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Abstract—We present a new dynamic scheduling on mul-
ticore architectures. This is an improvement of the Optimal
Finish Time (OFT) scheduler introduced by Lemerre[7]
reducing preemptions. Our result is compared with other
schedulers and we show that our algorithm can handle
with more general scheduling problems.

I. INTRODUCTION

We are interested in embedded multiprocessor archi-

tecture for real-time systems, i.e. dealing with safety-

critical systems, for industrial purposes such as avionics,

automotive or nuclear industry or domotics. We present

a dynamic optimal scheduling for real-time tasks which

means that if the task set is feasible, our scheduling

meets all deadlines. It applies to tasks with same start

time and deadline, periodic and time-triggered tasks

and can handle with non-predictable tasks thanks to

its dynamic (online) behaviour and optimal finish time

characteristic. After some definitions in section 2, we

present our optimal algorithm in section 3 and conclude

in section 4 on ongoing works.

II. DEFINITIONS

We consider a system task Γ composed of several

tasks. A task T releases several finite or infinite con-

secutive jobs. Each job J is characterized by J.r its

release time, J.d its relative deadline and J.e its worst-

case execution time. Task parallelism allows jobs to be

executed in parallel on different cores/processors. We use

in a first step tasks with same start time and deadline (i.e.

same J.r and J.d ∀J).

Reconfiguration This is an operation changing the task

system currently executed. Its includes global reconfig-

uration (migration) for distributed systems, when there

is a memory transfer from one memory to another, to

execute a job in a different node (core, processor). We

call local reconfiguration in shared memory systems,

when job is just running in a different processor/core.

III. OPTIMAL SMP REAL-TIME SCHEDULING

Given a set Q of N independant jobs with same release

time and deadline on M identical processors sharing

the same memory. We propose a real-time scheduler

based on the Lemerre’s[7] algorithm with constant time

complexity: intra-job parallelism is forbidden here, pre-

emption and local reconfiguration are allowed but their

costs are not considered.

A. Algorithm description

Q is a deque containing jobs ordered by increasing

durations, TT is the interval duration and we suppose

that N>M. The first part is a setup phase to set the

M smallest jobs of Q on the M processors and remove

them from Q. The jobs currently in execution remain

active until its ending or until the biggest jobs of Q
become urgent (i.e. when its laxity are null: see for

example job J8 at t=1, J7 at t=3 in Figure 1). We

exclusively reserved processors to them by stopping

the biggest jobs currently executing (they return then

in the first places of Q). This is the main difference

between Lemerre’s algorithm which prefered to stop the

smallest jobs currently executing and migrate them on

others processors. We do less operations and reduce

preemptions by a factor 2. Our algorithm builds the

schedule incrementally, determining the next preemption

instant. The next instant is calculated by the minimum

between remaining time of the smallest job in execution

and laxity of the biggest job (the first value is 1 in

example of Figure 1). If there are no urgent jobs, when

a job is ending, we replace it by the next first waiting

job from Q (see job J4 replace J1 at t=1.5 in Figure 1).

B. Scheduling example
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Figure 1: an example of an execution of our scheduler for

8 jobs (J1, J2, J3, J4, J5, J6, J7, J8) sorted by increasing



durations, respectively (1.5,2,4,4,5,5,7,9) (the sorting is

made off-line) on 4 identical multiprocessors sharing

the same memory (there are 2 preemptions and 2 local

reconfigurations). Job duration is given by its weight

multiplying by the interval duration (TT =10).

Property Reconfiguration and preemption only happen

when a local laxity of the biggest job is null, but at each

time we use exclusively a processor for it, so there is

at most M-1 preemptions and local reconfigurations. If

there are more urgent jobs, it means that the task system

was unfeasible.

Algo. Preemptions Online complexity Alloc.

McN.[8] ≤ M-1 O(1) static

Level[6] ≤ N2(M-1) O(MN2) dynamic

SCH[5] ≤ M-1 O(N+MlogM) dynamic

Lem.[7] ≤ 2M-2 O(1) dynamic

IZL ≤ M-1 O(1) dynamic

Table 1: Optimal scheduling comparative (tasks with

same release time and deadline on identical processors;

alloc(ation): static, dynamic), our scheduler is IZL (In-

cremental Zero Laxity).

We propose an improvement of Lemerre’s[7] al-

gorithm which allows to be as competitive as Mac-

Naughton’s one (bin-packing approach[8]) for static

scheduling and better (in complexity) or similar (in num-

ber of preemptions) than Gonzalez’s[5] and Horvath’s[6]

one for dynamic scheduling (see Table 1). We can use

the same approach as in [7] to prove our algorithm.

C. Applications to more complex models

We use now the implicit-deadline periodic model: a

job Ji arriving periodically is characterized by a period

pi, a deadline equivalent to the period and an execution

time τi: Ji = (τi, pi). We define the hyperperiod as

the least common multiple of all jobs periods from the

periodic task system Γ, HΓ = lcm(pi,∀Ji ∈ Γ). The

job utilization is ui = τi/pi.

Given a set of N periodic independant jobs on M identi-

cal processors sharing the same memory. We decompose

the hyperperiod into intervals to schedule job sets. Each

interval starts at the end of the last interval and finishes

when the first job deadline is met, each interval begins

(respectively ends) at job boundaries. To construct a list

of jobs, it simplifies the problem by setting the weight

of each released job to its utilization (done off-line, in

O(N) time). These weights are constant on each interval,

only the duration of these intervals vary: we apply our

algorithm on each interval which jobs have same release

time and deadline.

Pfair class of algorithms[1][2][9] -dealing with periodic

task model- has generally M preemptions per time

quanta (M*lcm(pi)/min(pi) with BF[9]) and at best lin-

ear complexity in run-time (with PD2[1]). We propose

an interesting alternative to the Pfair scheduling class

(our online complexity: O(M) setup time then O(1) per

system call, preemptions: M-1 max. per interval).

These techniques are not exclusively used for periodic

task model and can be extended to time-triggered tasks

(such OASIS task model[3]) even if weights are different

between two intervals. It is possible because the next

boundary job is known (one cannot schedule on-line in

multiprocessors architecture without a priori knowledge

of the next jobs characteristics[4]).

IV. CONCLUSION AND FUTURE WORK

Our goal of our research is to propose real-time

energy-efficient scheduling for embedded many-core

architecture with more general recurring task model

which can be more appropriate for industrial purpose

and to take into account the new trends, for example

using processor/core groups. The algorithm presented

here aims to minimize preemptions in shared memory

systems. We are also working on dynamic scheduling

with hierarchical memory and allowing both local and

global reconfiguration. We would like to define how

to evaluate costs for both of them. Another way is

to work on thread parallelism: it is a part of a job

Ji executed simultaneously on several cores/processors

sharing the same memory. It allows intra-job parallelism:

it is commonly forbidden in real-time scheduling but the

trend may be change with parallel computing (OpenMP,

MPI). This is a new research field, and it would be

interesting to handle with. Moreover, we would take

into account fault-tolerance in critical systems, how to

define an execution and architecture model allowing

error detections including recovering techniques.
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