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ABSTRACT

In this paper, we present a fast numerical scheme to estimate
Partition Functions (PF) of symmetric Ising fields. Our strat-
egy is first validated on 2D Ising fields. and then applied to
the joint detection-estimation of brain activity from functional
Magnetic Resonance Imaging (fMRI) data, where the goal is
to automatically recover activated regions and estimate the
region-dependent hemodynamic filter. For any region, a spe-
cific 3D Ising field may embody spatial correlation over the
hidden states of the voxels by modeling whether they are ac-
tivated or not. To make spatial regularization adaptive, our
approach is first based upon a classical path sampling method
to approximate a small subset ofreferencePFs corresponding
to prespecified regions. Then, we propose an extrapolation
method that allows us to approximate the PFs associated to
the Ising fields defined over the remaining brain regions. In
comparison with preexisting approaches, our method is robust
against grid inhomogeneities within the reference PFs and re-
mains efficient irrespective of the topological configurations
of thereferenceandtestregions. Our contribution strongly al-
leviates the computational cost and makes spatially adaptive
regularization of whole brain fMRI datasets feasible.

1. INTRODUCTION

In medical image analysis, one is often interested in recover-
ing spatial structures. A simple but suboptimal approach to
enhance signal-to-noise ratios (SNR) consists in filteringthe
datasets at the expense of a loss of spatial resolution. A more
challenging approach works on the unsmoothed data by intro-
ducing some prior knowledge on the sought spatial structures.
Spatial information is usually embedded in local interaction
models such as Markov Random Fields (MRFs), which de-
pend on a set of hyper-parameters. For instance, the temper-
ature level controls the amount of spatial correlation in sym-
metric Ising models. In the considered fMRI application [1],
which aims at analyzing 4D signals to jointly perform dynam-
ics estimation and activation detection, the MRF definitionis
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region-specific. Indeed, the Hemodynamic Filter (HF) is as-
sumed to be invariant only locally, so that neuroimaging data
is accordingly segmented intoΓ functionnally homogeneous
irregular parcels,Γ being the order of several hundreds. This
leads to a region-based analysis whereΓ independent HFs
have to be identified. Each model yields a HF shape estimate
and spatial mixture models (SMM) are jointly expressed on
the amplitude of the HF for every stimulus type to perform
activation detection. SMMs in turn imply the involvement of
discrete Ising fields to model spatial correlation. Therefore,
several hundreds of temperature levels have to be estimated
making a hand-tuning procedure unrealistic. Moreover, since
optimal setting of such parameter may be different when con-
sidering different regions of the brain, all temperature levels
cannot be fixed to the same value. The purpose of this paper
is then to provide an unsupervised and adaptive regularization
scheme in such a situation.

For a single field, unsupervised spatial regularization con-
sists in estimating the temperature level. This requires a pre-
cise estimation of the PF that makes the MRF integrable over
its domain. Section 2 is dedicated to the formulation of the
PF estimation problem for Ising fields. The main contribution
of this paper lies in Section 3 where afastextrapolation tech-
nique to PF estimation of 3D Ising Fields is proposed and val-
idated both in the 2D and 3D context since the former offers
the opportunity to provide a ground truth to the PF computa-
tion of Ising fields. The application to Joint Detection Estima-
tion (JDE) of brain activity in fMRI is presented in Section 4.
Conclusions are drawn in Section 5.

2. PROBLEM STATEMENT

Let us consider a grid characterized by a set of sitess =
(si)i=1:n. A binary labelqi ∈ {0, 1} is associated to each
site si. A pair of adjacent sitessi and sj (i 6= j) is de-
notedi ∼ j and is called a cliquec. The set of all cliques
allows us to define an undirected graph denotedG. Let q =
(q1, q2, · · · , qn) ∈ {0, 1}n be the set of binary labels asso-
ciated tos. In what follows, we assumeq to be distributed
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according to a symmetric Ising model:

Pr(q|β) = Z(β)−1 exp (βU(q)) , (1)

whereU(q) =
∑

i∼j I(qi = qj) is the global “negative en-
ergy” andI(A) = 1 wheneverA is true and0 otherwise.
The inverse temperatureβ ≥ 0 controls the amount of spa-
tial correlation between the components ofq according toG.
The partition functionZ(β) reads

∑
q∈{0,1}n exp (β U(q))

and depends on the geometry ofG. Its exact evaluation in a
reasonable amount of time is impossible except on tiny grids.
Robust and fast estimation ofZ(β) is thus a key issue for nu-
merous 3D medical imaging problems involving Ising models
and more generally discrete MRFs.

3. PARTITION FUNCTION ESTIMATION

Several approaches have been designed to estimate a single
PF [2–4]. Path-sampling is an extension of importance sam-
pling for estimating ratios of normalizing constants, by con-
sidering series of easy-to-sample unormalized intermediate
densities. Such a strategy was proven efficient to tabulate the
PF for the Ising case; see [5] for details. Algorithms with
polynomial time complexity [4, 6] provide efficient alterna-
tives to a single PF estimation. However, none of them is able
to perform multiple PF estimation at the same time. Since
several hundreds of grids of variable size and shape are ma-
nipulated in our fMRI application, fast estimation of multiple
PF is necessary. To this end, we propose a hybrid scheme
which consists in resorting to path sampling to get log-scale
estimates(log ẐGp

(β))p=1:P in a small subset ofreference
graphs(Gp)p=1:P and then in using extrapolation formulas to
obtainlog Z̃T (β) for the large remaining set of brain regions
to be analyzed, referenced here by atestgraphT .

3.1. Linear/bilinear regression schemes

In [5], the authors have proposed a linear regression proce-
dure to estimate(log ẐGp

(β))p=1:P as a function of the num-

ber of cliques in the grids(Gp)p=1:P . Estimates oflog Z̃T (β)
are then linearly computed using the estimated regression co-
efficients and the number of cliques inT : log Z̃T (βk) =
âkcT at eachβk regularization level (βk = k∆β).

A bilinear extension of this technique, which also takes
the number of sites in the grid into account, has been de-
veloped in [7]. This procedure was shown to be efficient to
estimate log-PFs insmall and irregular grids1 such as those
appearing in our fMRI application. However, the accuracy of
linear/bilinear PF extrapolations strongly depends on theho-
mogeneity and the number ofreferencegrids: the less homo-
geneous the reference set, the larger the approximation error.
These reasons motivate the development of a more reliable
and versatile approach.

1Here, by irregular grids we make reference to regular lattices combined
with non-straight boundaries.

3.2. Fast and robust extrapolation technique

Our algorithm proceeds in two steps: 1) Akin to [5], refer-
ence PFsẐGp

(βk) are estimated using path sampling. The
topological configurations of the reference grids(Gp)p=1:P

can be inhomogeneous to cover a maximum of situations that
may occur when dealing with a brain parcellation into func-
tionally homogeneous ROIs. 2) For any test gridT , the quan-
tity logZT is approximated from asingle reference log-PF
estimate out of(log ẐGp

(β))p=1:P selected by an appropri-
ate criterion. Letni be the number of neighbors for sitesi

andrT = σn,T /µn,T a measure of grid homogeneity where
µn,T andσn,T provide the average number of neighbors per
site overT and the corresponding standard deviation, respec-
tively: the smallerrT the more regularT . Our topological
similarity measure given byLT (Gp) = ‖rT − rGp

‖2 helps us
choosing the closest reference gridGref to T in combination
with the approximation error criterionAT (β,Gp) defined by:

AT (β,Gp) = ‖ logZT (β) − log Z̃T (β,Gp)‖
2/‖ logZT (β)‖2

with log Z̃T (β,Gp) =
( cT
cGp

(log ẐGp
(β)−log 2)+log 2

)
, (2)

where(cT , cGp
) and(nT , nGp

) are the number of cliques and
sites of the Ising fields defined overT andGp, respectively.
Our extrapolation formula (2) is built up according to two
principles: i.) an unbiased asymptotic approximation error2

andii.) an exact approximation of(logZT (β))′ for β → 0+.
These principles are summarized in Appendix A. The refer-
ence gridGref is exhibited using a min-max principle, which
consists in minimizing with respect to (wrt) all reference grids
(Gp)p=1:P the maximal approximation errorA(β,Gp). In Ap-
pendix B, it is shown thatA(0,Gp) = maxβ A(β,Gp), ∀Gp.
Hence, we get:

Gref = arg min
(Gp)p=1:P

AT (0,Gp) subject to LT (Gp) ≤ ǫ (3)

andAT (0,Gp)
∆
= ‖(nT − 1)−cT (nGp

−1)/cGp
‖2/n2

T (4)

whereǫ > 0 is a positive threshold fixed by hand. OnceGref

has been identified, the log-PF estimate inT is thus given by
log Z̃T (β,Gref) according to Eq. (2).

Our method is illustrated in Fig. 1 withP = 4 by compar-
ing the distance between the reference log-PFs with the test
one atβ = 0. It appears thatlog Ẑref is the closest curve
above the ground truthlog ẐT (in red) and that our log-PF
estimatelog Z̃T represented by crosses (×) is superimposed
on the path sampled curve.

3.3. Assesment of the method

3.3.1. 2D fields

We first need to validate our approach in a situation for which
the logPF admits a closed form expression. Surprisingly, this

2limβ→+∞ AT (β,Gp) = 0.
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Fig. 1. Path sampled estimates of thereference log-PFs
log bZGp(βk), p = 1 : 4, in bluecurves. Ground truth as the log-PF

estimate found by path samplinglog bZT in red. Our extrapolation
method provides the crossed-line (×–) log-PF estimatelog eZT

situation exists thanks to the contribution of Onsager [8],who
derived the closed form expression of the log-PF of any 2D
square Ising fields under toroidal boundary constraints:

logZ(β) = n(β + log [2 coshβ] + ψ [u(β)]) (5)

whereu(β) = 2 sinhβ/ cosh2 β and theψ function is a one
dimensional log-elliptic integral:

ψ(u) =
1
2π

∫ 2π

0

log
[(

1 +
√

1 − u2 sin2 x
)
/2

]
dx (6)

for u ∈ [0, 1]. Therefore, the huge summation in Eq. (1) is
equivalent to this far simpler one dimensional equation.

In Fig. 2, we compared the exact calculation provided by
Eq. (5) with the path-sampling and extrapolation approaches
on a 2D Ising field defined over a 30x30 regular grid. It is
shown that our extrapolation technique (red) is as accurate
as possible since our estimate is superimposed on the ground
truth (in blue). Moreover, it appears on Fig. 2 that these nu-
merical approaches slightly underestimate the true log-FPas
given by Eqs (5). We have checked that this small discrepancy
is independent of the grid size. It might be due to the use of
the Swendsen-Wang sampling scheme for correlated fields.

3.3.2. 3D fields

For validation purpose, we compared log-PF estimates com-
puted using our extrapolation technique with those obtained
using path sampling, considered as the ground truth.Refer-
enceand test graphs are either regular or irregular. A total
of 15 regular referencelarge (more than103 sites) graphs are
considered with cubic, planar and curvilinear shapes. Irreg-
ular graphs were extracted from regular bounding boxes in
which Ising field configurations were drawn using the tem-
perature dependent Swendesen-Wang algorithm [9]. In each
bounding box, we considered the largest connected compo-
nent of sites having the same label as an irregular graph.Ir-
regular referencegraphs were then computed using 170 bound-

lo
g

Z
(β

)/
n

β

Fig. 2. Green: True log Z(β) computed by Eqs. (5)-(6) for a 2D
Ising field defined over a 30x30 regular grid.Blue: corresponding
path-sampling estimatei.e., log bZ(β). Red: Extrapolation estimates
log eZ(β) from a reference set made up by 30 grids (1D, 2D and 3D).

ing boxes of increasing size (from103 to 153 sites) and reg-
ularization levelsβ within the range[0.2, 0.7]. Regular test
graphs form three subsets: 30 of them aresmall (less than
103 sites), 30 aremediumsize (between103 and153 sites)
and 30 arelarge (more than153 sites). Finally,irregular test
graphs also form three subsets. Each contain 30 graphs ob-
tained from bounding boxes of163 sites, forβ = 0.2, 0.4
and0.5, respectively. We compared then our extrapolation
method with the alternative proposed in [5] and its bilinear
extension developed in [7]. Percentages of the mean maximal
approximation errors are presented in Table 1.

The bilinear and extrapolation methods clearly outperform
the linear one. Moreover, as shown in col. (B/ R) and rows (reg-
ular small and irregular,β = 0.2), the bilinear method leads
to inaccurate estimates when there are strong topological dif-
ferences between thereferenceand test grids. The regular
reference grids are actually composed of large grids with cu-
bic, planar and curvilinar shapes whereas those lying in (reg-
ular small) and (irregularβ = 0.2) are very small and highly
sparse. In that case, our extrapolation method detects such
differences and still succeeds in providing reliable log-PF es-
timates. While the linear/bilinear methods take allreference
grids into consideration to derive a log-PF approximation,
our approach computes a log-PF estimate using the most ap-
propriatereferencegrid. Hence, the larger the set of refer-
ence grids the more accurate our extrapolation method be-
comes. This explains why thereferencesubsets are success-
fully mixed in the proposed approach, as shown in the first
column of Table 1. Interestingly, when both the reference
and test grids are irregular the bilinear method may providea
competitive alternative to our extrapolation technique.

3.4. A Monte Carlo study to hyper-parameter estimation

The last validation we examined addresses the estimation of
the inverse temperature level (i.e.,β-estimation) in the Maxi-
mum Likelihood (ML) sense either from our log-PF estimate
or from its path sampled counterpart. This study has been



Table 1. Mean maximal approximation error over regular and irregular test graphs. Both linear, bilinear and extrapolation
techniques are tested. Errors are given in percents.

Scheme / Reference grid
Test grid E=Extrapolation, B=bilinear, L=linear / R=regular, I=irregular

E / I & R B / I B / R L / I L / R

re
gu

la
r small 0.639 3.84 66.3 93.0 2728

medium 2.77 0.991 2.17 6.37 49.5
large 3.68 1.31 2.48 7.18 19.4

irr
eg

ul
ar β = 0.2 0.375 1.29 94.6 83.9 3270

β = 0.3 0.281 0.784 2.91 18.3 219
β = 0.4 0.621 0.264 3.23 8.28 34.8
β = 0.5 0.693 1.27 1.96 1.52 34.2

conducted directly onobserved3D Ising fields. At each tem-
perature levelβk = k∆β with ∆β = .1, we generated in-
dependently 100 3D Ising fields defined over the same paral-
lelepipedical grid. We tested different grid sizes (from103

to 503) and showed that the number of voxels only influ-
ences the error bars on theβ estimate. For an Ising field
defined by Eq. (1), the ML estimatêβ ML is given byβ̂ ML =
argmaxβ [βU(q) − Z(β)]. In Fig. 3, we compared two ML
estimators corresponding to the path sampling and extrapo-
lation method for estimating the log-PFs. As illustrated in
Fig. 3, our extrapolation technique (red curve) retrieves the
true regularization parameter forβ < 0.7. For0.7 < β < 1,
a very small bias is observed while for lor larger values, a
more significant error occurs in comparison to a more precise
path-sampling scheme (blue curve).

b β
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Simulatedβ
Fig. 3. Monte Carlo validation (100 realizations) forβ-estimation
on observed 3D Ising fields defined over a 30x30x30 grid. : ground
truth given by the first bisector. : ML estimatebβ ML relying on our
log-PF extrapolation method. : ML path-sampled estimatebβ ML.

4. APPLICATION TO FMRI DATA ANALYSIS

4.1. Problem statement

Our extrapolation algorithm was applied to the spatially adap-
tative regularization of the region-based Joint Detection-Estimation
(JDE) of brain activity introduced in [1]. The JDE approach
relies on a prior parcellation of the brain intoP = (Pγ)γ=1:Γ

functionally homogeneous and connected parcels [10]. Ev-
ery parcelPγ comprising voxels(Vj)j=1:J is characterized
by a single HRFh. Within a givenPγ , voxel-dependent and
stimulus-related fluctuations of the BOLD signal magnitude
are encoded bya = (am

j )j=1:J,m=1:M , the response levels
(m stands for the stimulus type index). The fMRI time course
measured in voxelVj then reads:yj =

∑M
m=1 a

m
j xm ⋆ h +

bj , wherexm stands for themth binary stimuli vector and
bj stands for the noise component [1]. Within the Bayesian
framework, prior probability density functions (pdfs) arein-
troduced on(a,h) [1]. Spatial Gaussian mixture models are
expressed ona through the introduction of hidden variablesq = (qm

j )m=1:M
j=1:J that encode whether voxelVj is activat-

ing in response to stimulusm (qm
j = 1) or not (qm

j = 0).
Hence, stimulus-dependent hidden Ising fields are introduced
on these states such that the global prior pdf reads:
p(a |Θa) =

∏

m

∑

qm

[( ∏

j

f(am
j | qm

j ,θm)
)

Pr(qm|βm)
]

andf(am
j | qm

j = i) ∼ N (µi,m, vi,m). Parametersµi,m and
vi,m define the prior mean and variance of classi = 0, 1, re-
spectively for the stimulus typem. The setθm comprises four
prior mixture parametersθm = {µ0,m, µ1,m, v0,m, v1,m, βm}.
Samples of the full posterior pdfp(h,a,q,Θ |y) are sim-
ulated using a Gibbs sampler algorithm and posterior mean
estimates are then computed from these samples. Here, we
introduce the sampling of parameterβm, which is achieved
using asymmetricrandom walk Metropolis-Hasting step: At
iterationk, a candidateβ(k+1/2)

m ∼ N (β
(k)
m , σ2

ǫ ) is generated

and is accepted (i.e., β(k+1)
m = β

(k+1/2)
m ) with probability:

α(β
(k)
m → β

(k+1/2)
m ) = min(1, Ak,k+1/2), where the accep-

tation ratioAk,k+1/2 follows from Eq. (1):

Ak,k+1/2 =
p(β

(k+1/2)
m |q

(k)
m )

p(β
(k)
m |q

(k)
m )

=
p(q

(k)
m |β

(k+1/2)
m )p(β

(k+1/2)
m )

p(q
(k)
m |β

(k)
m )p(β

(k)
m )

=
Z(β

(k)
m )

Z(β
(k+1/2)
m )

exp
(
(β(k+1/2)

m − β(k)
m )U(q(k)

m )
)
,

using Bayes’ rule and considering a uniform prior forβm.
Theβm sampling step then requires to estimate ratios ofZ(.)



or log-PF differences for allPγ parcels prior to exploring the
full posterior pdf.

4.2. Results on real fMRI data

We applied the JDE procedure to real fMRI data recorded
during an experiment designed to map auditory, visual and
motor brain functions, which consisted of a single session of
N = 125 scans lasting TR= 2.4 s each, yielding 3-D vol-
umes composed of64× 64× 32 voxels. The paradigm was a
fast event-related design comprising sixty auditory, visual and
motor stimuli, declined in 10 experimental conditions (audi-
tory phrase, visual phrase, left auditory or visual clic ...).

We compare three versions of the JDE procedure: Inde-
pendent Mixture Models (IMM), Supervised SMM (SSMM,
β = 0.8) and unsupervised SMM (USMM), in order to assess
the impact of the adaptive spatial correlation model. Fig. 4
shows normalized contrast maps (âLAC− âRAC) of auditory
induced left versus right clic (LAC vs. RAC). As expected,
the activations lie in the contralateral right motor cortex. Here,
only USMM is more sensitive illustrating thus the advantage
of an adaptivespatial correlation model. Indeed,̂βPM es-
timates with USMM for the left auditory clic was0.56 so
that the supervised setting of SSMM withβ = 0.8 leads to
too much correlation and less sensitive results. Interestingly,
Fig. 4 also depicts the parcel-dependent maps of the PMβ̂ es-
timates for the RAC and LAC experimental conditions. The
gain in sensitivity in the USMM contrast map (âLAC−âRAC)
results from a difference in the amount of spatial regulariza-
tion introduced between the two conditions involved in the
contrast. A lower regularization level is estimated (β̂LAC ≈

0.5 vs. β̂RAC ≈ 0.75) in parcels located in the right motor
cortex since the BOLD signal is stronger for the LAC than
for the RAC condition in these regions.

On these real fMRI data, our extrapolation scheme pro-
vides log-PFs estimate for a brain parcellation(Pγ)γ=1:300

and (Gp)p=1:50 reference grids. In terms of computational
complexity, these log-PF estimates were computed in about
ten seconds, a very appealing approach in comparison to path
sampling, which requires about one hour for estimating all
log-PF estimates for a negligable gain in accuracy (less than
3%). Finally, we did not observe any significance difference
between the USSM effect maps derived using path sampling
and our extrapolation scheme (results not shown).

5. CONCLUSION

In order to make spatially adaptive regularization feasible, the
considered joint detection-estimation of brain activity from
unsmoothedfMRI data requires a reliable and fast estimation
of 3D Ising field partition function. To this end, an extrapola-
tion algorithm that exploits pre-computed path-sampled log-
PF estimates on reference grids has been proposed. The ap-
proximation error is controlled so that the approach defaults

to the robust path-sampled PF estimates if no suitable ref-
erence candidate is found. Obviously, efficiency is condi-
tionned by the number of reference grids, and more impor-
tantly by their similarity to the topologies encountered inthe
conducted analysis. In practice, about ten problem-specific
reference grids are enough to provide good PF estimates.

Using our fast extrapolation technique, the computational
burden remains acceptable since whole brain data analysis at
the subject level takes about 1h30. The application to real
fMRI data showed a gain in statistical sensitivity for the un-
supervised version. In order to test their reproducibility, these
promising subject-level results have to be confirmed in group
studies. Finally, in order to address the estimation of puta-
tive deactivations such as those occuring in epilepsy, a direct
extension of the proposed methodology to three-class Potts
fields is currently investigated.
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A. PROPERTIES OF OUR LOG-PF ESTIMATE

The first property deals with the asymptotic behavior (β →
∞) of the log-PF:

lim
β→∞

(logZ(β) − βc) = log 2. (7)

It is quite straightforward to demonstrate that whenβ →
∞ only homogeneous configurations ofq have a significant
weight in the evaluation ofZ(β). For a symmetric Ising field,
such configurations arise whenever all sites are equal to 0 or
to 1 leading first to

∑
k∼j I(qjk = qj) = c and finally to

Eq. (7). Applying Eq. (7) to the extrapolation context allows
one to derive the following proposition.

Proposition 1 limβ→∞AT (β,Gp) = 0, solog Z̃T (β,Gp) de-
fined in Eq.(2) provides an asymptotically unbiased estimate
of logZT (β), ∀Gp.
Proof: First, applying Eq. (7) toGp and using Eq. (2), we get:

lim
β→∞

cT
cGp

[
logZGp

(β) − βcGp

]
=

cT
cGp

log 2

⇔ lim
β→∞

[ cT
cGp

(
logZGp

(β) − log 2
)
− βcT

]
= 0

⇔ lim
β→∞

[
log Z̃T (β,Gp) − βcT

]
= log 2

Applying Eq. (7) tologZT (β), we obtainlimβ→∞

[
logZT (β)−

log Z̃Gp
(β,Gp)

]
= 0 ∀Gp.

The second property gives us the expression of the first-
order derivative of the log-PF atβ = 0. On the one hand,
following [9], it can be shown that(logZ(β))′ = E [U(q)|β].
On the other hand, forβ = 0, all sites are independent and fol-
low a uniform Bernoulli distribution. Hence, for each clique
j ∼ k the two homogeneous configurations(qj , qk) = (0, 0)
and(qj , qk) = (1, 1) contribute toU with the same weight
of 1/4. We therefore obtainE(U(q) |β = 0) =

∑
k∼j 1/2.

Finally, by equating the two expressions, we get:

(logZ(0))′
∆
= d logZ(β)/dβ|β=0 = c/2 . (8)

From Eq. (2), we get
(
log Z̃T (β,Gp)

)′
= cT

cGp

(
logZGp

(β)
)′

,

hence Eq. (8) allows us to derive that∀Gp, (log Z̃T (0,Gp))
′

provides an unbiased estimate of(logZT (0))′.

B. MAXIMAL APPROXIMATION ERROR

We give here a sufficient condition involving that the approx-
imation errorsAT (β,Gp) of Ising fields defined overT and
Gp achieve their largest value atβ = 0.

Proposition 2 ∀Gp, if (sT −1)/cT 6= (sGp
−1)/cGp

(Hyp. 1)
andET (U(q) |β)/cT 6= EGp

(U(q) |β)/cGp
, ∀β > 0 (Hyp. 2)

thenAT (0,Gp) = maxβ∈R+
AT (β,Gp), which expression is

given by Eq. (4).

Proof:Let errT (β,Gp) be the unnormalized approximation
error:ET (β,Gp) = (logZT (β)− log Z̃T (β,Gp))

2. We prove
thatET (0,Gp) = maxβ∈R+

errT (β,Gp) by showing thatET (β,Gp)
is a strictly decreasing function onR+:

dET (β,Gp)

dβ
= 2

(
logZT (β)−

cT
cGp

(logZGp
(β)−log 2)−log 2

)

︸ ︷︷ ︸
f1(β)

×
(
ET (U |β)−

cT
cGp

EGp
(U |β)

)

︸ ︷︷ ︸
f2(β)

ET (β,Gp) is strictly monotonous onR+ if f1,2(β) 6= 0 ∀β >
0. According to the second hypothesis, we directly obtain
f2(β) 6= 0. Moreover, it is easy to notice thatf1(β) =
±

√
ET (β,Gp). Hence,f1(0) 6= 0 according to Hyp. 1 and

limβ→∞ f1(β) = 0 by definition ofET (β,Gp). Furthermore,
according to the value of(logZ(β))′ and Hyp. 2, we get:
f ′
1(β) = f2(β) 6= 0, ∀β > 0 . Functionf1 being continue,

its sign is then contant overR+ and thenf1(β) 6= 0, ∀β > 0.
As a consequence,ET (β,Gp) is then stricly monotonous for
β > 0. According to Hyp. 1, we obtainET (0,Gp) > 0. Since
by definitionlimβ→∞ ET (β,Gp) = 0, functionET (β,Gp) is
therefore strictly decreasing onR+ and finallyET (0,Gp) =
maxβ∈R+

ET (β,Gp). Since logZ(β) is a strictly increas-
ing function ofβ, its inverse is strictly decreasing onR+,
soAT (0,Gp) = maxβ∈R+

AT (β,Gp).




