incoming edge e. This non symmetric system is solved directly by Cramer’s 
rule. 

2.3 Three dimensions elements 

In 3D, the elements are not tetrahedral like in [6] but prismatic. The 2D elements are product of 
radial and axial basis functions. Different elements are drawn on the figure 3. 
 
For the DGP1P0 element, flux is piecewise constant axially. The nodes are located at the middle 
plane of each element. The flux belongs in the P1 polynomial space (1, x, y). For the DGP1M1 
element, we add an axial momentum which is linear in z and constant radially. The flux belongs 
in the P1 polynomial space (1, x, y, z). The DGP1P1 element is a product of P1 radial space by a 
P1 axial space, the flux belongs in the polynomial space (1, x, y, z, xz, yz). This last element has 
not been implemented yet. 
 

−
aϕ

Ω
r

A B 

C 

−
bϕ

−
cϕ

+
cϕ

+
aϕ

Figure 2. 2D triangle P1 
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In 3D we have twice more angular directions than in 2D, so the computing time for a DGP1P0 
approximation can be estimated by multiplying the 2D-time by a factor 2Nz (Nz being the 
number of radial planes). 

3 DSA METHOD 

We detail how the DSA was implemented. The scattering is supposed to be isotropic. We 
followed the formalism of Adams and Martin [8]. In [6], some stability problems of this method 
are pointed out; they have been treated by introducing a stabilisation parameter α introduced in 
[10]. See [7, 11] for some presentations of the derivation of DSA. The DSA method accelerates 
the source iterations by estimating the error after each transport iteration. The error is 
approximated thanks to the diffusion operator which is a low order operator compared to the 
transport one. The DSA corresponds to the acceleration by diffusion, but the transport can also be 
accelerated by a transport operator with less angular directions (multi-grid acceleration), see [14] 
where it is shown to be less effective than DSA. Diffusion matrices can be used to get a diffusion 
solver and even a SP1 solver. 

3.1 The M4S Process 

The reader will find justification in [8] for the following scheme. The 2 first lines correspond to 
transport iteration. The 3rd one is the diffusion equation that the residual error satisfies. The 
superscript l+1/2 corresponds to variables calculated after one transport iteration. 1

0
+lF  is the 

error to estimate thanks to the diffusion operator. 
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Figure 3: 3D elements 
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3.2 Numerical Flux, Choice of the Stabilisation Parameter 

Numerical instability appears if the discretization of the diffusion operator is not the same than 
the one of the transport operator [15]. In fact, consistency is a sufficient condition for stability of 
the DSA. So the DGFEM is used to solve the diffusion equation ( tD σ3/1= ):  

( ) ( ) ( )∫∫∫∫ −=−+∇⋅−∇⋅∇ ++

∂

++

K

ll
s

K

l
st

K

l

K

l vvFvFnDvFD 0
2/1

0
1

0
1

0
1

0 φφσσσ  (10) 

The main issue here is to choose a numerical flux to compute the boundary integrals (2nd term in 
the equation (10)). In the transport equation, the numerical flux chosen verifies the upwind 
scheme. Here, a stabilisation parameter α is introduced to make the bilinear form coercive and 
thus to ensure the existence of a unique solution to the approximate problem. In [9], calculations 
show that the value of this parameter has to be in 1/h (h = stepsize) to get an elliptic form and a 
well posed problem. This parameter links the DGFEMs with the Interior Penalty methods which 
were developed independently, see [10] for references. 
 
The numerical boundary integral is expanded as follows: 

( ) [ ][ ] { }[ ] { }[ ]∫∫∫∫
∂∂∂∂

∇⋅+∇⋅+=∇⋅−
KKKK

FvDnvFDnvFvFnD α  (11) 

with int][ uuu ext −=  and { } ( ).
2

1
intuuu ext +=  The last term symmetrises the diffusion matrix. 

Wang, in [10], gives a value for the stabilisation coefficient α of one interior edge e: 

( )IP
eκα ,4/1max=  with 

( ) ( )
−
⊥

−−

+
⊥

++

+=
h

Dpc

h

DpcIP
e 22

κ . The value of the stabilisation parameter 

was one issue of the modified M4S. We took ( ) ( ) 210 == cc , p is the order of the polynomials. 
 
Remarks:  
-The P1 DSA is efficient to accelerate the P1 transport but the P0 DSA reduces drastically the 
calculation time. All calculations presented in the numerical results used the P0 DSA. 
-The value of the stabilisation coefficient can be understood as choosing a boundary flux (flux on 
the edge) equal to the average of fluxes from both adjacent triangles whereas in the finite-
volumes method, the boundary flux is a weighted average flux. 
-Anisotropy of first order can be taken into account for SPn calculations. 

4 PARALLELIZATION 

The parallelization of the solver is necessary to reduce the computing time which may become 
important for large SN order. For this reason, the angular parallelization has been implemented in 
a first time. Two levels have been considered, the first consists in a distribution of a set of 
directions on each processor. For a given direction, the second level consists to perform 
simultaneously the calculation of different meshes along a propagation front if no dependency 
exists. 
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4.1 Distribution of the directions 

For each angular direction, and for each source iteration, the angular flux is independent of the 
other directions with the exception of the boundary values in case of reflexive boundary 
conditions. So the calculations can be run simultaneously direction by direction. Indeed, the 
spatial resolution uses the source data estimated at the previous source iteration. 
Thus, one can affect a set of angular directions by MPI process, up to one angular direction per 
MPI process. A set of directions is allocated to each processor. For each outer iteration and each 
energy group, the master processor computes the different moments of the outer source (fission 
and scattering from other groups) ext

lmS . Then, for each source iteration, we perform the parallel 
process given (Figure 4). 

 

4.2 Distribution of the calculation along the propagation front. 

As it has been already shown, for a given direction, the calculation of the angular flux is explicit 
by starting from the lightened border where the angular flux is supposed to be known (zero flux 
or flux already calculated when symmetry condition is imposed) and then by progressing from 
triangle to triangle when all the lightened edges in a given triangle are known. We then calculate 
the different terms of a 4x4 matrix and the source term depending of the cross section and then 
solve the linear system, this takes about two hundred of floating point operations. A tree of 
dependency of the different triangles can be easily built. At each level of this tree the triangles 
can be computed independently. Figure 5 presents by different colors the triangles belonging in a 
same set of dependency and thus those which can be computed in parallel. This fine grain 
parallelization is achieved using OpenMP multithreading. 
 

Figure 4. Flow chart for the exchange of the angular flux and moments 
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Using this two level parallelism, we have planned, by the end of year 2010, to compute a full 3D 
GENIV reactor core using around 300 energy groups and using more than 10,000 cores in few 
hours on the last new French petaflop machine [22]. 

5 CURVED TRIANGLES 

A curved triangle is a triangle ABC whose one edge is an arc of a circle (BC in the Figure 6). 
The circle is considered because the fuel pins are cylindrical. The center of the circle O is located 
anywhere relatively to A. The curved triangle is supposed to be convex. The following figure 
displays the action of the mapping F between the curved and the straight triangle ABC and the 
link between curved basis functions and straight ones (one level set of the function Av and one of 

Av
)

 are plotted in red). 

 

5.1  Curved Basis Functions  

The curved basis functions iv
)

are obtained from the straight ones iv  and from the mapping 

( )KFKKF =→
)

:  using the formula .1−= Fvv ii o
)  The action of the mapping F  is detailed on 

Figure 6. Mapping from straight to curved triangle. 

Figure 5. Fine grain parallelization along two different angular directions 
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the Figure 6. The point 'M is the image of M by F . With this approach we calculate (with 
Mathematica) more complicated integrals on straight triangles than for straight FEM. For 
instance, the curved mass matrix writes:  

Jvvvv
K

ji

K

ji ∫∫ =
)

))
 (12) 

where J is the jacobian of F. One drawback of this approach is to find a mapping between a 
triangle with more than one curved side and the corresponding straight one. One possibility is to 
use Nurbs, but it is not done yet. We considered the straight basis functions because the number 
of curved sides does not change the difficulty for the computation of FEM matrices. 

5.2  Straight Basis Functions 

It is also possible to keep the linear usual basis functions of the straight triangle to interpolate the 
angular and the scalar flux on curved triangles. In this case, we calculate the integrals on more 
complicated geometrical domain. For instance, the curved mass matrix writes:  

.∑ ∫∫∫ +=
k D

ji

K

ji

K

ji

k

vvvvvv
)

 (13) 

kD is the area between the straight edge and the corresponding curved one. One drawback of this 

method is that the basis function corresponding to the curved edge does not vanish on this edge, 
so more coefficients need to be calculated in the FEM boundary matrices. 
 
For both bases, the case of a tangent direction to the curved side needs to be treated. In fact, a 
tangent direction is said to be incoming or outgoing in an average sense since the criteria is the 
sign of the dot product between the average outer normal and the direction. So approximations 
are still present. We tried to refine the mesh at the tangent point, but the results were not better. 
One can explain it by saying that the source needs to be interpolated at the tangent point whereas 
it is not stored at this point, so that can prevent a better accuracy. 
 
The straight basis functions fit less well the problems than curved ones. Numerical results on the 
JHR reactor confirm this view. 

6 NUMERICAL RESULTS 

Various numerical tests have been performed in order to verify the behavior of the solver for 
different core configurations. The first tests are simple one-group benchmark with very simple 
geometries (disk, single cell), the aim is to show the convergence ratio when the mesh size tends 
to zero. The second test is devoted to the classical benchmark C5G7 in order to perform a cell by 
cell calculation with high flux anisotropy. The third test was performed on the future JHR 
research reactor with a very complex geometry. The last test is devoted to the concept of ESFR 
(European Sodium Fast Reactor) presenting a hexagonal geometry with 33 energy group 
calculations. For almost all calculations, the precision on the eigenvalue was of 10-6 and the one 
on the flux of 10-4. All the calculations presented used DGP1M1 finite elements and were 
accelerated with P0 DSA: a P1 to P0 condensation is done before the diffusion step and the 
resulting error vector is then expanded to come back to a P1 size. But it is possible to use P1 
DSA or no DSA. 
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6.1  h-Convergence 

We present 2 simple cases with one energy group to enhance the h-convergence of the 
eigenvalue and the flux to a reference one. For the homogeneous disk the reference has been 
calculated by running a 1D calculation with the Apollo2 code. A Tripoli4 calculation was 
performed also. 

6.1.1 Homogeneous disk 

Calculations were made on a homogeneous disk with vacuum boundary conditions and with 528 
angular directions per octant (S64). The disk radius is 50cm. 

Table I.  Eigenvalues from different solvers. 

Apollo2 0.99257756 
Tripoli4 0.992538     610* 77.4 −=σ  
Minaret curved 0.992572 
Minaret straight 0.992567 

 

 
The eigenvalue stops becoming closer and closer since a small difference exists between the 
refined eigenvalues of Apollo2 and Minaret. Curved elements do not bring any extra accuracy 
when the mesh is refined but results are better with coarse meshes. The rate of the eigenvalue 
convergence is about 1.6. 

6.1.2 Large Cell 

The cell consists in a square whose the edge size is 100cm and the radius of the circle within the 
square is 40cm. Calculations used a S16 formula with vacuum boundary conditions. We started 
from an unstructured mesh made of triangles whose the edge size is about 40cm. Refining the 
mesh consists in joining the middle points of each edge so we got triangles twice smaller. We 
found keff= 0.989137 for the finest mesh. 

Figure 7. Eigenvalue convergence for the homogeneous disk 
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Each flux is compared to the last one which is the most accurate. Without any hypothesis of 
regularity of the flux, the expected rate of convergence for the L2 norm is of 1.5. So the L2 norm 
converges faster but the reference value is from the same solver, so the slope may be 
overestimated. 

6.2 C5G7 Calculations 

The C5G7 Calculation is a standard OECD Benchmark proposed in 2003. We ran calculations on 
one eighth of the core. The power comparison with MCNP is presented in Table II and Table V. 
For the angular variable, the product formula seems to give better results than the level 
symmetric one (‘02x16’ means 2 z-levels for the polar angle and 16 radial directions for the 
azimuthal angle by octant). 2D calculations were made with 48901 triangles. 

6.2.1 2D Calculations 

Table II. C5G7 calculations with different angular curvatures 

 Time calculation (s) Max error (%) Average error (%) Keff 
MCNP  reference  1.18655 
MINARET S16 1450 1.73 0.395 1.18543 
MINARET 02x16 1440 1.73 0.397 1.18635 
MINARET 02x16* 1660 1.84 0.403 1.18635 
MINARET 02x36 2800 1.63 0.393 1.18644 
MINARET 02x36* 3680 1.839 0.402 1.18644 
APOLLO2 1870** 3.2 0.50 1.18636 
 
* These calculations are similar to the ones presented above except the precision on the flux 
which is imposed to 10-5 instead of 10-4. From the results, increasing the precision on the flux 
does not bring the flux closer to the reference. 
** The calculation with Apollo2 [17] was made on a Dec Alpha EV6 500MHz workstation 
which is twice slower than the 2.7GHz workstation we used for Minaret calculations (the S16 

Figure 8. Flux convergence for the large cell 
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calculation run in 2860s on the Dec Alpha). So, for comparison, the time of Apollo2 can be 
divided by 2. 

6.2.2 3D Calculations  

Table III justifies we kept 10 radial planes for next calculations, and Table IV shows that product 
formulae are better than level symmetric ones. 

Table III. Calculations with 5, 10, 20, 24 radial planes 

Nb of radial planes 5 10 20 24 
Time (s) 7147 20343 35072 40613 
Keff 1.18132 1.18153 1.18156 1.18159 
Nb outer iterations 50 77 74 74 

Table IV. Calculations in S4, S8 and 02x04 

Angular order S4 S8 P0204 
Time (s) 20343 61167 57326 
Keff 1.18153 1.1813 1.18218 
Nb outer iterations 77 76 77 

Table V. Comparison of the power with MCNP 

 Time calculation (s) Max error (%) Average error (%) Keff 
MCNP    1.18381 
MINARET 02x16 189500 1.63 0.389 1.18361 
MINARET 02x36 413577 1.63 0.39 1.18369 
 
In the last table, the time calculation could be reduced using parallel computations and using 
fewer triangles. We did not study the influence of the number of triangles in the radial planes. 

6.3  JHR Calculations 

To illustrate the MINARET solver capabilities, we present an application on the future European 
research reactor, the Jules-Horowitz-Reactor (JHR) [19], dedicated to technological irradiations. 
The core is composed of 34 fuel assemblies (arranged in 4 rings), 3 regions contain clustered 
irradiation devices (chouca regions). Each assembly is composed of 3 groups of 8 cylindrical 
fuel plates, maintained by three aluminum stiffeners. The core is surrounded by a beryllium 
reflector and a water reactor pool. The cross sections, which depend on several parameters (fuel 
temperature, water temperature and density, control rod insertion) are used for the whole core 
calculation. The physical geometry of the core is decomposed into 4149 physical regions for the 
radial description (see Figure 9), and 26 axial planes, this produces 53052 different regions for 
the complete 3D description of the core. The JHR core and assembly geometries have been 
described via the Graphical User Interface SILENE [21]. 
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6.3.1 2D calculations 

2D calculations ran in the TBB configuration (all rods inserted) for a starting core configuration 
(Figure 9). It should be noted that the high value of Keff is due to the fact that the axial buckling 
is not taken into account and also that the core corresponds to the beginning of cycle. The 
calculation corresponds to a mesh where the size of the triangles is constant inside the active part 
of the core and increases until the periphery (from 0.7cm to 1cm). The total number of triangles 
is 46986. For this calculation different FEM approximations have been compared in order to 
validate the curved edge FEM basis and to justify conserving volumes with straight triangles. 
The results are presented in Table VI.  

Table VI. Comparison between different FEMs (S4 angular quadrature) 

 Keff Geometry : exact/approximated FEM straight/curved FEM basis 
1 1.31307 approximated geometry  

(volume conservation) 
straight  

2 1.31441 approximated geometry  
(non volume conservation) 

straight  

3 1.31327 exact straight  
4 1.31309 exact curved curved 
5 1.31325 exact curved straight 
 

The difference between lines 1 and 2 justifies conserving the volumes. Comparing lines 1 and 3 
justifies using straight triangles with straight FEM (instead of curved triangles with straight 
FEM). For the lines 4 and 5, we ran curved FEM calculations with 2 kinds of base functions (see 
section 5). The curved ones seem better. From our view, curved basis functions are more 
consistent with the geometry. 
 
The results presented in Table VII correspond to parallel calculations with different distributions 
of the angular directions on the processors. 

Figure 9. JHR description physical regions and mesh discretization 
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Table VII. Computing time on Opteron cluster for parallel calculation 

N proc 
S4 level symmetric (12d) 

Keff 1.31304   
S8 level symmetric (40d) 

Keff 1.31314 

 
NBdir 
/proc 

S4 
Time (s) 

Efficiency 
(%) 

NBdir 
/proc 

S8 
Time (s) 

Efficiency 
(%) 

Seq 12 186 100 40 487 100 
2p 6 122 76 20 263 93 
4p 3 96 48 10 175 70 
8p 2 89 17 5 111 55 
12p 1 73 21 4 103 39 
16p    3 100 30 
20p    2 88 28 
40p    1 85 14 

 
The efficiency is reduced by the increasing amount of communications (source and flux 
moments) and by the fact that, DSA being not parallelized, a fixed computing time is added at 
each source iteration. 

6.3.2 3D calculations 

3D calculations of the JHR core have been performed using 14 and 26 axial planes and a S4 
angular quadrature. The axial geometry is given Figure 10 and results on table VIII. 

 

Table VIII. 3DCalculations with different number of planes 

Nb of planes / SN order 14 (S4) 26 (S4) 26 (S8) 
Time(s) / Nb proc. 2645 (4p) 3719 (4p) 5441 (8p) 
keff 1.25652 1.25697 1.25704 
Nb outer iterations 26 22 22 

 
The time with 26 planes in S4 with one processor was 12500s. 

Figure 10. Axial description of the JHR core  
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6.4 ESFR calculations 

The ESFR concept (European Sodium Fast Reactor) takes place in the fourth generation reactors 
project. The map of the core is given on figure 11. It consists into 17 rings of assembly. The inner 
and outer fuel regions have different Pu mass content. There are 225 inner fuel subassemblies 
and 228 outer fuel sub-assemblies. The control rod system is composed of 9 DSD (Diverse 
Shutdown Device) and 24 CSD (Control and Shutdown Device). The material cross sections 
coming from ECCO library are homogenized in a 33 energy multi-group discretization. The 
material distribution is given on Figure 11 
 
Minaret calculations have been performed considering the steady state solution. The following 
options have been used: each hexagon is split into 14 triangles, axially a mesh measures 20cm in 
fuel and reflector, giving 11 planes. The total number of elements is 11438 in 2D and 125813 for 
the 3D calculation.  
 

 
 

In Table IX and Table X are reported all the results performed on the whole ESFR core for a 2D 
and 3D configuration. The tests have been performed with S4 and S8 level symmetric quadrature 
on a cluster platform composed by 40 nodes of Opteron2.8 Ghz octo-processors, with compiler 
gcc 4.1.1. The tables show the good scalability by increasing the number of processors even if 
the DSA parts have not been yet parallelized. 
 
 
 
 
 
 
 
 

Figure 11. ESFR Axial and Radial material and calculation geometry description 
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Table IX. ESFR 2D Parallel calculations on cluster computer 

 
S4 level symmetric (12d) 

Keff 1.04271   
S8 level symmetric (40d) 

Keff 1.04272 

N proc 
NBdir 
/proc 

S4 
Time (s) 

Efficiency 
(%) 

NBdir 
/proc 

S8 
Time (s) 

Efficiency 
(%) 

Seq 12 229 100 40 690 100 
2p 6 137 84 20 365 95 
4p 3 95.5 60 10 216 80 
8p 2 76.4 37 5 126 68 
12p 1   4 111 52 
16p    3 98 44 
20p    2 87 40 
40p    1 72 24 

Table X. ESFR 3D Parallel calculations on cluster computer 

 

 

7 CONCLUSION 

MINARET is a deterministic unstructured SN multi-group transport solver parallelized with 
respect to the angular directions. It solves the steady state Boltzmann equation. It has been 
developed within the Apollo3 frame gathering several other solvers. It is possible to run core 
calculations by meshing the whole core with the only constrain to get a 3D cylindrical mesh. The 
2D basis mesh is composed by a collection of conforming triangles. 
 
The DSA method reduces time calculations by a factor 3 (at least) on all the tested reactors. The 
DSA matrices are the only matrices stored by the solver. Indeed, for transport calculations, the 
4x4 (in 3D) transport matrices are recalculated for each cell and for each iteration. 

 
S4 level symmetric (24d) 

Keff 1.00389 
S8 level symmetric (80d) 

Keff 1.00397 

N proc 
NBdir 
/proc 

S4 
Time (s) 

Efficiency 
(%) 

NBdir 
/proc 

S8 
Time (s) 

Efficiency 
(%) 

Seq 24 13534 100 80 43334 100 
2p 12 7615 89 40 23156 94 
4p 6 4370 77 20 11862 91 
8p 3 2718 62 10 6454 84 
12p 2 2394 47 / /  
24p 1 1852 30 / /  
16p    5 3845 70 
20p    4 3588 60 
27p    3 3349 48 
40p    2 2963 37 
80p    1 2195 25 
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The approximation of the geometry by straight triangles with linear finite elements is acceptable 
if volumes are preserved. So, curved elements may not be necessary since they slow down 
calculations. However, curved elements can be used to mesh the fuel cells discretized into 
sectors using fewer curved triangles than with straight triangles. In this case, triangles with 
several curved edges are necessary. FEM on that kind of elements are made possible thanks to 
NURBS. That will be the next step. 
 
Parallelization according to the angular directions speeds up calculation. The solver shows good 
scalability for small numbers of processors. For large number of processors, the DSA step 
reduces the efficiency because it is not yet parallelized. Parallelization using the domain 
decomposition method could be implemented to address this problem. 
 
Future projects are first the extension to kinetics calculations and also to extend the solver to non 
conforming elements and to tetrahedral meshes. In the immediate future, we intend to use higher 
order elements. 
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