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Abstract

This paper develops two aspects improving crack propagation modeling
with the X-FEM method. On the one hand, it explains how one canuse
at the same time a regular structured mesh for a precise and efficient level
set update and an unstructured irregular one for the mechanical model. On
the other hand, a new numerical scheme based on the X-FEM method is
proposed for dynamic elastic-plastic situations. The simulation results are
compared with two experiments on PMMA for which crack speed and crack
path are provided.
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1 INTRODUCTION

The modelization of arbitrary crack propagation has seen major advances these last
years, mainly because of the appearance of extended finite elements concepts.

Based on the concept of partition of unity introduced by Babuska and Melenk
in [1], the eXtended Finite Element Method developed by Black et al. [2] incor-
porates in the interpolation of the displacement field the asymptotic behavior of
the solution of a crack in an elastic media, so that fracture parameters are very well
calculated. Moeset al. [3] enhanced this method adding a discontinuous part in the
displacement field. This suppose to define implicitly the crack location. The level
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sets method of Osheret al. [4] provides an efficient way of doing it, even in three
dimensions (as demonstrated by Moeset al. [5] and Gravouilet al. [6]). Recent
workers (as Belytschkoet al. [7], De Borst [8], Réthoréet al. [9] or Menouillardet
al. [10]) have still improved the method which has been extendedto transient anal-
ysis of elastic crack propagation. It has mainly been shown that the method can
be applied and ensures under certain conditions exact energy conservation even
during crack propagation.

The method has nevertheless one main drawback which is linked to the propa-
gation of level sets strategy, based on a finie difference concept whose precision is
destroyed when the simulations are not done on a equally spaced or slowly varying
spatial mesh.

Plasticity of material is an important dissipation mechanism and hence may
severly modify the dynamic crack propagation (directions and speed). This is for
example the case in [11], where an elastic plastic consitutive model is associated
with the X-FEM kinematics to simulate shear band propagation. The first aim of
this paper is to propose a numerical scheme which extend accurately the X-FEM
elastic dynamic crack propagation simulations to elastic-plastic cases.

Level sets method loses efficiency when applied on triangulated domain. The
proposed idea is to update the level set functions on a regular grid which is dif-
ferent from the structural mesh. By this method a very simpleand efficient finite
difference scheme can be directly used for level set propagation simulation.

The paper is organized as follows : in Section 2, the mechanical model of the
X-FEM is presented. Section 3 details the changes due to the incorporation of a
elastic-plastic law. Section 4 is dedicated to the level sets update and projection.
Finally, numerical examples of dynamic crack propagation in elastic-plastic media
are presented in Section 5, and compared to experimental results.

2 MECHANICAL MODEL

2.1 Equilibrium equations

We consider a material bodyΩ with a crackΓ (figure 1). The motion of the body is
described by the displacementu(x, t) (wherex is the position of material points).
Displacement and velocity at time 0 are known as initial condition of the problem.
We assume small perturbations, hence the strain tensor is :

ε =
1

2

(

∇ (u) + ∇T (u)
)

(1)

whereu is the displacement field and∇ is the gradient operator.
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Figure 1: Body notation

The body is submitted to prescribed displacementsud on the boundary∂Ωu, to
body forcesf

d
onΩ, and/or to external loadsF d on the boundary∂ΩF . The crack

facesΓ+ andΓ− are supposed to be traction free.σ is the Cauchy stress tensor,
and˙ = ∂

∂t
denotes the time derivation.

The strong form of the problem is :
Find the stress and displacements(σ, u) such that :

u = ud on∂Ωu (2)

div(σ) + f
d

= ρü in Ω (3)

σ · n = F d on∂ΩF (4)

σ · n = 0 onΓ+ ∪ Γ− (5)

The three last equations can be written in the weak form :

∀v in V 0,
∫

Ω
ρü ·v dΩ+

∫

Ω
σ : ε(v) dΩ =

∫

Ω
f
d
·v dΩ+

∫

∂ΩF

F d ·v dΓ (6)

whereV 0 = {v, v = 0 on∂Ωu}.
The constitutive equations have to be added to solve the problem.

2.2 Plasticity Equations

The material is assumed to be elastic-plastic. It can be described by the usual strain
partition into elastic and inelastic parts :

ε = εe + εp (7)

where : εe = D−1σ and ε̇p =

{

0 if f(σ,R,X) < 0

g(σ) if f(σ,R,X) = 0
(8)
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In equations 7 and 8,ε is the total strain,εe the elastic part,εp the inelastic one,
ε̇p the plastic strain rate,D is the Hooke matrix,σ the stress,g the flow potential,
f the plasticity criterion, whereasR andX are two hardening variables. In this
paper, standard Von Mises with isotropic hardening is used with an associated flow
rule (f = g).

2.3 Time Discretization

The numerical time integration is based on the implicit Newmark mean acceler-
ation scheme with parameters (γ = 1

2 , β = 1
4 ). This scheme is unconditionally

stable ([12]).

2.4 Space Discretization

2.4.1 Formulation.

The space discretization is based on the eXtended Finite Element Method ([5],
[13]). New 4-noded elements have been developed in the software Cast3mc© (de-
velopped by the French Commissariat à l’Energie Atomique [14]).

The displacement field is the sum of a standard continuous part (with the usual
shape functionsNi(x)) and of an enriched part (containing discontinuous as well
as singular functions).

u(x) ≃
∑

i∈I0

Ni(x) · ui+
∑

i∈I1

Ni(x)H(x) · ai+
∑

i∈I2

Ni(x)(
∑

k=1,..4

Fk(x) · bi,k) (9)

I0, I1, I2 are respectively the total set of nodes, the set of nodes whose support
is intersected by the crack and that doesn’t belong toI2 , and the set of nodes of the
element(s) that contains (or have contained previously) the crack tip(s). On figure
2 the symbol⊡ (resp.△ ) represents nodes belonging to the setI1 (resp.I2).

The asymptotic fields of a crack propagating dynamically (with non-negligible
inertial effect) in an elastic-plastic media are differentfrom the elastic quasi-static
ones. For example, in the static case of a monotonically increasing loading applied
to a crack in a hardening material, Hutchinson, Rice, and Rosengren in [15] and

[16] showed that stress fields were proportional tor−
1

n+1 (wheren is the hardening
exponent of the Ramberg-Osgood stress strain law, which equals 1 in the elastic
case). Furthermore, the dynamic fields of a crack moving in anelastic media are
velocity dependent [17].

In such a situation, there is no elementary analytical solution of the moving
crack problem. Hence it was chosen to use the elastic static Weestergaard’s basic
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Figure 2: Enrichment strategy

functions (which can be found in [2]) to approximate the dynamic displacement
and speed singularities at dynamic moving crack tip. Besides, the use of the New-
mark scheme limits to the same space of functions the displacement, velocity and
acceleration approximations.

2.4.2 Numerical integration.

The numerical integration of cut elements is generally performed by partitioning
them into standard subtriangles. Hence every time the crackpropagates, one uses
a new set of subtriangles as well ad a new Gauss points set. This technique is valid
for elastic crack propagation.

In case of an elastic-plastic media, the values of fields (stresses, inelastic strains,
or internal variables) are computed at Gauss points. When the crack is not moving
the sub element technique is the best strategy to compute thestress and strain state.
When the crack moves either in static or in transient case theset of subtriangles
has to be changed and a complex projection has to be performedeach time the
crack moves. This technique leads to a poor quality of the projected quantities and
to complex field (stress and internal variable sets) transport when one changes the
mesh. With this technique it is impossible to prove energy conservation when the
crack propagates.

To avoid this, we choose to integrate enriched elements (it means cut elements,
tip-elements, and their neighbors) with a larger number of Gauss points (typically
64) whose position is fixed in the element.

This integration strategy is developped in [18], where it isshown that it is
sufficient to get an accurate tangent stiffness matrix. No locking of the degree
of freedom corresponding to the singular enrichment has been observed, but non
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transmissible ”hourglass” modes have been detected.

Figure 3: Numerical integration

The projection of the fields from a 4-Gauss points element to a64-Gauss point
element anticipates the arrival of the crack tip in the element as it can be observed
on figure 3. These elements are integrated with a richer Gausspoints set before they
are reached by crack tip plastic field. This technique introduces a small error in the
element integration but is prefered because it does not imply any field projection
close to crack tip where the fields are very rapidly changing.In case of plasticity
confined to the crack tip the change of Gauss point sets is donein elements which
are still elastic. Since the new degree of freedom are set to zero, no supplementary
strain energy is introduced.

To demonstrate that the quadrature technique meet quality requirements, stress
intensity factorsKI andKII of an inclined crack in an infinite body in traction are
evaluated through the interaction integral. Half crack length a is taken as1/100
of the total plate dimension, and the mesh size in the crack tip vicinity is equal
to a/10. With this method the results on stress intensity factors appear to be of
good quality for any position of the crack within the element. Figure 4 shows the
quality of the solution for various inclinaison angle (from0◦ to 90◦). Values are
normalized byσ∞

√
πa, whereσ∞ is the applied stress.
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Figure 4: Stress intensity factors with respect to the angleof the inclined crack

2.5 Resolution

Injecting the time and space discretization into equation (6) and taking into account
the material behavior (equations (7) and (8) ), we get a non linear system that is
solved with a Newton-Raphson iterative scheme.

The boundary conditions are fulfilled with the Lagrange multipliers’ technique.

3 CRACK GROWTH IN ELASTIC-PLASTIC MEDIA

3.1 Dynamic crack propagation in elastic media

X-FEM method enables to model dynamic crack propagation in elastic media in
an efficient way. After the determination of the crack direction and velocity, level
sets functions are updated to define implicitly the new crackposition. To the new
configuration of the crack correspond new degrees of freedomwhich are simply
added to the previous one. Their initialization to zero guarantees that no numerical
energy is introduced as proved in [9].
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3.2 Fracture mechanics parameters calculation

The J-integral introduced by Rice is calculated in dynamic via the G-Theta method
(see [19] and [20]).

J =

∫

Ω

(

−(wdef + wcin)δjk + σijui,k

)

qk,j dΩ +

∫

Ω
(ρüiui,k − ρu̇iu̇i,k)qk dΩ

(10)
wherewdef =

∫ εij

0 σij : dεij , wcin = 1
2ρu̇iu̇i. and q is an arbitrary smooth

function whose direction is the same of the crack and whose norm is1 in a domain
surrounding the crack tip and goes to0 out of a larger domain. A representation
can be found on figure 5. This formulation is in accordance with the J-integral

Figure 5: q-domain for an inclined crack (20◦). Shaded area represent the region
where∇q is not nul.

defined by Bui in [21] and the flux integral of Freund [17]. In case of turning
or branching crack, the interaction integral concept is used to determine the stress
intensity factors. Its expression is derived from the J-integral (10) and can be found
in [22] or in [9]. The asymptotic fields used here are these of astationnary crack.
These concepts are valid in case of elastic or of plastic zones very confined to the
crack tip. They shall also be used in case of extensive yielding: this hypothesis can
be considered as very crude but it has the advantage of being a”global” parameter
less sensitive to ”local” criterium (for instance computedusing the stress values at
the closest Gauss points to the crack tip whose numerical quality is rather poor)
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which are very often used to decide crack propagation speed as well as direction.

3.3 Crack growth model

To determine the crack speed, one can invert the empirical dynamic toughness
relation given by Kanninenet al. [23] and get the following equation :

ȧ =







0 if Kdyn ≤ Kc

Vl

(

1 − KA

Kdyn

)
1

m
if Kdyn > Kc

(11)

If the simulation provides an equivalent dynamic stress intensity factorKdyn

greater than the toughnessKc, then the crack speed can be determined by the
previous equation. The lack of experimental data leads to the following hypothesis
:

1. Fracture initiation and arrest toughness are the same (Kc = KA ).

2. The limiting crack speed is equal to the Rayleigh wave speed ( Vl = cr ).

3. The coefficientm is equal to1.

Kdyn may be viewed as the equivalent dynamic stress intensity factor, which
is defined as the asymptotic value of the hoop stress and can beexpressed as a
combination ofKdyn

I andKdyn
II . These last two terms can be determined using the

interaction integral method in the elastic case.
An alternative method consists to assume the mode II negligible and use the J

integral to calculate G. In dynamic case the relationship between the energy release
rate and the stress intensity factors depends upon the crackspeed via the univer-
sal functions : G = 1

E⋆

[

AI(ȧ)K
2
I +AII(ȧ)K

2
II

]

. This leads to a non linear
equation to solve to get the crack speed.

The direction of propagation is chosen to be driven by the maximum hoop
stress which can be expressed in terms of stress intensity factors by the following
equation:

θ = 2 atan







1

4







Kdyn
I

Kdyn
II

− sign
(

Kdyn
II

)





(

Kdyn
I

Kdyn
II

)2

+ 8





1

2












(12)

It can be quoted here that this simple crack growth model, based on the hy-
pothesis of plasticity confined to the crack tip, remains valid in most cases, even if
some improvements may be further investigated.
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4 LEVEL SET UPDATE

4.1 Auxiliary grid

Practical industrial structures cannot in general be described by a structured regular
mesh, even if one can use X-FEM concepts to define the contour (as done in [24]).
When one needs to update the crack position in the mechanicalmodel, one needs to
update the level set functions (see [6] for more details). But, level set update on an
unstructured irregular mesh requires the use of special algorithms for triangulated
domain (e.g. Petrov Galerkin’s scheme [25]) which is a bit sophisticated. In order
to get a general frame for computation of complex geometrieswith simple level set
grids it has been chosen to use two different meshes:

1. A standard finite element unstructured mesh for the mechanical computation

2. An auxiliary regular structured one for the level set representation.

This last mesh can be concentrated only in the regions where the crack is going
to grow and is completly independent from the finite element mesh. Hence, the
introduction of this auxiliary structured grid permits us to use very simple schemes
(like Godunov’s one) based on finite difference approximation.

First, the mechanical model gives us speed and direction of crack propagation.
These scalars are the same for the regular grid. So update, reinitialization, and
orthogonalization can be done in an efficient way on the regular grid. Crack update
is made by solving at each point(i, j) of the finite difference grid :

∂ψ

∂t
= Vψ · ||∇ψ|| (13)

with :
∂ψ(i,j)

∂t
=
ψt+∆t

(i,j) − ψt(i,j)

∆t
(14)

(Vψ · ||∇ψ||)(i,j) = max
{

V(i,j), 0
}

· ∇+ +min
{

V(i,j), 0
}

· ∇− (15)

∇+ and∇− are two functions of ψt(m,n) wherem = {i− 1, i, i + 1} and
n = {j − 1, j, j + 1}. Their expression can be found in [4], [26] and [27].

t is the instant considered for the update and∆t the time step.

4.2 Projection onto the mechanical mesh

Once the new level set functions are determined on the auxiliary grid, a projection
step gives their value on the mechanical mesh. The approximation functions used
for this projection are the standard finite element approximation. The value of the
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level setψ at a nodep of the mechanical mesh whose coordinatexp are within
the 4-nodes elemente of the level set grid is given by the following interpolation
equation:

ψ(xp) ≃
∑

i=1,4

Ni(x
p) · ψei (16)

Concerning the mesh size, the following remarks can be done :

1. To take curvature effect into account in the level set update, the grid size
should be sufficiently small (typically one tenth of the radius of curvature to
get a relative error around few percents).

2. In order to keep accurate crack geometry information during the projection
step, the mechanical mesh size should be close to the auxiliary grid’s one. It
leads to propose the practical rule :

∆xauxiliary grid ∼ min(∆xmechanical mesh) (17)

The calculation cost is very reasonable because the level set update requires no
matrix inversion. The algorithm is fully explicit. The onlyrestriction is the time
step.

The use of such a grid permits to define the level set functionsonly where the
crack can possibly grow. This point is similar to the narrow band method developed
by Sethian [26], and adapted by Venturaet al. in [28] and [29].

5 NUMERICAL EXAMPLE

5.1 Original experiments

The numerical examples comes from the experiments of Gregoire et al. [30].
A PMMA specimen is put between two Hopkinson bars as shown on figure 6.

A hole with a notch permits to the compression wave to initiate a crack in mixed
mode loading depending on the geometric configuration. Strain is measured for the
input and output bar. It gives information about the loadingthat can be interpreted
in speed or strength term. Photographs are made and interpreted to determine the
crack position at different times.

Two computations have been done with different meshes of 8000 and 12000
nodes, which give sensibly the same results. We present herethe results given by
the finer mesh. For sake of clarity, example of mechanical andlevel set meshes
containing about 8000 nodes is displayed on figure 7.
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Figure 6: Experimental configuration, first specimen type

Figure 7: Unstructured mechanical mesh (top), regular level set grid (bottom)

The computations are done using the plane strain option.
We shall study two different specimen which differ only by the crack geometry.
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The first one is represented on figure 6 and is discussed in the following paragraphs,
whereas the second one contains two cracks which may interact, is displayed on
figure 13 and is presented in the last paragraph of this section.

5.2 Boundary conditions

We impose the velocitẏux(t) of the left side of the specimen to be equal to the ex-
perimental value recorded, and add a force proportional to the velocity of the right
side in order to simulate the action of the second Hopkinson bar. This last condition
is given as in [30] by the following equation :F extx = −zu̇x where the impedance
z can be evaluated to :z =

√
ρE. As figure 8 shows it, the impedance boundary
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Figure 8: Velocity of the left side, and velocity of the rightside

condition permits to calculate right side velocity very close to the experimental
data.

5.3 Material properties

We suppose the material to have strain rate independant properties with the values
reported in the following table.

E ν ρ KIc σY
3.0GPa 0.42 1180 kg.m−3 1.2MPa

√
m 80MPa

In this table,E is the Young’s modulus,ν the Poisson’s ratio,ρ the volumetric
mass,KIc the fracture toughness, andσY the yield stress. The material is supposed
to be perfectly plastic which is a reasonable hypothesis forthe PMMA.
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5.4 Elastic-Plastic crack growth prediction

This experiment has two very interesting outcomes: First the crack path which
is rather complex, and second the fact that the crack stops during a significant
time and the starts again to propagate. We first compare the evolutions of the
experimental crack tip length to the computed ones obtainedfor different yield
equivalent stresses. The crack length as a function of time is displayed of figure 9
and compared to the computed ones. One can see that the crack first propagates
at constant speed then stops between 0.25ms to 0.32ms and then propagates again
at roughly the same speed. With elastic or reasonable yield equivalent stress of
80 MPa, the introduction of an elastic-plastic behavior doesn’t really change the
global computed response of the specimen (figure 9). The crack path are very
similar to the experimental one (figure 11). It can hence be concludes that crack
propagates with small scale yielding.
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Figure 9: Crack tip evolution with time

To understand the influence of the yield stress on the specimen’s response, we
have chosen to decrease this material parameter to 40, 20 and10MPa. Results
for 20 and 10MPa are displayed in this paper. It was observed that the crack does
not stop any more whenσY is 20MPa and propagates at a lower speed when it is
reduced to 10MPa (figures 10 and 11 ). It can also be noticed that the transmitted
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wave drops in amplitude.
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Figure 10: Crack tip evolution with time in elastic-perfectly plastic media

For a yield stress between 15 MPa and 10 MPa the plastificationof the speci-
men becomes the main dissipation source and the crack hardlypropagates.

Figure 12 displays the plastic zones. There are three zones.The first one is due
to the boundary condition which develops shear band from theleft side to the hole.
The second one comes from the contraction of the specimen andappears around
the hole. The third one is related to the usual plastic zone surrounding the crack
tip.

We can conclude that in case of a yield equivalent stress ofσy > 40MPa, the
plastic zone is sufficiently small to consider this case as a small scale yielding
situation. This is not the case with a lower yield stress.
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Figure 12: Equivalent inelastic deformation forσy = 40 MPa (top) and forσy =
15 MPa (bottom)
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5.5 Second specimen type

The second PMMA specimen has two symmetrical notch which areradial to the
hole. Their length and position is indicated on figure 13.

Figure 13: Experimental configuration, second specimen type

Results are similar to the previous specimen except that no arrest can be ob-
served. As long as the yield equivalent stress is above 40 MPa, there’s no obvious
differences between the elastic and the elastic-plastic case.

Concerning the plastic zone, we observe that the equivalentinelastic strain is
important at the initial crack tip (figure 16). It can be attributed to the large kink
that occurs in the beginning of crack propagation (the change of direction is about
70◦). The cracks do not collapse to a single one in accordance with what has been
observed experimentally.

6 CONCLUSION

In this paper, it was demonstrated that the modelization of apropagating crack in
an elastic-plastic media can be done using X-FEM linear functions approximation.
Simulations show good agreement with experimental results, even if the material
behavior isn’t perfectly known. It opens the perspectives of complete dynamic
elastic-plastic fracture simulation.

The use of an auxiliary structured grid to update the level set functions presents
the advantages of high accuracy and easy programming.

Acknowledgments The support of French Commissariat à l’Energie Atomique
is gratefully acknowledged.
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Figure 16: Equivalent inelastic deformation forσy = 40 MPa (top) and forσy =
15 MPa (bottom)
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