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ABSTRACT

We present here MINARET a deterministic transpotver for nuclear core calculations to solve
the steady state Boltzmann equation. The codevislkbie multi-group formalism to discretize the
energy variable. It uses discrete ordinate metbodetl with the angular variable and a DGFEM
to solve spatially the Boltzmann equation. The missimstructured in 2D and semi-unstructured
in 3D (cylindrical). Curved triangles can be usedfit the exact geometry. For the curved
elements, two different sets of basis functions lmamused. Transport solver is accelerated with a
DSA method. Diffusion and SPN calculations are mpdgsible by skipping the transport sweep
in the source iteration. The transport calculatiane parallelized with respect to the angular
directions. Numerical results are presented fopkngeometries and for the C5G7 Benchmark,
JHR reactor and the ESFR (in 2D and 3D). Straigid aurved finite element results are
compared.

Key Words: Neutron Transport, Applied Mathematics, Discoatins Galerkin FEM, Parallel
computation.

1 INTRODUCTION

MINARET is a 2D/3D transport solver developed ie fhame of APOLLO3 code [20]. The one

group transport equation is solved using a SN apmpration and a Discontinuous Galerkin

Finite Element Method (DGFEM) on an unstructurecsimeomposed by triangles in 2D and
prisms in 3D. The multi-group calculations are parfed using a standard expansion of the
scattering cross sections on Legendre polynomfadsiporder.

The phase space of the steady state Boltzmanni@qguaintains the energy variable, angular
directions and spatial variables. The energy vé&iab discretized following the multi-group
formalism. For the angular variable, various quade formulae are available as level
symmetric, equiweight and product angular formukea. the spatial variables, the DGFEM can
be used with polynomials of degree zero or onediP®1 spaces). The DGFEM was introduced
by Reed and Hill in [1]. The mathematical well-pdsgproximated problem and the error of the
numerical solution have been set by Lesaint andidiawn [2]. The error between the
approximation and the exact solution has beenedfin [3] leading to the following estimation:

”w _[/Ih”h,Q = Ckhk+l/2|¢l|Hk*1(R) (1)

where k is the degree of the polynomial interpolatand/ is the angular flux for a given
angular directionQ and the nornj| _ contains the norm?of the function, the derivative with
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respect toQ and the jumps on the mesh edges, see [18] chaip\ever, this estimate needs
the angular flux to be sufficiently regular, whamiot true for as simple geometry as the circle for
a constant source problem. In [4], an example i bu prove that the superscript k+1/2 is
optimal. We will present some examples of h-coneeog for the scalar flux and the eigenvalue.

Due to the size of nuclear reactors and the patidemanded, computation time is a crucial
point. To speed up calculations, numerous accéeratethods have been developed, see [6-11].
We use one DSA (Diffusion Synthetic Acceleratiorgthod proposed by Adams and Matrtin in

[8] and we modified it after reading [10]. SPn afitfusion calculations are made possible by
using DSA matrices. Parallel computations becorse altool to get results in a reasonable time
of calculation. The calculations are distributedhariespect to the angular directions. It is also
possible to distribute them according to the layetfie propagation process.

As the geometry is approximated with a triangul&sh) one can wonder if the results can be
improved if we make calculations on the exact gagyndo fit the exact geometry we study
curved triangles. One side is a circle’s arc. [et,fane could expect 2 benefits from curved finite
elements in addition to a better accuracy (whiamotsgranted): if the degree of approximation is
increased the geometrical error needs to be lessthie numerical one, so curved elements seem
necessary for higher order calculations. The offegrefit would be to use less curved triangles
than straight ones to mesh fuel cells when coreutations are performed without cell
homogenization and thus calculations would be fastethis objective, triangles with several
curved edges will be needed.

Section 2 presents the unstructured mesh and #tmlsgolver. Section 3 gives some details on
the DSA and what was changed from [8]. Section @sdwith parallelization and how the data
are exchanged. In section 5, the curved elemeatmtroduced: 2 kinds of basis functions can be
used. Numerical results are given in the sectiofir€: on a homogeneous disk and a large cell,
and then on the JHR and the ESFR reactors. We centipa powers of the C5G7 Benchmark in
2D and 3D with MCNP results. The bibliography camsareferences about other transport codes
[12, 13].

2 MESH GENERATION AND TRANSPORT ALGORITHM USING DGFEM

The quality of the finite element approximationbased on a well-structured mesh. A specific
geometrical component generates automaticallyrttwegulation of the different physical regions
of the core domain. All elements in the radial plame conforming triangles obtained by a mesh
generator which will be described first. The axiftection is discretized into planes. The
DGFEM is then used for the approximation of thewdagflux on the different elements.

2.1 Mesh Generation

The physical geometry is described in 2D as a cidle of volumes where edges are either
straight lines or segments of circle. The 3D geoynist supposed to be cylindrical by extrusion
of a 2D geometry into planes; 3D elements are wightained by extrusion of the 2D triangles.

The mesh generation is performed from the 2D plysieometry; it is done in several steps.
First, for each physical region of the geometrguaface mesh is defined to approximate the
border of the region. The positions of the bordeints of the triangulation are automatically
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settled in order to preserve the volume of the [@aysegions. The surface mesh size can vary
according to its position in the core. Second, ao$goints is generated inside the physical
region. The inner points are uniformly set out kattthe distances between two neighboring
points are close to the average distance betweersulface points. Then, a triangulation is
generated by tessellation of the previous poirttidigion using a Delaunay algorithm. Finally, a
smoothing algorithm recalculates the distributioh tbe internal points by a harmonic
transformation in order to improve the quality bkttriangle (maximization of the minimal
angle).

2.2 Transport Algorithm

For one angular directidl , the mono-kinetic transport equation is:
QOp+0¢p=S on R )

where @ is the angular flux. The equation is closed withcaum or reflexion boundary

conditions. The triangles to be solved are sortedthet each cell is solved following a
propagating front from the lightened side to thekdade of the domain.

\

s

Figure 1. Propagation principle with the calculation order

The numerical equation solved on each triangle is:

[Qn, (¢ - + [ QD@ y +[ oy = [ Sy (3)

whereT is the meshgT _the lightened boundaryj, the outgoing normal to the boundagy,a
basis function in the projection space (polynomigi}he unknown angular flux to be solved,
the total cross section of the medium, and S isthece term. Thg, term is the angular flux on
the edgee from neighbour mesh (upwind flux}, is the flux of the mesh being solved. This
scheme is applied with basis functions which afdgnmmials of degree 0 (P0O) or 1 (P1).

221 POsolver

The flux is supposed to be constant on each maskexplicit expression of the flux of the being
solved mesh is obtained after few calculations:
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-> Qi ¢l +S
- = e _ 4
g - Qi l, +ov “

where some geometrical data of the cell are prdsenthe area V.

2.2.2 Plsolver

In the linear approximation, the angular flux ipresented thanks to a nodal basis. The flux is
calculated at each vertex of the triangle and apprated with a linear combination of these
values inside the triangle.

Figure 2. 2D triangle P1

The flux on the triangle is found by solving a 3¥&tem:

$=(-> M +T+oM)(-D M, g5 +5), (5)

with M = _[z//i¢j the mass matrix;T =J'41/i (Q.0¢,) the transport matrixM , = If).ﬁe W9, the
T T e

mass matrix on the incoming edgeThis non symmetric system is solved directly bgar@er’s
rule.

2.3 Threedimensions elements

In 3D, the elements are not tetrahedral like in6{ prismatic. The 2D elements are product of
radial and axial basis functions. Different elensearie drawn on the figure 3.

For the DGP1PO element, flux is piecewise consaially. The nodes are located at the middle
plane of each element. The flux belongs in the i¢nomial space (1, X, y). For the DGP1M1
element, we add an axial momentum which is linear and constant radially. The flux belongs
in the P1 polynomial space (1, X, y, z). The DGP&Rinent is a product of P1 radial space by a
P1 axial space, the flux belongs in the polynomsace (1, x, y, z, Xz, yz). This last element has
not been implemented yet.
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DGP1PO DGP1MI DGP1P:

B={1xy} B={1xy,z} B={1xy,zxzyz}

3x3 Matrix 4x4 Matrix 6x6 Matrix
Figure 3: 3D elements

In 3D we have twice more angular directions tha@lny so the computing time for a DGP1P0
approximation can be estimated by multiplying thH2-tBne by a factor 2Nz (Nz being the
number of radial planes).

3 DSAMETHOD

We detail how the DSA was implemented. The scaigers supposed to be isotropic. We
followed the formalism of Adams and Martin [8]. 8], some stability problems of this method
are pointed out; they have been treated by intriodua stabilisation parametarintroduced in
[10]. See [7, 11] for some presentations of thevddon of DSA. The DSA method accelerates
the source iterations by estimating the error aftach transport iteration. The error is
approximated thanks to the diffusion operator whta low order operator compared to the
transport one. The DSA corresponds to the accedarhy diffusion, but the transport can also be
accelerated by a transport operator with less anglitections (multi-grid acceleration), see [14]
where it is shown to be less effective than DSAfusion matrices can be used to get a diffusion
solver and even a SP1 solver.

3.1 TheM4SProcess

The reader will find justification in [8] for theoflowing scheme. The 2 first lines correspond to
transport iteration. TheBone is the diffusion equation that the residuabresatisfies. The
superscript [+1/2 corresponds to variables caledlafter one transport iteratiof,” is the

error to estimate thanks to the diffusion operator.

Q, My + oy = o4 +q,(r) (6)
l+1/2 _ I +1/
¢ +1/2 — Zwmwm+l 2 (7)
m
05O + (0, -0 )R =0 (g™ - ) ®)
t
(d+l - <d+1/2 + F0|+1' (9)
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3.2 Numerical Flux, Choice of the Stabilisation Par ameter

Numerical instability appears if the discretizatiointhe diffusion operator is not the same than
the one of the transport operator [15]. In fachsistency is a sufficient condition for stabilitiy o

the DSA. So the DGFEM is used to solve the diffasquation D =1/30,):
[pOR* mv- [DnmR N+ [(o, o, )Fov=[o (@ -4} (10)
K K K

oK

The main issue here is to choose a numerical uwompute the boundary integral8“(&rm in
the equation (10)). In the transport equation, henerical flux chosen verifies the upwind
scheme. Here, a stabilisation parametes introduced to make the bilinear form coercivel a
thus to ensure the existence of a unique solutidghe approximate problem. In [9], calculations
show that the value of this parameter has to ehnh = stepsize) to get an elliptic form and a
well posed problem. This parameter links the DGFElith the Interior Penalty methods which
were developed independently, see [10] for refeaenc

The numerical boundary integral is expanded asevi!

- [D(n D]]F)v:Ja[F][v]+Jn[ﬂDDF}[V]+Jn[ﬂDDv}[F] (11)

oK

with [u] =u,, —u,, and {u}=%(u@<t +u,, ). The last term symmetrises the diffusion matrix.

Wang, in [10], gives a value for the stabilisationefficient & of one interior edge=:

MD—++MD—_ The value of the stabilisation parameter
2 hi 2 h]

was one issue of the modified M4S. We tad®) = c(1) = 2, p is the order of the polynomials.

a= max(1/4, K;P) with «!” =

Remarks:

-The P1 DSA is efficient to accelerate the P1 fpansbut the PO DSA reduces drastically the
calculation time. All calculations presented in thanerical results used the PO DSA.

-The value of the stabilisation coefficient canumelerstood as choosing a boundary flux (flux on
the edge) equal to the average of fluxes from lam}acent triangles whereas in the finite-
volumes method, the boundary flux is a weightedaye flux.

-Anisotropy of first order can be taken into accolan SPn calculations.

4 PARALLELIZATION

The parallelization of the solver is necessaryeuce the computing time which may become
important for large SN order. For this reason,ahgular parallelization has been implemented in
a first time. Two levels have been considered, fite¢ consists in a distribution of a set of

directions on each processor. For a given directibe second level consists to perform
simultaneously the calculation of different mesh&sg a propagation front if no dependency
exists.
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4.1 Distribution of thedirections

For each angular direction, and for each sourcatite, the angular flux is independent of the
other directions with the exception of the boundagjues in case of reflexive boundary
conditions. So the calculations can be run simebasly direction by direction. Indeed, the
spatial resolution uses the source data estimatidx previous source iteration.

Thus, one can affect a set of angular direction®By process, up to one angular direction per
MPI process. A set of directions is allocated toheprocessor. For each outer iteration and each
energy group, the master processor computes tfexadif moments of the outer source (fission
and scattering from other groupSJ;. Then, for each source iteration, we perform thealtel

process given (Figure 4).
> sa"m = Sz?fi t (Zf + l)ahfséim

*/‘;} \H’ S!m

A

Broadcast of the source

k k 4 I rrationna Far
Y.y, AN/ wX ...k vall toall” communications for

K
&W‘ the angular flux on the border

Only 1f symunetry BC

l l l parallel resolution
) 1 { |

Yo By Y e A '1‘114}”1
T 3 o
G — ‘% / fim all reduce of the moments
E— 2

Figure4. Flow chart for the exchange of the angular flux and moments

4.2 Distribution of the calculation along the propagation front.

As it has been already shown, for a given directiba calculation of the angular flux is explicit
by starting from the lightened border where theudargflux is supposed to be known (zero flux
or flux already calculated when symmetry conditisimposed) and then by progressing from
triangle to triangle when all the lightened edges igiven triangle are known. We then calculate
the different terms of a 4x4 matrix and the soueren depending of the cross section and then
solve the linear system, this takes about two hecharf floating point operations. A tree of
dependency of the different triangles can be edmilit. At each level of this tree the triangles
can be computed independently. Figure 5 presenthfieyent colors the triangles belonging in a
same set of dependency and thus those which cacorbeuted in parallel. This fine grain
parallelization is achieved using OpenMP multitkliag.
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Using this two level parallelism, we have plannegthe end of year 2010, to compute a full 3D
GENIV reactor core using around 300 energy grouqkwsing more than 10,000 cores in few
hours on the last new French petaflop machine [22].

5 CURVED TRIANGLES

A curved triangle is a triangle ABC whose one edgan arc of a circle (BC in the Figure 6).
The circle is considered because the fuel pinggnedrical. The center of the circle O is located
anywhere relatively to A. The curved triangle ipposed to be convex. The following figure
displays the action of the mappifgbetween the curved and the straight triangle AB@ the

link between curved basis functions and straigleisaione level set of the functian and one of
v, are plotted in red).

Oy F Y
K
C B
K
MExy)
C./7t
Mxyp” B
A & >
T o
O.-l H“"EB o

Figure 6. Mapping from straight to curved triangle.

5.1 Curved BasisFunctions
The curved basis functiong are obtained from the straight ongs and from the mapping
F:K - K =F(K) using the formula’, =v, « F . The action of the mappin§ is detailed on
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the Figure 6. The poinM'is the image ofM by F . With this approach we calculate (with
Mathematica) more complicated integrals on straiglangles than for straight FEM. For
instance, the curved mass matrix writes:

J99, = [vv;3 (12)

whereJ is the jacobian ofF. One drawback of this approach is to find a mapetween a
triangle with more than one curved side and theesponding straight one. One possibility is to
use Nurbs, but it is not done yet. We consideredsthaight basis functions because the number
of curved sides does not change the difficultytifie computation of FEM matrices.

5.2 Straight Basis Functions

It is also possible to keep the linear usual bfagistions of the straight triangle to interpoldte t
angular and the scalar flux on curved triangleghls case, we calculate the integrals on more
complicated geometrical domain. For instance, theed mass matrix writes:

Ivivj :Ivivj +ZIViV;- (13)

D, is the area between the straight edge and thespameling curved one. One drawback of this

method is that the basis function correspondinth¢ocurved edge does not vanish on this edge,
so more coefficients need to be calculated in il Boundary matrices.

For both bases, the case of a tangent directidhet@urved side needs to be treated. In fact, a
tangent direction is said to be incoming or outgaim an average sense since the criteria is the
sign of the dot product between the average ouwanal and the direction. So approximations
are still present. We tried to refine the meshattangent point, but the results were not better.
One can explain it by saying that the source néztie interpolated at the tangent point whereas
it is not stored at this point, so that can preehetter accuracy.

The straight basis functions fit less well the peofs than curved ones. Numerical results on the
JHR reactor confirm this view.

6 NUMERICAL RESULTS

Various numerical tests have been performed inra@everify the behavior of the solver for
different core configurations. The first tests ammple one-group benchmark with very simple
geometries (disk, single cell), the aim is to stibe/convergence ratio when the mesh size tends
to zero. The second test is devoted to the clddsecechmark C5G7 in order to perform a cell by
cell calculation with high flux anisotropy. The rthitest was performed on the future JHR
research reactor with a very complex geometry. [@ketest is devoted to the concept of ESFR
(European Sodium Fast Reactor) presenting a heshggeometry with 33 energy group
calculations. For almost all calculations, the fgien on the eigenvalue was of 4@nd the one
on the flux of 1¢. All the calculations presented used DGP1M1 firétements and were
accelerated with PO DSA: a P1 to PO condensatiatome before the diffusion step and the
resulting error vector is then expanded to come baca P1 size. But it is possible to use P1
DSA or no DSA.
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6.1 h-Convergence

We present 2 simple cases with one energy grougnttance the h-convergence of the
eigenvalue and the flux to a reference one. Forhttraogeneous disk the reference has been
calculated by running a 1D calculation with the Ap® code. A Tripoli4 calculation was
performed also.

6.1.1 Homogeneous disk

Calculations were made on a homogeneous disk waitiwm boundary conditions and with 528
angular directions per octant (S64). The disk maub0Ocm.

Table .  Eigenvaluesfrom different solvers.
Apollo2 0.99257756
Tripoli4 0.992538 o0 =4.77*10"°
Minaret curved 0.992572
Minaret straight 0.992567

Eigenvalue Convergence

0 T T T T 1
_1—0 5 0] 0,5 1 1,5 2
— == straight FEM
<
o 2 = curved FEM
[+H]
;I 3 ¢ straight
E -4 y=16294x-5.85 _Aa u =i curved
Lo %
L P Linear (straight)
5 i & |
y=1,6575x-5,0849 — Linear(curved)

log10 (h)

Figure 7. Eigenvalue convergence for the homogeneous disk

The eigenvalue stops becoming closer and closee sansmall difference exists between the
refined eigenvalues of Apollo2 and Minaret. Cuneteéments do not bring any extra accuracy
when the mesh is refined but results are bettdn aatarse meshes. The rate of the eigenvalue
convergence is about 1.6.

6.1.2 LargeCdl

The cell consists in a square whose the edge si¥@dcm and the radius of the circle within the
square is 40cm. Calculations used a S16 formula vatuum boundary conditions. We started
from an unstructured mesh made of triangles whioge=tige size is about 40cm. Refining the
mesh consists in joining the middle points of eadige so we got triangles twice smaller. We
found keff= 0.989137 for the finest mesh.
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Flux convergence, L, & L, ;

=

= 0 : : .

‘};—, . 0.5 5 ==L_2

g: 1,5985x-2 —8—L_inf

§ / ——Linear (L_2)

EJ 3 / ——Linear (L_inf)
4 y=1,9536x-3,8416

log10(h)

Figure 8. Flux convergencefor thelarge cell

Each flux is compared to the last one which is tiest accurate. Without any hypothesis of
regularity of the flux, the expected rate of comesrce for the 4norm is of 1.5. So the?lnorm
converges faster but the reference value is from shme solver, so the slope may be
overestimated.

6.2 Cb5G7 Calculations

The C5G7 Calculation is a standard OECD Benchmeoggsed in 2003. We ran calculations on
one eighth of the core. The power comparison wWitBNW is presented in Table Il and Table V.
For the angular variable, the product formula seeémgive better results than the level
symmetric one (‘02x16’ means 2 z-levels for theapaingle and 16 radial directions for the
azimuthal angle by octant). 2D calculations werelenaith 48901 triangles.

6.21 2D Calculations

Table lIl.  C5G7 calculationswith different angular curvatures
Time calculation (s) Max error (%) Average erren)(| Keff
MCNP reference 1.18655
MINARET S16 1450 1.73 0.395 1.18543
MINARET 02x16 | 1440 1.73 0.397 1.18634
MINARET 02x16* | 1660 1.84 0.403 1.18635
MINARET 02x36 | 2800 1.63 0.393 1.18644
MINARET 02x36* | 3680 1.839 0.402 1.18644
APOLLO2 1870** 3.2 0.50 1.18636

* These calculations are similar to the ones piteseabove except the precision on the flux
which is imposed to IDinstead of 18. From the results, increasing the precision onftilne
does not bring the flux closer to the reference.

** The calculation with Apollo2 [17] was made onRec Alpha EV6 500MHz workstation
which is twice slower than the 2.7GHz workstatioa used for Minaret calculations (the S16

2011 International Conference on Mathematics anuifitdational Methods Applied to 11/18
Nuclear Science and Engineering (M&C 2011), Ridaeeiro, RJ, Brazil, 2011



J.-Y. Moller, J.-J. Lautard

calculation run in 2860s on the Dec Alpha). So, domparison, the time of Apollo2 can be
divided by 2.

6.2.2 3D Calculations

Table Il justifies we kept 10 radial planes foxhealculations, and Table IV shows that product
formulae are better than level symmetric ones.

Table lll.  Calculationswith 5, 10, 20, 24 radial planes
Nb of radial planes 5 10 20 24
Time (s) 7147 20343 35072 40613
Keff 1.18132 1.18153 1.18156 1.18159
Nb outer iterations 50 77 74 74

Table IV. Calculationsin $4, S8 and 02x04

Angular order S4 S8 P0204
Time (s) 20343 61167 57326
Keff 1.18153 1.1813 1.18218
Nb outer iterations 77 76 77

Table V. Comparison of the power with MCNP

Time calculation (s) Max error (%) Average erren)(| Keff
MCNP 1.18381
MINARET 02x16 189500 1.63 0.389 1.18341
MINARET 02x36 413577 1.63 0.39 1.18369

In the last table, the time calculation could bdueed using parallel computations and using
fewer triangles. We did not study the influencehef number of triangles in the radial planes.

6.3 JHR Calculations

To illustrate the MINARET solver capabilities, weepent an application on the future European
research reactor, the Jules-Horowitz-Reactor (JH®]) dedicated to technological irradiations.
The core is composed of 34 fuel assemblies (archngé rings), 3 regions contain clustered
irradiation devices (chouca regions). Each assensbgomposed of 3 groups of 8 cylindrical
fuel plates, maintained by three aluminum stiffenérhe core is surrounded by a beryllium
reflector and a water reactor pool. The cross sestiwhich depend on several parameters (fuel
temperature, water temperature and density, contiblinsertion) are used for the whole core
calculation. The physical geometry of the coredsamposed into 4149 physical regions for the
radial description (see Figure 9), and 26 axiah@$ this produces 53052 different regions for
the complete 3D description of the core. The JHRe @and assembly geometries have been
described via the Graphical User Interface SILERH.[
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Figure 9. JHR description physical regions and mesh discr etization

6.3.1 2D calculations

2D calculations ran in the TBB configuration (adbs inserted) for a starting core configuration
(Figure 9). It should be noted that the high valt&eff is due to the fact that the axial buckling
is not taken into account and also that the comeesponds to the beginning of cycle. The
calculation corresponds to a mesh where the sitigedfiangles is constant inside the active part
of the core and increases until the periphery (flbiitm to 1cm). The total number of triangles
is 46986. For this calculation different FEM appmoations have been compared in order to
validate the curved edge FEM basis and to justifigserving volumes with straight triangles.
The results are presented in Table VI.

Table VI.  Comparison between different FEM s ($4 angular quadrature)

Keff Geometry : exact/approximated FEM straightved | FEM basis
1 1.31307 approximated geometry straight
(volume conservation)
2 1.31441 approximated geometry straight
(non volume conservation)
3 1.31327 exact straight
4 1.31309 exact curved curved
5 1.31325 exact curved straight

The difference between lines 1 and 2 justifies eoriag the volumes. Comparing lines 1 and 3
justifies using straight triangles with straight MEinstead of curved triangles with straight
FEM). For the lines 4 and 5, we ran curved FEMwakons with 2 kinds of base functions (see
section 5). The curved ones seem better. From @w, wcurved basis functions are more
consistent with the geometry.

The results presented in Table VII correspond talf& calculations with different distributions
of the angular directions on the processors.
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Table VII. Computing time on Opteron cluster for parallel calculation
N proc A level symmetric (12d) B level symmetric (40d)
Keff 1.31304 Keff 1.31314
NBdir S4 |Efficienc] NBdir S8 |Efficienc
/proc | Time (s) (%) /proc | Time (s] (%)
Seq 12 186 100 40 487 10(
2p 6 122 76 20 263 93
4p 3 96 48 10 175 70
8p 2 89 17 5 111 55
12p 1 73 21 4 103 39
16p 3 100 30
20p 2 88 28
40p 1 85 14

The efficiency is reduced by the increasing amoahtcommunications (source and flux
moments) and by the fact that, DSA being not paliald, a fixed computing time is added at

each source iteration.

6.3.2 3D calculations

3D calculations of the JHR core have been perforosdg 14 and 26 axial planes and a S4
angular quadrature. The axial geometry is givemufeid.0 and results on table VIII.

Pan 1 au plan 7 (200 = 0, 2max = 109)

Core

Shielding zone

Water — [\

Shielding zones

Figure 10. Axial description of the JHR core

Table VIII.  3DCalculationswith different number of planes
Nb of planes / SN order 14 (S4) 26 (S4) 26 (S8)
Time(s) / Nb proc. 2645 (4p) 3719 (4p) 5441 (8p)
keff 1.25652 1.25697 1.25704
Nb outer iterations 26 22 22

The time with 26 planes in S4 with one processa #12500s.
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6.4 ESFR calculations

The ESFR concept (European Sodium Fast React@$ talkce in the fourth generation reactors
project. The map of the core is given on figurelLtonsists into 17 rings of assembly. The inner
and outer fuel regions have different Pu mass obnféhere are 225 inner fuel subassemblies
and 228 outer fuel sub-assemblies. The controlsystem is composed of 9 DSD (Diverse
Shutdown Device) and 24 CSD (Control and Shutdovewi€®). The material cross sections
coming from ECCO library are homogenized in a 38rgy multi-group discretization. The

material distribution is given on Figure 11

Minaret calculations have been performed considetiire steady state solution. The following
options have been used: each hexagon is splitlihtoiangles, axially a mesh measures 20cm in
fuel and reflector, giving 11 planes. The total tuemof elements is 11438 in 2D and 125813 for

the 3D calculation.

Plan 4 (zmin » 201, 2 » 281)

CSC

Outer Fuel

Inner Fuel

Pian & fmin = 161, zmax = 121)

Figure 11. ESFR Axial and Radial material and calculation geometry description

In Table IX and Table X are reported all the respéisformed on the whole ESFR core for a 2D
and 3D configuration. The tests have been perfonidtdS4 and S8 level symmetric quadrature
on a cluster platform composed by 40 nodes of @p&B Ghz octo-processors, with compiler
gcc 4.1.1. The tables show the good scalabilitynioyeasing the number of processors even if

the DSA parts have not been yet parallelized.
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Table IX. ESFR 2D Paralld calculations on cluster computer

HAlevel symmetric (12d) B level symmetric (40d)
Keff 1.04271 Keff 1.04272
N proc NBdir _ S4  |Efficienc] NBdir _ S8 |Efficienc
/proc | Time (s) (%) /proc | Time (s] (%)
Seq 12 229 100 40 690 100
2p 6 137 84 20 365 95
4p 3 95.5 60 10 216 80
8p 2 76.4 37 5 126 68
12p 1 4 111 52
16p 3 98 44
20p 2 87 40
40p 1 72 24
Table X. ESFR 3D Paralle calculationson cluster computer
HAlevel symmetric (24d) B level symmetric (80d)
Keff 1.00389 Keff 1.00397
N proc NBdir _ S4  |Efficienc] NBdir _ S8 |Efficienc
/proc | Time (s) (%) /proc | Time (s] (%)
Seq 24 13534 100 80 43334 10(
2p 12 7615 89 40 23156 94
4p 6 4370 77 20 11862 91
8p 3 2718 62 10 6454 84
12p 2 2394 47 / /
24p 1 1852 30 / /
16p 5 3845 70
20p 4 3588 60
27p 3 3349 48
40p 2 2963 37
80p 1 2195 25

7 CONCLUSION

MINARET is a deterministic unstructured SN multegp transport solver parallelized with
respect to the angular directions. It solves tleady state Boltzmann equation. It has been
developed within the Apollo3 frame gathering sevether solvers. It is possible to run core
calculations by meshing the whole core with they@anstrain to get a 3D cylindrical mesh. The
2D basis mesh is composed by a collection of comifgg triangles.

The DSA method reduces time calculations by a fa&t@t least) on all the tested reactors. The
DSA matrices are the only matrices stored by tHeesolndeed, for transport calculations, the
4x4 (in 3D) transport matrices are recalculatecefrh cell and for each iteration.
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The approximation of the geometry by straight tglas with linear finite elements is acceptable
if volumes are preserved. So, curved elements nmyba necessary since they slow down
calculations. However, curved elements can be tsechesh the fuel cells discretized into

sectors using fewer curved triangles than withigittatriangles. In this case, triangles with

several curved edges are necessary. FEM on thatdfielements are made possible thanks to
NURBS. That will be the next step.

Parallelization according to the angular directispseds up calculation. The solver shows good
scalability for small numbers of processors. Fagdanumber of processors, the DSA step
reduces the efficiency because it is not yet paliaid. Parallelization using the domain
decomposition method could be implemented to addras problem.

Future projects are first the extension to kinet@lsulations and also to extend the solver to non
conforming elements and to tetrahedral meshehdmntmediate future, we intend to use higher
order elements.
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