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Abstract. In this paper, we present a fast numerical scheme to estimate
Partition Functions (PF) of 3D Ising fields. Our strategy is applied to
the context of the joint detection-estimation of brain activity from func-
tional Magnetic Resonance Imaging (fMRI) data, where the goal is to
automatically recover activated regions and estimate region-dependent
hemodynamic filters. For any region, a specific binary Markov random
field may embody spatial correlation over the hidden states of the vox-
els by modeling whether they are activated or not. To make this spatial
regularization fully adaptive, our approach is first based upon a classical
path-sampling method to approximate a small subset of reference PFs
corresponding to prespecified regions. Then, the proposed extrapolation
method allows us to approximate the PFs associated with the Ising fields
defined over the remaining brain regions. In comparison with preexist-
ing approaches, our method is robust to topological inhomogeneities in
the definition of the reference regions. As a result, it strongly alleviates
the computational burden and makes spatially adaptive regularization
of whole brain fMRI datasets feasible.

1 Introduction

In fMRI, one usually resorts to spatial filtering to enhance the signal-to-noise
ratio at the expense of a loss of spatial resolution. A more challenging approach
works on the unsmoothed data by introducing some prior knowledge on the
sought spatial structures through for instance local interaction models such as
Markov Random Fields (MRFs). Discrete MRFs, which have been used in seg-
mentation and clustering, typically involve a set of hyper-parameters: the smaller
this number the less complex the patterns modelled by the corresponding MRF.
For instance, a single temperature level controls the amount of spatial correlation
in symmetric Ising fields. In the considered fMRI application [1], such Ising fields
are hidden since the activation detection process is modelled a priori through a
two-class Spatial Mixture Model (SMM). Moreover, their definition varies within
a brain parcellation that segregates the 4D data into Γ functionally homogeneous
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non-regular parcels (Γ ≈ 500) in order to take the regional fluctuations of the
Hemodynamic Filter (HF) into account. The Joint Detection-Estimation (JDE)
analysis thus consists of a parcel-based analysis where Γ independent HFs as well
as stimulus-dependent SMMs are identified in order to detect the regions involved
in the paradigm and their underlying dynamics (see Section 2). Therefore, sev-
eral hundreds of temperature levels have to be estimated making a hand-tuning
procedure unrealistic. Moreover, since the optimal setting of such a parameter
may be different when considering different parcels, all parameters cannot be
fixed to the same value. The purpose of this paper is then to provide an un-
supervised scheme for adapting the amount of spatial regularization in several
hundreds of Ising fields with different topological configurations.

For a single Ising field, estimating the temperature hyper-parameter requires
a precise estimation of its Partition Function (PF)4 since the exact PF com-
putation is intractable (see Section 3). This estimation can be achieved using
importance sampling techniques [2,3]. Recently, alternative strategies have been
introduced in the literature [4,5]. In short, they resort to continuous MRFs and
logistic transform to build up an approximation that maps continuous weights to
the binary latent variables in a mixture model. While efficient, these approaches
require the setting of an additional scale parameter that controls the accuracy
of the approximation and whose optimal value may depend on the application.
Moreover, these approximation techniques have been validated only for MRFs
defined over regular grids. Hence, we propose in Section 3 a fast and robust
extrapolation technique to multiple PF estimation. In comparison to preexisting
approaches, our method is robust against grid inhomogeneities and efficient irre-
spective of the parcel configurations. Validation on real fMRI data is perfomed
in Section 4. In Section 5, we discuss the pros and cons of our approach, which
has applications in image processing beyond the fMRI context.

2 Joint Detection-Estimation of brain activity in fMRI

The JDE framework proposed [1, 6] relies on a prior parcellation of the brain
into P = (Pγ)γ=1:Γ functionally homogeneous and connected parcels [7]. Every
parcel Pγ comprising voxels (Vj)j=1:J is characterized by a region-based model
of the BOLD signal, which consists in estimating a single HF shape hγ whatever
the number of experimental conditions involved in the paradigm.

In a given parcel Pγ , voxel-dependent and stimulus-induced fluctuations of
the BOLD signal are encoded by spatially varying magnitudes a = (am

j )m=1:M
j=1:J ,

where m stands for the stimulus type index. The fMRI time course measured
in voxel Vj ∈ Pγ then reads: yj =

∑M
m=1 am

j xm ⋆ hγ + bj , where xm stands

for the mth binary stimuli vector and bj stands for the serially correlated noise
component [1,6]. Within the Bayesian framework, prior probability density func-
tions (pdfs) are introduced on every sought object i.e., (a, hγ) [1]. Spatial Gaus-
sian mixture models are expressed on a through the introduction of hidden

4 The normalizing constant that makes the MRF measure of unit mass over its domain.



variables q = (qm
j )m=1:M

j=1:J that encode whether voxel Vj is activating in response
to stimulus m (qm

j = 1) or not (qm
j = 0). Hence, stimulus-dependent hidden

symmetric Ising fields are introduced on these states:

Pr(qm |βm) = Z(βm)−1 exp (βmU(qm)) , (1)

with Z(βm) =
∑

qm∈{0,1}n

exp (βm U(qm))

and U(qm) =
∑

i∼j I(qm
i = qm

j ) is the global “negative energy” where I(A) = 1
whenever A is true and 0 otherwise. The parameter βm ≥ 0 controls the amount
of spatial correlation between the components of qm according to the grid G,
while Z(βm) defines the partition function. The global prior SMM then reads:

p(a |Θa) =
∏

m

p(am |θm) =
∏

m

{∑

qm

[∏

j

f(am
j | q

m
j , θm)

]
Pr(qm |βm)

}

where f(am
j | q

m
j = i) ∼ N (µi,m, vi,m). Parameters µi,m and vi,m define the prior

mean and variance of class i = 0, 1, respectively for the stimulus type m. Let the
set θm gather mixture parameters {µ0,m, µ1,m, v0,m, v1,m, βm}. Samples of the
full posterior pdf p(hγ ,a,q, Θ |y) are simulated using a Gibbs sampler algorithm
and posterior mean estimates are then computed from these samples. Here, we
specifically deal with the sampling of parameter βm, which is achieved using a
symmetric random walk Metropolis-Hastings step: at iteration k, a candidate

β
(k+1/2)
m ∼ N (β

(k)
m , σ2

ǫ ) is generated. It is accepted (i.e., β
(k+1)
m = β

(k+1/2)
m ) with

probability: α(β
(k)
m → β

(k+1/2)
m ) = min(1, Ak,k+1/2), where the acceptation ratio

Ak,k+1/2 follows from Eq. (1):

Ak,k+1/2 =
p(β

(k+1/2)
m |q

(k)
m )

p(β
(k)
m |q

(k)
m )

=
p(q

(k)
m |β

(k+1/2)
m )p(β

(k+1/2)
m )

p(q
(k)
m |β

(k)
m )p(β

(k)
m )

=
Z(β

(k)
m )

Z(β
(k+1/2)
m )

exp
(
(β(k+1/2)

m − β(k)
m )U(q(k)

m )
)

,

using Bayes’ rule and considering a uniform prior for βm. The βm sampling step
then requires to estimate ratios of Z(.) or log-PF differences for all Pγ parcels
prior to exploring the full posterior pdf. This motivates the need for developing
fast approximation techniques of these constants.

3 Ising field PF estimation

3.1 Single PF estimation

Exact evaluation of Z(·) in a reasonable amount of time is impossible except on
tiny grids. Robust and fast estimation of Z(β) is thus a key issue for numerous
3D imaging problems involving Ising models and more generally discrete MRFs.

Path-sampling is an extension of importance sampling for estimating ratios
of normalizing constants, by considering series of easy-to-sample unormalized



intermediate densities. Such a strategy was proven efficient to tabulate the PF
for the Ising case; see [8] for details. Time dedicated to a single PF estimation
using this method is acceptable but becomes penalizing when numerous PFs
need to be estimated as required when dealing with several hundreds of grids of
variable size and shape. Since this typical situation occurs in our fMRI applica-
tion, a fast compromise consists in resorting to path-sampling to get log-scale
estimates (log ẐGp

(β))p=1:P for a small subset of reference grids (Gp)p=1:P and

then in using extrapolation formulas to obtain log Z̃T (β) for the large remaining
set of brain parcels to be analyzed, referenced here by a test grid T .

3.2 Multiple PF estimation

In [8], the authors address linear regression on (log ẐGp
(β))p=1:P as a function

of the number of cliques in the grids (Gp)p=1:P . Estimates log Z̃T (β) are then
linearly computed from the regression coefficients and the number of cliques in
T . A bilinear extension of this technique, which also accounts for the number
of sites in the grid, can be thought of to estimate log-PFs in small and non-
regular grids5 such as those appearing in our fMRI application. However, it can
be shown that the accuracy of regression-based techniques strongly depends on
the homogeneity and the number of reference grids: the more inhomogeneous
the reference set, the larger the approximation error. These reasons motivate
the development of more reliable approaches regarding the reference PFs.

3.3 Proposed PF extrapolation technique

The appropriate reference grid is selected by means of a similarity measure
and the accuracy of the approximation is controlled by an error criterion. Our
algorithm proceeds in two steps: 1) Akin to [8], reference PFs ẐGp

(βk) are esti-
mated using path-sampling. The topological configurations of the reference grids
(Gp)p=1:P can now be inhomogeneous to cover a maximum of grid configurations
that may occur in further PF estimations. 2) For any test grid T , log ZT is ap-

proximated using a single reference log-PF estimate out of (log ẐTp
(β))p=1:P .

Let rT = σn,T /µn,T be a measure of grid homogeneity where µn,T and σn,T

respectively provide the average number of neighbors per site over T and the
corresponding standard deviation. The smaller rT the more regular T . Using
this criterion, our similarity measure is defined by LT (Gp) = ‖rT − rGp

‖2, which
helps us choose the closest reference grid Gref to T in combination with the
approximation error criterion AT (β,Gp) given by:

AT (β,Gp) = ‖ logZT (β)− log Z̃T (β,Gp)‖
2/‖ logZT (β)‖2 (2)

where log Z̃T (β,Gp) =
(
cT (log ẐGp

(β)− log 2)/cGp
+ log 2

)
. (3)

Here, (cT , cGp
) and (sT , sGp

) are the number of cliques and sites of the Ising

fields defined over T and Gp. Z̃T (β,Gp) corresponds to the ZT (β) estimate com-
puted using Gp. Our extrapolation formula (3) is built up according to two

5 Here, non-regular grids make reference to regular lattices combined with non-straight
boundaries.



principles directly derived from the PF definition: i.) an unbiased asymptotic
approximation error (limβ→+∞AT (β,Gp) = 0) and ii.) an exact approximation
of the first derivative of log ZT (β) for β → 0+. Interestingly, our extrapolation
technique makes also possible the analytical computation of the approximation
error A(β,Gp) at β = 0, a value for which the error is maximal when LT (Gp) is
sufficiently low. This property were empirically verified on more than 300 fields
simulated over regular and non-regular grids. The reference grid is then exhib-
ited using a min-max principle, which consists in minimizing the error A(0,Gp)
wrt all reference grids (Gp)p=1:P when the homogeneity of T and Gp is similar:

Gref = argmin
(Gp)p=1:P

AT (0,Gp) subject to LT (Gp) ≤ ǫ (4)

with AT (0,Gp)
∆
= ‖(sT − 1)− cT (sGp

− 1)/cGp
‖2/s2

T (5)

where ǫ is positive threshold fixed by hand6. In practice, we first compute LT (Gp)
and AT (0,Gp), ∀Gp and only keep the subset S of reference grids for which the
constraint LT (Gp) ≤ ǫ is fulfilled and AT (0,Gp) is below another threshold (typ-
ically 4%). If S is empty, log ZT (β) is estimated using path-sampling. Otherwise,
in a second stage, Gref is exhibited from S as the minimizer of AT (0,S) and the

log-PF estimate in T is thus given by log Z̃T (β,Gref) according to Eq. (3).
Our method is illustrated in Fig. 1 with P = 4: by comparing the distance

between the blue and red curves at β = 0, it appears that log Ẑref is the closest
curve above the path-sampled red curve log ẐT considered here as the ground
truth. As shown in Fig. 1, our extrapolation log Z̃T is superimposed on log ẐT .

lo
g

Z
(β

)

β

←− log Ẑref

Fig. 1. The blue curves correspond to path-sampling estimates of the reference log-PFs
log bZGp(βk), p = 1 : 4. The red curve defines the ground truth (path-sampled log bZT ).

Our extrapolation method provides the crossed-line (×–) log-PF estimate log eZT

4 Results

4.1 Simulated Ising fields

For validation purpose, we compared log-PF estimates computed using our ex-
trapolation technique with the linear and bilinear alternatives proposed in [8].

6 We used ǫ = 0.02 in our experiments.



Here, the ground truth was given by the PF estimates computed using path-
sampling. Reference and test grids are either regular or irregular. Each subset of
reference or test grids contains at least 30 grids whose number of voxels varied
between 53 and 163. Irregular grids were stochastically generated as a function
of a regularization level α taking its values between 0.2 (highly irregular) and
0.5 (almost regular). All tests were performed on 3D Ising fields defined using a
6-connectivity system. Percentages of approximation errors are shown in Table 1.

Table 1. Mean maximal approximation errors (given in %) over regular and irregular

test grids reported for the linear, bilinear and extrapolation techniques.

Scheme / Reference grid
Test grid E=Extrapolation, B=bilinear, L=linear / R=regular, I=irregular

E / I & R B / I B / R L / I L / R

re
g
u
la

r small 0.639 3.84 66.3 93.0 2728
medium 2.77 0.991 2.17 6.37 49.5

large 3.68 1.31 2.48 7.18 19.4

ir
re

g
u
la

r α = 0.2 0.375 1.29 94.6 83.9 3270
α = 0.3 0.281 0.784 2.91 18.3 219
α = 0.4 0.621 0.264 3.23 8.28 34.8
α = 0.5 0.693 1.27 1.96 1.52 34.2

The bilinear and extrapolation methods clearly outperform the linear one.
Moreover, as shown in col. (B/ R) and rows (regular small and irregular, α =
0.2), the bilinear method provides inaccurate estimates when there are strong
topological differences between the reference and test grids. The regular reference
grids are actually composed of large grids with cubic, planar and curvilinar
shapes whereas those lying in (regular small) and (irregular α = 0.2) are very
small and highly sparse. In this case, our extrapolation method detects such
differences and still succeeds in providing reliable log-PF estimates. While the
linear/bilinear methods take all reference grids into consideration to derive a
log-PF approximation, our approach computes a log-PF estimate using the most
appropriate reference grid. Hence, the larger the set of reference grids the more
accurate our extrapolation method becomes. This explains why the reference
subsets are successfully mixed in the proposed approach, as shown in the first
column of Table 1. Interestingly, when both the reference and test grids are
non-regular the bilinear method may provide a competitive alternative to our
extrapolation technique.

4.2 Real fMRI dataset

Our extrapolation algorithm was applied to the spatially adaptative regulariza-
tion of real fMRI data recorded during an event-related experiment designed to
quickly map main sensory cortices (auditory, visual, motor) as well as higher
cognitive functions (reading, computation). Acquisition consisted of a single ses-



IMM β = 0.8 SSSM USMM

Fig. 2. From left to right: comparison of the IMM, SSMM and USMM models wrt
the estimated normalized constrat maps: left vs. right auditory clicks: baLAC

− baRAC.

sion (125 scans, TR=2.4 s, 64x64x32 volumes). The paradigm comprised sixty
stimuli, declined in 10 experimental conditions.

We compare three versions of the JDE procedure: Independent Mixture Mod-
els (IMM), Supervised SMM (SSMM, β = 0.8) and unsupervised SMM (USMM),
in order to assess the impact of the adaptive spatial correlation model. Fig. 2
shows normalized contrast maps (âLAC − âRAC) of auditory induced left versus
right clicks (LAC vs RAS). As expected, the activations lie in the contralateral
right motor cortex. Here, only USMM is more sensitive illustrating therefore
the advantage of an adaptive spatial correlation model. Indeed, estimated β̂PM

with USMM for the left auditory click was 0.56 so that the supervised setting of
SSMM with β = 0.8 leads to too much correlation and less sensitive results.

Interestingly, Fig. 3 depicts the parcel-dependent maps of the β̂PM estimates
for the RAC and LAC experimental conditions. The gain in sensitivity in the
USMM contrast map (âLAC − âRAC) clearly results from a difference in the
amount of spatial regularization introduced between the two conditions involved
in the contrast. A lower regularization level is estimated (β̂LAC ≈ 0.5 vs. β̂RAC ≈
0.75) in parcels located in the right motor cortex since the BOLD signal is
stronger for the LAC condition than for the RAC one in these regions. Hence,
the noise induced by the RAC condition is smoothed using a large amount of
spatial regularization.

On these real fMRI data, our extrapolation scheme provides log-PFs estimate
for a brain parcellation (Pγ)γ=1:300 and (Gp)p=1:50 reference grids. In terms of
computational complexity, these log-PF estimates were computed in about ten
seconds, a very appealing approach in comparison to path-sampling, which re-
quires about one hour for estimating all log-PF estimates for a negligable gain in
accuracy (less than 3%). Finally, we did not observe any significant difference be-
tween the USSM effect maps derived using path sampling and our extrapolation
scheme (results not shown).

5 Discussion and conclusion

In order to make spatially adaptive regularization feasible, the considered joint
detection-estimation of brain activity from unsmoothed fMRI data requires a



β̂LAC β̂RAC

Fig. 3. Left: bβLAC parcel-dependent map computed for the LAC condition. Right:
bβRAC parcel-dependent map computed for the RAC condition.

reliable and fast estimation of 3D Ising field partition function. To this end, an
extrapolation algorithm that exploits pre-computed path-sampled log-PF esti-
mates on reference grids has been proposed. The approximation error is con-
trolled so that the approach defaults to the robust path-sampled PF estimates if
no suitable reference candidate is found. Obviously, efficiency is conditionned by
the number of reference grids, and more importantly by their similarity to the
topologies encountered in the conducted analysis. In practice, about ten addi-
tional problem-specific reference grids are enough to provide good PF estimates.

Using our fast extrapolation technique, the computational burden remains
acceptable since whole brain data analysis at the subject level takes about 1h30.
The application to real fMRI data showed a gain in statistical sensitivity for
the unsupervised version. In order to be properly validated, these promising
within-subject results have to be confirmed in a group-level analysis.
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