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Abstract

This paper develops two aspects improving crack propagatiodeling
with the X-FEM method. On the one hand, it explains how one us&
at the same time a regular structured mesh for a precise &icekef level
set update and an unstructured irregular one for the mecalamiodel. On
the other hand, a new numerical scheme based on the X-FEMothéth
proposed for dynamic elastic-plastic situations. The &iton results are
compared with two experiments on PMMA for which crack speed erack
path are provided.

Key words: extended finite element method, plasticity] stedynamic crack
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1 INTRODUCTION

The modelization of arbitrary crack propagation has seegmaavances these last
years, mainly because of the appearance of extended fiaiteeaks concepts.
Based on the concept of partition of unity introduced by Bdauand Melenk
in [1], the eXtended Finite Element Method developed by Blatal. [2] incor-
porates in the interpolation of the displacement field thgrgdotic behavior of
the solution of a crack in an elastic media, so that fractarameters are very well
calculated. Moest al. [3] enhanced this method adding a discontinuous part in the
displacement field. This suppose to define implicitly theckdmcation. The level



sets method of Oshet al. [4] provides an efficient way of doing it, even in three
dimensions (as demonstrated by Metsl. [5] and Gravouilet al. [6]). Recent
workers (as Belytschket al. [7], De Borst [8], Réthorét al. [9] or Menouillardet
al. [10]) have still improved the method which has been extendédnsient anal-
ysis of elastic crack propagation. It has mainly been shdvat the method can
be applied and ensures under certain conditions exact \emergservation even
during crack propagation.

The method has nevertheless one main drawback which igdlitekéhe propa-
gation of level sets strategy, based on a finie differenceemnwhose precision is
destroyed when the simulations are not done on a equalledpacslowly varying
spatial mesh.

Plasticity of material is an important dissipation meclamiand hence may
severly modify the dynamic crack propagation (directiond apeed). This is for
example the case in [11], where an elastic plastic congutiodel is associated
with the X-FEM kinematics to simulate shear band propagatibhe first aim of
this paper is to propose a numerical scheme which extendatetythe X-FEM
elastic dynamic crack propagation simulations to elgsiéstic cases.

Level sets method loses efficiency when applied on triangdldomain. The
proposed idea is to update the level set functions on a negtith which is dif-
ferent from the structural mesh. By this method a very singpld efficient finite
difference scheme can be directly used for level set prapagaimulation.

The paper is organized as follows : in Section 2, the mechamodel of the
X-FEM is presented. Section 3 details the changes due tottweporation of a
elastic-plastic law. Section 4 is dedicated to the leved spidate and projection.
Finally, numerical examples of dynamic crack propagatioelastic-plastic media
are presented in Section 5, and compared to experimentdiges

2 MECHANICAL MODEL

2.1 Equilibrium equations

We consider a material bodywith a crackl” (figure 1). The motion of the body is
described by the displacememtz, t) (wherez is the position of material points).
Displacement and velocity at time 0 are known as initial ¢ool of the problem.
We assume small perturbations, hence the strain tensor is :

- L (Y + Y ) ®

I1n

whereu is the displacement field arid is the gradient operator.



Figure 1. Body notation

The body is submitted to prescribed displacementsn the boundarg(2,,, to
body forcesf on (2, and/or to external load®g; on the boundarg2r. The crack
facesI' andF are supposed to be traction free.is the Cauchy stress tensor,
and’ = ‘3 denotes the time derivation.

The strong form of the problem is :

Find the stress and displacemef#su) such that :

U=y on o€, (2)

div(g) + f, = pii in Q (3)
g-n=F, on oy (4)
ag-n=0 onl'y UT'_ (5)

The three last equations can be written in the weak form :

Yoin VO, /pu de—l—/ e(v )dQ:/fd-de—l—/ F,-vdl (6)
o= = o~ o

whereV' = {v, v=0 ondQ,}.
The constitutive equations have to be added to solve thdgmob

2.2 Plasticity Equations

The material is assumed to be elastic-plastic. It can beitbesicby the usual strain
partition into elastic and inelastic parts :

e=¢g+¢ )

where : e=p!
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In equations 7 and 8, is the total straing® the elastic par? the inelastic one,
¢P the plastic strain ratel) is the Hooke matrixg the stressg the flow potential,
 the plasticity criterion, wherea® and X are two hardening variables. In this
paper, standard Von Mises with isotropic hardening is usiéid an associated flow

rule (f = g).

2.3 TimeDiscretization

The numerical time integration is based on the implicit Nemknmean acceler-
ation scheme with parameters & 3,3 = 1). This scheme is unconditionally
stable ([12]).

2.4 Space Discretization
2.4.1 Formulation.

The space discretization is based on the eXtended Finitedfle Method ([5],
[13]). New 4-noded elements have been developed in the aaft®@ast3n© (de-
velopped by the French Commissariat a 'Energie Atomidug)[

The displacement field is the sum of a standard continuoug\wpin the usual
shape functionsV;(x)) and of an enriched part (containing discontinuous as well
as singular functions).

u(@) =Y Ni(z)-uw+y  Ni(@)H(z) - ai+Y  Ni(@)( D Filz) - b;y) (9)

i€lp i€ly i€l k=1,..4

Iy, 11, I are respectively the total set of nodes, the set of nodesendigqzport
is intersected by the crack and that doesn't belonf} taand the set of nodes of the
element(s) that contains (or have contained previouskyctack tip(s). On figure
2 the symbol (respA ) represents nodes belonging to the Geresp./5).

The asymptotic fields of a crack propagating dynamicallytifwion-negligible
inertial effect) in an elastic-plastic media are differénaim the elastic quasi-static
ones. For example, in the static case of a monotonicallyasing loading applied
to a crack in a hardening material, Hutchinson, Rice, anceRgren in [15] and

[16] showed that stress fields were proportionaiﬂﬁ (wheren is the hardening
exponent of the Ramberg-Osgood stress strain law, whichleduin the elastic
case). Furthermore, the dynamic fields of a crack moving ielastic media are
velocity dependent [17].

In such a situation, there is no elementary analytical gmubf the moving
crack problem. Hence it was chosen to use the elastic sta&sidrgaard’s basic



Figure 2: Enrichment strategy

functions (which can be found in [2]) to approximate the dyi@displacement
and speed singularities at dynamic moving crack tip. Besithe use of the New-
mark scheme limits to the same space of functions the dispiant, velocity and
acceleration approximations.

2.4.2 Numerical integration.

The numerical integration of cut elements is generally grened by partitioning
them into standard subtriangles. Hence every time the quembagates, one uses
a new set of subtriangles as well ad a new Gauss points settédhinique is valid
for elastic crack propagation.

In case of an elastic-plastic media, the values of fieldegs#rs, inelastic strains,
or internal variables) are computed at Gauss points. Wheortck is not moving
the sub element technique is the best strategy to compuggréss and strain state.
When the crack moves either in static or in transient cases¢h@f subtriangles
has to be changed and a complex projection has to be perfoeaedtime the
crack moves. This technique leads to a poor quality of theepted quantities and
to complex field (stress and internal variable sets) trarisplben one changes the
mesh. With this technique it is impossible to prove energyseovation when the
crack propagates.

To avoid this, we choose to integrate enriched elementsg@ma cut elements,
tip-elements, and their neighbors) with a larger number a@fi§3 points (typically
64) whose position is fixed in the element.

This integration strategy is developped in [18], where isi®wn that it is
sufficient to get an accurate tangent stiffness matrix. Nkifgy of the degree
of freedom corresponding to the singular enrichment has lobserved, but non



transmissible "hourglass” modes have been detected.
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Figure 3: Numerical integration

The projection of the fields from a 4-Gauss points elementd@é-&auss point
element anticipates the arrival of the crack tip in the elenas it can be observed
on figure 3. These elements are integrated with a richer Ganists set before they
are reached by crack tip plastic field. This technique intoed a small error in the
element integration but is prefered because it does notyirapy field projection
close to crack tip where the fields are very rapidly changimgcase of plasticity
confined to the crack tip the change of Gauss point sets is idoglements which
are still elastic. Since the new degree of freedom are sedrtm no supplementary
strain energy is introduced.

To demonstrate that the quadrature technique meet quatjityinrements, stress
intensity factorsK; and K of an inclined crack in an infinite body in traction are
evaluated through the interaction integral. Half craclgtéru is taken asl /100
of the total plate dimension, and the mesh size in the crackitinity is equal
to a/10. With this method the results on stress intensity factofseapto be of
good quality for any position of the crack within the elemeftgure 4 shows the
quality of the solution for various inclinaison angle (fradh to 90°). Values are
normalized byr>°\/ma, wheres™ is the applied stress.
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Figure 4: Stress intensity factors with respect to the anfjtbe inclined crack

2.5 Resolution

Injecting the time and space discretization into equat®rafd taking into account
the material behavior (equations (7) and (8) ), we get a nogmli system that is
solved with a Newton-Raphson iterative scheme.

The boundary conditions are fulfilled with the Lagrange rpligrs’ technique.

3 CRACK GROWTH IN ELASTIC-PLASTIC MEDIA

3.1 Dynamic crack propagation in elastic media

X-FEM method enables to model dynamic crack propagatioriastie media in
an efficient way. After the determination of the crack directand velocity, level
sets functions are updated to define implicitly the new cyaasition. To the new
configuration of the crack correspond new degrees of freedtich are simply
added to the previous one. Their initialization to zero gnéees that no numerical
energy is introduced as proved in [9].



3.2 Fracture mechanics parameters calculation

The J-integral introduced by Rice is calculated in dynandche G-Theta method
(see [19] and [20]).

J = / (—(wdef + W™ + Uij“i,k) Qk,; A2+ / (Pl g — Uit k) qr dS2
Q Q
(10)
where w?f = [£9 05 : deg; , w"™ = Jpi;u;. and g is an arbitrary smooth
function whose direction is the same of the crack and whosa ii®l1 in a domain
surrounding the crack tip and goesmut of a larger domain. A representation
can be found on figure 5. This formulation is in accordancehlie J-integral

— I —la S oF

_ O O S s
L = /w"/‘? g
LT LT

|1 e o WP L

TV VT

Figure 5: g-domain for an inclined crack (2). Shaded area represent the region
whereVgq is not nul.

defined by Bui in [21] and the flux integral of Freund [17]. Inseaof turning
or branching crack, the interaction integral concept idlusedetermine the stress
intensity factors. Its expression is derived from the &gmal (10) and can be found
in [22] or in [9]. The asymptotic fields used here are these stadionnary crack.
These concepts are valid in case of elastic or of plasticzengy confined to the
crack tip. They shall also be used in case of extensive yigldhis hypothesis can
be considered as very crude but it has the advantage of bégigkal” parameter
less sensitive to "local” criterium (for instance computeging the stress values at
the closest Gauss points to the crack tip whose numericdityjigrather poor)
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which are very often used to decide crack propagation speedh as direction.

3.3 Crack growth model

To determine the crack speed, one can invert the empiricaamyc toughness
relation given by Kannineet al. [23] and get the following equation :

0 if K" < K,

= 1
Vi(1- )" iR > K,

(11)

If the simulation provides an equivalent dynamic stressrisity factork@v"
greater than the toughnegs., then the crack speed can be determined by the
previous equation. The lack of experimental data leadsadatowing hypothesis

1. Fracture initiation and arrest toughness are the safe= K4 ).
2. The limiting crack speed is equal to the Rayleigh wave dgéé = ¢, ).

3. The coefficientn is equal tol.

K%" may be viewed as the equivalent dynamic stress intensitprfashich
is defined as the asymptotic value of the hoop stress and caxfressed as a
combination ofK %" and K ¥¥". These last two terms can be determined using the
interaction integral method in the elastic case.

An alternative method consists to assume the mode |l néetgigind use the J
integral to calculate G. In dynamic case the relationship/ben the energy release
rate and the stress intensity factors depends upon the speeed via the univer-
sal functions : G = 2 [Ar(a)K? + Ar(a)K7;] . This leads to a non linear
equation to solve to get the crack speed.

The direction of propagation is chosen to be driven by theimas hoop
stress which can be expressed in terms of stress intensiiyréaby the following
equation:

1 dyn J Kdyn 2 2
0 =2atan |~ L_ _ sign (K yn) L +8 (12)
L\ K N

It can be quoted here that this simple crack growth modeledbam the hy-
pothesis of plasticity confined to the crack tip, remainsdved most cases, even if
some improvements may be further investigated.

9



4 LEVEL SET UPDATE

4.1 Auxiliary grid

Practical industrial structures cannot in general be dlesdrby a structured regular
mesh, even if one can use X-FEM concepts to define the cordewtane in [24]).
When one needs to update the crack position in the mechanazig!|, one needs to
update the level set functions (see [6] for more details), Bwel set update on an
unstructured irregular mesh requires the use of speciakitthgns for triangulated
domain (e.g. Petrov Galerkin’s scheme [25]) which is a bjttssticated. In order
to get a general frame for computation of complex geometvidssimple level set
grids it has been chosen to use two different meshes:

1. Astandard finite element unstructured mesh for the mecakbromputation

2. An auxiliary regular structured one for the level set esgmtation.

This last mesh can be concentrated only in the regions whererack is going
to grow and is completly independent from the finite elemeasim Hence, the
introduction of this auxiliary structured grid permits wsuse very simple schemes
(like Godunov’s one) based on finite difference approxiorati

First, the mechanical model gives us speed and directiorackgropagation.
These scalars are the same for the regular grid. So updatéjatezation, and
orthogonalization can be done in an efficient way on the eegyrid. Crack update
is made by solving at each poifit ;) of the finite difference grid :

N = Vi lIvul (13)
with :
Oy _ Ui — Y (14)
ot At
(Vi - [IV]) 4.5y = maz {Vi; jy, 0} - VT +min {V(; ;,0} - V™ (15)

V* andV™ are two functions of 4, wherem = {i —1,i,i+ 1} and
n={j—1,7,7 + 1}. Their expression can be found in [4], [26] and [27].
t is the instant considered for the update @xdthe time step.

4.2 Projection onto the mechanical mesh

Once the new level set functions are determined on the auxigirid, a projection
step gives their value on the mechanical mesh. The apprédwimBunctions used
for this projection are the standard finite element appragiom. The value of the

10



level sety at a nodep of the mechanical mesh whose coordinateare within
the 4-nodes elementof the level set grid is given by the following interpolation
equation:

P(@h) = Y NizP) - o (16)

i=1,4

Concerning the mesh size, the following remarks can be done :

1. To take curvature effect into account in the level set tgpdéne grid size
should be sufficiently small (typically one tenth of the talof curvature to
get a relative error around few percents).

2. In order to keep accurate crack geometry informationrdguthe projection
step, the mechanical mesh size should be close to the ayxgli@’s one. It
leads to propose the practical rule :

Axaum’liary grid ™ min(AfEmechamcal mesh) (17)

The calculation cost is very reasonable because the levepdate requires no
matrix inversion. The algorithm is fully explicit. The onhgstriction is the time
step.

The use of such a grid permits to define the level set functiomg where the
crack can possibly grow. This point is similar to the narraant method developed
by Sethian [26], and adapted by Ventetzal. in [28] and [29].

5 NUMERICAL EXAMPLE

5.1 Original experiments

The numerical examples comes from the experiments of Giegbal. [30].

A PMMA specimen is put between two Hopkinson bars as showngumefi6.
A hole with a notch permits to the compression wave to iretiatcrack in mixed
mode loading depending on the geometric configurationirBsaneasured for the
input and output bar. It gives information about the loadimat can be interpreted
in speed or strength term. Photographs are made and irttenlpiee determine the
crack position at different times.

Two computations have been done with different meshes dd &o@ 12000
nodes, which give sensibly the same results. We presentinermesults given by
the finer mesh. For sake of clarity, example of mechanicallevel set meshes
containing about 8000 nodes is displayed on figure 7.

11
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Figure 6: Experimental configuration, first specimen type
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Figure 7: Unstructured mechanical mesh (top), regular iseegrid (bottom)

The computations are done using the plane strain option.

out

We shall study two different specimen which differ only b ttrack geometry.
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The first one is represented on figure 6 and is discussed iollbe/ing paragraphs,
whereas the second one contains two cracks which may ittésadisplayed on
figure 13 and is presented in the last paragraph of this sectio

5.2 Boundary conditions

We impose the velocity:,.(¢) of the left side of the specimen to be equal to the ex-
perimental value recorded, and add a force proportiondigoselocity of the right
side in order to simulate the action of the second HopkinsonThis last condition

is given as in [30] by the following equationF¢** = — 21, where the impedance

z can be evaluated toz = \/pE. As figure 8 shows it, the impedance boundary

10 T T T T T T 10

interface1 velocity (m/s)
interface2 velocity (m/s)

experimental data

experimental data
simulation output -------

time (s) time (s)

Figure 8: Velocity of the left side, and velocity of the righitle

condition permits to calculate right side velocity very sdoto the experimental
data.
5.3 Material properties

We suppose the material to have strain rate independaneipiegpwith the values
reported in the following table.

E v p K. oy
3.0GPa | 0.42 | 1180 kg.m™3 | 1.2 M Pa\/m | 80M Pa

In this table,F is the Young’s modulusy the Poisson’s ratigp the volumetric
mass,K ;. the fracture toughness, ang the yield stress. The material is supposed
to be perfectly plastic which is a reasonable hypothesisgi®@PMMA.

13
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5.4 Elastic-Plastic crack growth prediction

This experiment has two very interesting outcomes: Firstdtack path which
is rather complex, and second the fact that the crack stopagda significant
time and the starts again to propagate. We first compare thieiteans of the
experimental crack tip length to the computed ones obtafoedlifferent yield
equivalent stresses. The crack length as a function of ndésplayed of figure 9
and compared to the computed ones. One can see that the csigirdpagates
at constant speed then stops between 0.25ms to 0.32ms anprtipagates again
at roughly the same speed. With elastic or reasonable yipli/&lent stress of
80 MPa, the introduction of an elastic-plastic behaviorsidtereally change the
global computed response of the specimen (figure 9). The&grath are very
similar to the experimental one (figure 11). It can hence belkmles that crack
propagates with small scale yielding.

0.14 T T T T T T
experimental data +
013 | elastic case -----—-— N
elastic-plastic case (oy=80MPa) ----------- o
0.12 | + i
B
% 011 Jr g
[ 7
123
g s
@ 0.1 4
£ 4&7‘/+
,;;Wfﬁﬁ//
0.09 | Jgﬂﬁ—% i
0.08 | %j/ i
| L/
I I
007 1 1 1 1 1 1
0 0.0001 0.0002 0.0003 0.0004 0.0005

time (s)
Figure 9: Crack tip evolution with time

To understand the influence of the yield stress on the spa@mesponse, we
have chosen to decrease this material parameter to 40, 2QGvBa. Results
for 20 and 10MPa are displayed in this paper. It was obseivatthe crack does
not stop any more whesy is 20MPa and propagates at a lower speed when it is
reduced to 10MPa (figures 10 and 11 ). It can also be noticédhbdransmitted
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wave drops in amplitude.

0.14 T T T T T T
experimental data +
0.13 - elastic-plastic case ((oy=80MPa) --------- B
elastic-plastic case ((oy=20MPa) -----------
0.12 |- elastic-plastic case ((oy=10MPa) - |
x 0.11 - // -
Q K L
173 K %
@ e
s
< 0.1 _
0.09 | ﬁqﬂ—ﬁr i
0.08 | ﬂjgr - i
| |
I I
007 1 1 1 1 1 1
0 0.0001 0.0002 0.0003 0.0004 0.0005
time (s)

Figure 10: Crack tip evolution with time in elastic-perfiggblastic media

For a yield stress between 15 MPa and 10 MPa the plastificafitime speci-
men becomes the main dissipation source and the crack hamhagates.

Figure 12 displays the plastic zones. There are three zdmestirst one is due
to the boundary condition which develops shear band frontetiiside to the hole.
The second one comes from the contraction of the specime@@pears around
the hole. The third one is related to the usual plastic zomesnding the crack
tip.

We can conclude that in case of a yield equivalent stress, of 40MPa, the
plastic zone is sufficiently small to consider this case amallsscale yielding
situation. This is not the case with a lower yield stress.

15
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0.02
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elastic-plastic case ((oy=80MPa) ---------
elastic-plastic case (oy=20MPa) -----------

elastic-plastic case (oy=10MPa) -

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
tip abcsisse x (m)

Figure 11: Crack path
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Figure 12: Equivalent inelastic deformation foy = 40 MPa (top) and fow, =

15 MPa (bottom)
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5.5 Second specimen type

The second PMMA specimen has two symmetrical notch whichradil to the
hole. Their length and position is indicated on figure 13.

h |

T70mm
(]J 40mm

Y

-

e (1)

Figure 13: Experimental configuration, second specimea typ

Results are similar to the previous specimen except thatmestacan be ob-
served. As long as the yield equivalent stress is above 40 MBeg’s no obvious
differences between the elastic and the elastic-plastie.ca

Concerning the plastic zone, we observe that the equivaletdstic strain is
important at the initial crack tip (figure 16). It can be ditried to the large kink
that occurs in the beginning of crack propagation (the chasfglirection is about
70°). The cracks do not collapse to a single one in accordandew¥iait has been
observed experimentally.

6 CONCLUSION

In this paper, it was demonstrated that the modelization mbaagating crack in
an elastic-plastic media can be done using X-FEM lineartfans approximation.
Simulations show good agreement with experimental reseltsn if the material
behavior isn't perfectly known. It opens the perspectivesamplete dynamic
elastic-plastic fracture simulation.

The use of an auxiliary structured grid to update the leveliisections presents
the advantages of high accuracy and easy programming.

Y
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~
—
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Figure 14: Crack tip evolution with time in elastic-perfiggplastic media
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Figure 15: Crack path
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Figure 16: Equivalent inelastic deformation i@y = 40 MPa (top) and fow,,

15 MPa (bottom)
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