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Abstract 

The bi-exponential luminescence decay of europium (III) complexed by Suwannee River fulvic acid 

(SRFA) and humic acid (SRHA), is studied in time-resolved luminescence spectroscopy using two 

different gratings at varying delay after the laser pulse, increasing accumulation time in order to obtain 

comparable signals. The two hypotheses found in the literature to interpret this bi-exponential decay 

are (i) a back transfer from the metal to the triplet state of the organic ligand, and (ii) the radiative 

decay of two different excited species. It is shown that evolutions of the 5D0→
7F0 and 5D0→

7F2 

luminescent transitions are occurring between 10 and 300 µs delay. First, the 5D0→
7F0 transition is 

decreasing relative to the 5D0→
7F1 showing a slightly greater symmetry of the ‘slow’ component, and 

is also slightly red-shifted. Second, a slight modification of the 5D0→
7F2 transition is also evidencing 

a slightly different ligand field splitting. No significant modification of the 5D0→
7F1 magnetic dipole, 

which is less susceptible to symmetry changes, is noted in line with expectations from symmetry 

changes. The 5D0→
7F0 transitions are adjusted with either one or two components. The use of a simple 

component fit seems to be well adapted for representing an average comportment of these 

heterogeneous compounds, and a two-component fit constrained by the bi-exponential decay 

parameters and accumulation times yield in the proposition of the spectra for the fast and slow 

components. 

1. Introduction 

Humic substances (HS), mainly humic acids (HA) and fulvic acids (FA), are the main surrogate of 

natural organic matter (NOM) for the study of its metal complexation strength. Defined from their 

mailto:pascal.reiller@cea.fr
http://doi.org/10.1016/j.saa.2009.11.029


- 2 - 

alkaline extraction procedure, HS contain an important functionality inducing an important reactivity. 

Even if the intimate structure of HS, and thus the structure of formed complexes with metals, is still a 

matter of debate, a large number of complexation studies have been performed and a wide span of 

modelling strategies have been used. From the more “mechanistic models” it comes that different 

populations of sites, or different binding modes, must be accounted to monitor both the acid-base 

properties of NOM and the complexation isotherms [1-8]. Particularly, in the framework of 

lanthanides (Ln) and actinides (An) environmental chemistry, Eu(III)-HS complexes have been shown 

to be multidentate [6, 9-11] and involved more than one species [12-14]. 

The luminescence of lanthanides has been used either to study the complexation strength of HS [6, 

9-12, 14-26] and to probe their chemical environment within complexes [12-14, 25-29]. In this field, 

a large body of work has been done in order to characterize the structure of Ln/An(III)-HS complexes 

including time-resolved luminescence spectroscopy (TRLS) [9-11, 13, 14, 20, 25, 26, 30], and to 

propose complexation ‘stability parameters’ [10, 15-19, 21-24]. Throughout these studies, a bi-

exponential decay was noted for Ln/Cm(III), which was attributed either to the presence of two 

radiative decay processes linked to two excited species [9, 26, 30-33], probably in fast exchange, or 

to an energy back transfer from the excited level of the metal to the 3ππ* states of isolated organics 

around 19,000-25,000 cm-1 [25]. In the case of lanthanides, for thermal reasons this energy back 

transfer is probable for Tb3+, υ(5D4) = 20,400 cm-1, but do not seem to be possible for Eu3+, υ(5D0) = 

17,257 cm-1 [34]. Nevertheless, given the available values for the average triplet state of NOM, i.e., 

from 14,000-15,500 to 20,500 cm-1 [35, 36], it seems that the probability for a back-transfer process, 

or ligand-to-metal charge transfer [37], to or through humic triplet state from 5D0 level of Eu(III) could 

be favourable. It was anticipated that the apparent bi-exponential decay of Tb(III)–HS complexes was 

related (i) to the ‘intrisinc’ luminescence decay of the Ln(III)–HS complex and (ii) to a back-transfer 

from the Ln(III) to the humic chromophore introducing a diffusion parameter in the matrix of the 

humic aggregate [25]. Otherwise, authors proposed that two, or more, species should be taken into 

account [12-14, 22, 26]. Yoon et al. [12], Morgenstern et al. [22], and Rabung and Geckeis [26] 

proposed that the evolution of the double exponential decay vs. pH was linked to the evolution of the 

speciation of Eu(III)–HS and Cm(III)–HS complexes, respectively, proposing two [12], three 

according to Cm hydrolysis [22], and a heterogeneous distribution [26] of different species with 

different spectra out of a mostly continuous evolution between pH 2.8-9.6. After separation of fast 

dissociating complexes of Cm(III)–HA by Chelex resin, Monsallier et al. [30] did not evidence a bi-

exponential decay nor a modification of the spectrum of slow dissociating Cm(III)–HA complex with 

delay. Rabung and Geckeis also did not note a modification of the spectra at different delay for an 

‘intact’ Cm(III)–HA complex [26]. But these two latter comparisons were done after normalization 

with the same accumulation time and the obtained spectra at higher delay were inevitably rather noisy. 

More recently, Freyer et al. proposed evolutions of emission spectra of a Cm(III)–HA complex with 

delay in D2O (fig. 7 in [38]) and in H2O (not shown in [38]). Hence, whilst the large body of work 

available, the structure and photophysics of Ln/An(III)–HS complexes are still a matter of debate. 

Two situations are thus possible that are not easily settled: (i) a back-transfer energy is occurring 

and no modification of the luminescence spectrum of Ln3+ can occur because there should be no 

perturbation of the ligand field; (ii) two processes from two excited species are contributing to the 

radiative decay and modifications of the Ln(III)–HS complexes should be observed if the ligand fields 

are sufficiently different; (iii) a combination of the two preceding propositions. In the latter case, 

modifications of the 5D0→
7F0 transition, forbidden for magnetic and electric reasons [39, 40], and also 

of the 5D0→
7F2 ‘hypersensitive’ electric dipole should be observed, if the ligand field is sufficiently 

different and the resolution of the observation is adequate. 
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Two possibilities are offered to enhance the resolution of a luminescence spectrum in aqueous 

solution: first, decreasing the temperature to eliminate the non-radiative temperature dependant decay 

processes [29], and second, increasing the resolution of the spectrometer for the studies in solution at 

ambient temperature [41]. The aim of this work is to take advantage of a more resolutive grating (1800 

lines mm-1) to obtain information on the possible modification(s) of Eu(III)–HS complexes 

luminescence spectra of Suwannee River fulvic acid (SRFA) and humic acid (SRHA) during the 

luminescence decay. 

2. Material and Methods 

SRFA and SRHA were used as received from the International Humic Substances Society. 

Europium (III) stock solution was obtained from the dissolution of Eu2O3 (Johnson Matthey, 99.99%) 

in HClO4. The Eu(III)–HS complexes were formed in HS solutions as in ref. [10, 11], with 10-5 molEu 

L-1 and 200 mgHS L-1; all of Eu(III) is then considered to be complexed by HS [10] even if the ratios 

between Eu and the number of available sites are slightly different [42, 43]. The ionic strength was 

fixed with NaClO4 to 0.1 mol L-1 and pH was adjusted using freshly prepared NaOH and HClO4. The 

pH measurements were done using a combined–glass electrode (Radiometer Analytical XC111) 

calibrated for its linear response with a 0.01 mol L-1 HClO4 solution, an equimolar 0.02 mol L-1 

NaH2PO4/Na2HPO4 solution and an equimolar 0.02 mol L-1 Na2CO3/NaHCO3 solution, all containing 

NaClO4 to keep [Na+] constant at 0.1 mol L-1 (pH = 2.0, 6.8, and 9.9 respectively). The electrode filling 

solution was modified with NaClO4 0.1 mol L-1, NaCl 10-2 mol L-1 to prevent KClO4 precipitation in 

the frit of the electrode. 

Before measurement the pH was adjusted to 5 to minimize hydrolysis and carbonate species of 

Eu(III) and maximize the Eu(III)–HS complex formation. Under these conditions, 99% of Eu(III) is 

complexed in humic form [10, 44]. 

Eu(III) was used to probe its laser induced luminescence properties in contact with humic 

substances. The observed luminescence corresponds to the 5D0→
7F0 (electric and magnetic dipole 

forbidden, maximum around 580 nm), the 5D0→
7F1 transition (magnetic dipole, maximum around 593 

nm), and the 5D0→
7F2 ‘hypersensitive’ transition (electric dipole, maximum around 615 nm). These 

emission lines come from transitions of the 5D0 excited state to the ground 7Fj manifold [45]. 

The excitation laser beam was generated by a 355 nm tripled output of a Continuum Nd-YAG laser, 

coupled to an optical parametric oscillator system (Panther II, Continuum, USA). The wavelength was 

tuned to 394.6 nm, which corresponds to the 7F0→
5L6 transition of Eu(III), providing about 1 mJ of 

energy in a 5 ns pulse with a repetition rate of 10 Hz. After inner conversion the 5D1 level is transferring 

energy to the 5D0 level and the transitions to the 7Fj manifold can be observed. Additionally, HS are 

able to absorb the laser emission at 394.6 nm and part of the absorbed energy is transferred from the 
3ππ* triplet level to the central europium ion. The time-resolved luminescence signal is collected at 

90° and focused into a Acton spectrometer (slit 1 mm) using either a 600 lines mm-1 or a 1800 lines 

mm-1 grating. The signal is collected during a gate width W = 300 µs, after a gate delay D = 10 µs 

after excitation by the laser flash. The accumulation time was adjusted from the intensities obtained at 

the different delays in agreement with ref. [41]. Emission spectra were recorded using a CCD camera 

cooled at -15°C. 

The absorbance values at 394 nm of SRFA and SRHA are 0.429 and 0.947, respectively; the pre-

filter effect is reasonable compared to other samples [Table 3 in ref. 41], and the presented spectra did 
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not require any smoothing treatment. The absorbance at 591 nm is 0.017 for SRFA the post filter effect 

could be neglected. 

3. Results and Discussions 

3.1. Evolution of the spectra under comparable acquisition conditions at 600 lines mm-1. 

The luminescence decays of the various Eu(III)-HS complexes can be described by a bi–exponential 

decay function. For our fully integrative system, it comes: 
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where F is the luminescence signal, F°i and τi are the initial luminescence and the decay time of 

component i, respectively, D the delay after the laser excitation and W the gate width. 

First, the eventual photochemical reactions [30] of humic substances were tested. The acquisitions 

of the spectra reported on Figure 1A,B for Eu(III)-SRFA and Eu(III)-SRHA, respectively, were not 

done in a ‘classical’ way. In order to obtain spectra that can be compared with almost the same signal, 

the number of accumulations was corrected at each delay D, i.e., 10, 50, 100, 200, and 300 µs, using 

the gate width W = 300 µs, from the evolution of the bi-exponential decay obtained previously [41]. 

Nevertheless, this induces a decrease in the signal–to–noise ratio. These spectra indicate a strong 

interaction with the humic medium from the asymmetry ratio 5D0→
7F2/

5D0→
7F1, i.e., 3.0 and 3.9, 

based on peak area, for Eu(III)-SRFA and Eu(III)-SRHA, respectively. Also one can see on Figure 2, 

that no loss in Eu(III) fluorescence emission can be evidenced on 5D0→
7F1 nor on 5D0→

7F2 transitions 

based on peak area. The accumulation times and induced absorbed energies for the different delays 

are reported in Table 1: a negligible photo-degradation is then awaited [46]. However, a significant 

decrease of the 5D0→
7F0 transition is evidenced on Figure 2 from the peak areas and from the 

5D0→
7F1/

5D0→
7F0 ratio when the 5D0→

7F2/
5D0→

7F1 ratio is constant. The use of the more resolutive 

grating will give more information about this decrease of the 5D0→
7F1/

5D0→
7F0 ratio. 
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Figure 1. Luminescence spectrum of Eu(III)-SRFA (A) and Eu(III)-SRHA (B) complexes at λexc = 

394.6 nm at different delays, W=300 µs, pH=5, and 600 line mm-1, increasing the number of 

accumulation in order to obtain the same signal on the 5D0→
7F1 transitions; the spectra are 

normalized to counterweight the slight laser energy variations. 

570 580 590 600 610 620 630 640

Wavelength (nm)

F
 (

a
.u

.)

10 µs

50 µs

100 µs

200 µs

300 µs

570 580 590 600 610 620 630 640

Wavelength (nm)

F
 (

a
.u

.)

10 µs

50 µs

100 µs

200 µs

300 µs

10 µs 

50 µs 

100 µs 

200 µs 

300 µs 

10 µs 

50 µs 

100 µs 

200 µs 

300 µs 

A 



- 6 - 

Table 1: Parameters of the spectra acquisition of Figures 1 and 3. 

Grating 600 lines mm-1 

Delay (µs) 10  50  100  200  300  

 Nb Acc mJ/mg Nb Acc mJ/mg Nb Acc mJ/mg Nb Acc mJ/mg Nb Acc mJ/mg 

SRFA 600 1.5 925 2.3 1340 3.4 2900 7.3 5000 12.5 

SRHA 1000 2.5 1873 4.7 2730 6.8 5154 12.9 8740 21.9 

Grating 1800 lines mm-1 

Delay (µs) 10  50  100  200  300  

 Nb Acc mJ/mg Nb Acc mJ/mg Nb Acc mJ/mg Nb Acc mJ/mg Nb Acc mJ/mg 

SRFA 1000 2.5 1440 3.6 2204 5.5 4500 11.3 8400 21.0 

SRHA 2000 5.0 3564 8.9 5332 13.3 9980 25.0 16867 42.2 

 

 

Figure 2: Evolution of the experimental 5D0→
7F2/

5D0→
7F1 (diamonds) and 5D0→

7F0/
5D0→

7F1 

(squares 600 mm-1, circles 1800 mm-1) peak area ratios of Eu(III)-HS complexes at 10-5 molEu L
-1 

and 200 mgHS L-1 on Figure 1 and Figure 3AD, for SRFA (full symbols) and SRHA (empty 

symbols). 
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3.2. Evolution of 5D0→7F0 at 1800 line mm-1 grating. 

Due to the increase in resolution and the lesser convolution with the spectrograph’s parameters, the 
5D0→

7F0/
5D0→

7F1 and 5D0→
7F2/

5D0→
7F1 ratios obtained hereafter are inevitably different from what 

they appeared in the previous section. As for the 600 lines mm-1 grating, the accumulation times and 

absorbed energies are reported in Table 1; a negligible photo-degradation is awaited. A slight 

normalization was done in order to get rid of the laser energy variations for these particularly long 

integration times. The spectra for the two complexes acquired with the 1800 lines mm-1 grating are 

presented on Figure 3. 

First, we will focus on the 5D0→
7F0 transition around 579 nm. This transition is much more intense 

due to the higher resolution, and lower convolution with the spectrometer’s parameters. This results 

in significantly different 5D0→
7F0/

5D0→
7F1 area ratios of 0.87 and 0.99 for Eu(III)-SRFA and 

Eu(III)-SRHA, respectively. As seen previously, the non-degenerated 5D0→
7F0 transition is clearly 

decreasing and very slightly red shifted (Figure 3C,F). It seems that for Eu(III)-SRFA and 

Eu(III)-SRHA the two components proposed for other HS [12-14] can also be seen by the decrease in 

the 5D0→
7F0/

5D0→
7F1 ratios on Figure 2. This decrease is linearly correlated with delay for both 

extracts. There is no apparent reason for this linear correlation with delay apart from a too narrow 

observation window because both components already contribute more or less equally to the 

luminescence signal at a 10 µs delay. Knowing that the luminescence decay is (bi)exponential, one 

could await an exponentially dependant expression. The evolution of 5D0→
7F0/

5D0→
7F1 ratios for 

Eu(III)-SRHA complex is very much alike the Eu(III)-SRFA one. One can note that the 
5D0→

7F0/
5D0→

7F1 intensity ratio for SRHA is greater than the SRFA one. This reflects the fact that 

when the delay is increasing, 5D0→
7F0 intensities of Eu(III)-SRFA and Eu(III)-SRHA tend to be closer 

ending in the same value (±2σ) of 0.72 ± 0.02 and 0.74 ± 0.05 for Eu(III)-SRFA and Eu(III)-SRHA, 

respectively, at D = 300 µs. 

The use of 5D0→
7F0 transition was either dedicated to define the number of species involved due to 

its non-degenerescence after direct 7F0→
5D0 excitation or to the determination of the charge of the 

complex [47-49]. Its appearance in the spectra is correlated with the lowering of the complex’s 

symmetry [39, 40]. The decompositions of the non-degenerated 5D0→
7F0 transitions were often done 

using Lorentzian-Gaussian peak [50]. 

Ii = Imax,i 

exp

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
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²
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
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  (2) 

Using non-linear regression, the different parameters, i.e., Imax,i the maximum intensity of the ith 

peak, λ0,i its position of its maximum (nm), σLG,i its ‘standard deviation’ linked to its full-width at mid-

height w (nm), 1.46 × σLG,i = w [50], can be obtained. The associated standard deviations of the 

parameters, covariance and correlation matrices are calculated using the SolverAid macro [51]. 
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Figure 3: Luminescence spectra of Eu(III)–SRFA (A to C) and Eu(III)–SRHA (D to F) complexes 

at λexc = 394.6 nm at different delays, W=300 µs, pH=5, increasing the number of accumulation in 

order to obtain the same signal on the 5D0→
7F1 transitions, in the wavelength spans 575-600 nm 

(A,D), and 605-630 nm (B, E), and the magnification of the 577-581 nm wavelength span (C, F); the 

spectra are normalized to counterweight the slight laser energy variations.  

Although fits with two components were proposed for HS [12-14], one can think that a fit by a single 

component would give an averaged value of the Eu(III) comportment in HS (Figure S1 and Table S1 
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7F1 ratio is decreasing from 0.85 ± 0.01 to 0.72 ± 0.0003, and λ0 is slightly red-

shifted of 0.05 for both SRFA and SRHA. 
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Here for the Eu(III)–SRFA and Eu(III)–SRHA complexes the mono component peak fits are in 

agreement with the maximum emission of either a EuCl2+ complex or Eu(III) in methanol directly 

excited in the 7F0→
5D0 transition [48, 52]. This indicates the low average charge of the ‘complexing 

unit’, i.e., around -0.9 and -1.3 at 10 and 300 µs delay, respectively [48]. One should note that this is 

not the charge of a ‘humic molecule’, which is still up to now not really defined. From the relation 

between the number of coordinated ligands CN and υ0 (cm-1) proposed for the 5D0→
7F0 transition [49], 

i.e., CN = 0.237 Δυ + 0.638, values from SRFACN = 2.0 and SRHACN = 1.6 at 10 µs delay, to SRFACN = 

2.3 and SRHACN = 1.9 at 300 µs delay, are obtained; these values are not significantly different (CN ± 

0.7) and are in line with the complexation of Eu(III) through a multidentate form [10]. As previously 

seen, the estimations from τ2 of the number of water molecules remaining in the first hydration sphere, 

7 and 5 for Eu(III)–SRFA and Eu(III)–SRHA, respectively, are also indications of multidentate 

complexation [41]. Rabung and Geckeis proposed about the same number of remaining water 

molecules for Cm(III) complexed by Gorleben (Germany) HA [26]. Nevertheless, one can question 

the validity of CN and number of water molecules expressions for complex mixtures as humic 

substances. As a matter of fact quenching effect from humic chromophores may have an influence on 

non-radiative de-excitation pathways of the complexed metal even if not in direct contact within the 

humic aggregates. Moreover, these expressions have not yet been validated in this case. 

The calculation for the fast decay time cannot be done for several reasons. First the proposed 

empirical expressions are given relative to the aqueous Eu3+, which have a decay time value circa 110 

µs. Up to now, the values measured for τ1 are ranging from 20 to 60 µs [11, 41] depending on total Eu 

and HA concentrations and origin of humic extracts. This means that (i) part of the luminescence of 

Eu is quenched within the humic structure by chromophores that may not be in direct complexation, 

and/or (ii) a fast exchanging process is occurring within the structure. The energy transfer could be 

due either to a Förster resonance energy transfer (FRET) or Dexter energy transfer, respectively [53]. 

FRET can be operative over distances as long as 100 nm depending on the particular donor-acceptor 

pair. The energy transfer according to Dexter requires an overlap of the electron orbital of the donor 

and the acceptor. As the distance between the ligands and Eu(III) is relatively short, the Dexter energy 

transfer could be favoured. So far, in the case of HA, the link between the binding sites and the 

chromophores engaged in the energy transfer has not been demonstrated unequivocally. Thus, the 

resonance phenomenon cannot be ruled out. 

The decomposition in two peaks of 5D0→
7F0 transitions using Equation (2) was done for the five 

delays altogether and adjusting only Imax,i, λ0,I, and σLG,i: the different proportions of the two species 

were fixed by the bi-exponential decays’ fits proposed otherwise [41], and the accumulation times. 

The obtained fits are reported on Figure S2 (A to E) for SRFA and Figure S2 (F to J) for SRHA, from 

Supplementary Material; the parameters of the fits and the correlation matrices are given in Table S2. 

The difference between the peak maximum, i.e., Δλ0 = λ0,2 – λ0,1, are of 0.10 ± 0.01 for SRFA, and 

0.07 ± 0.01 nm for SRHA, which is lower than previously obtained from soil HS, i.e.,  Δλ0 = 0.2 nm 

[13, 14]. The σLG,I values are not statistically different around 0.7 nm (wi 1–1.1 nm), not very different 

from the single component fits, and both Imax,1 and λ0,1 are different from the single component fits 

situation: both Imax,2 and λ0,2 correspond to the mono-exponential fits at 300 µs. This means that even 

the two component situation could be the result of two different populations of environments and not 

two well–defined environments. This can be reconciled to the continuous description of acid-base and 

complexation properties of humic substances [1, 2, 4, 7]. 

The w values from the fits can be discussed in the light of the literature data. The full–width at mid–

height of ‘simple’ complexes were found to be w = 0.2–0.5 nm; w viz. 0.2 nm for EuCH3(COO)n
3-n 
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complexes (1  n  3) [54], w viz. 0.3 nm in the case of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)-

Eu(III) at 298 K [37], w viz. 0.4-0.5 nm can be estimated for dipicolinato-Eu(III) [28] and for 

iminodiaceto-Eu(III) [47], and a w viz. 0.2 nm can be estimated for Eu(III) complexed to the 5-fold 

sites of the icosahedral satellite tobacco necrosis virus [55]. For humic substances, Shin et al. [13] 

proposed two contributions for Eu(III) soil FA and soil HA complexes: Δλ0 ≈ 0.2 nm, and FAw viz. 0.6 

nm, and HAw viz. 1.0 nm. Later, Shin and Choppin proposed two component peaks for Aldrich HA 

with σLG = 10-19 cm-1 as function of Eu/HA concentration ratio [14], yielding a total HAw viz. 0.9 nm. 

There seems to be an agreement between w values for dipicolinato–Eu(III) [28], iminodiaceto–Eu(III) 

[47], and Eu(III)–soil FA [13, 14], but not for Eu(III)–soil HA or Eu(III)–PAHA. Here, we obtain 
SRFAw ≈ 1.05 ± 0.02 nm and SRHAw ≈ 1.06 ± 0.01 nm for a single component fit; as said earlier, the w 

values do not result in ‘simple’ complexation environments, and should thus be the caused by two (or 

more) ‘populations of environments’. This is not surprising as the HS mixtures are considered as 

continuum of chromophores [56] or of functional groups [2, 4, 7] or of molecular compositions [57-

59]. 

One could also remark that the spectrometer’s parameters may not be directly comparable leading 

to the convolution of the ‘true’ signal and the distortion of the spectrometer and thus to a broadening, 

and an accompanied decrease in intensity of the observed peaks, as it was observed with our 600 lines 

mm-1 grating, whereas literature data were obtained in 7F0→
5D0 excitation [13, 14, 28, 47, 54]. 

Nevertheless, the good agreement between the full–width at mid–height of previous humics data and 

the resolution of the peaks is a strong indication of a significant difference between “simple 

complexant” and our results. 

The 5D0→
7F1 transition does not seem to undertake such evident modification for each sample, in 

line with the independence of this magnetic dipole transition to the ligand field. 

3.3. Evolution of the 5D0→7F2 transition at 1800 lines mm-1. 

Concerning the 5D0→
7F2 hypersensitive transition, there is almost no modification of the maxima 

intensity between 614.35 and 614.44 nm for SRFA and SRHA, but weak interesting and significant 

modifications can be seen at the shoulder around 612 nm. The average of normalized intensities of 

five pixels around 612.25 nm on Figure 3B,E are reported on Figure 4. The error bars (2σ) are the 

results of the propagation of uncertainties between Imax(
7F2) and I612.25 nm, and the straight lines through 

the points are given as guide to the eye. For the two Eu(III)–HS complexes, the relative fluorescence 

intensity of the 612 nm shoulder is decreasing. It is worthy to notice that this shoulder in 5D0→
7F2 was 

identified as being one of the main difference between the humic extracts from different origins 

analyzed in a previous work [41]. Even if it seems difficult to unambiguously ascertain the decrease 

of this shoulder, due to the uncertainty of this fluorescence ratio, these slight modifications could also 

be linked to a difference in the symmetry of the Eu(III)-HS complexes with delay through a change in 

the splitting of the 5D0→
7F2 level. This is another indication which adds to the unambiguous decrease 

in symmetry previously evidenced from changes in the 5D0→
7F0 transitions. Without line narrowing 

experiment at lower temperature, no assignment to point symmetry group can be done but it must be 

more symmetric than D2h as no splitting in the 5D0→
7F1 transition can be observed [60]. Nevertheless, 

it seems that a double radiative process, involving two different excited species, is involved in the bi–

exponential decay. 
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Figure 4: Normalized fluorescence intensities at λem = 612.25 ± 0.05 nm shoulder in Eu(III)-SRFA 

(full circle, from Figure 3B,) and Eu(III)-SRHA (empty square, from Figure 3E). [Eu] = 10-5 mol 

L-1, pH = 5, I = 0.1 mol L-1 (NaClO4). 

3.4. Decomposition of the radiative component. 

It can be postulated that two different radiative processes can be identified during the luminescence 

decay of Eu(III)–HS complexes using the 1800 lines mm-1 grating. From the modelled decay of 

Eu(III)–SRFA and Eu(III)–SRHA [41], it becomes evident that the contribution of the ‘fast’ 

component 1, τ1 = 41 ± 5 µs, is totally suppressed after a 300 µs delay. At this delay time, it accounts 

for 0.45 ± 0.04 % of the total Eu(III)-SRFA complex luminescence; the total luminescence signal at a 

300 µs delay represents 7.9 ± 0.5 % of the luminescence at 10 µs delay. The spectrum of the ‘slow’ 

component C2 can then be considered to be the one at D = 300 µs (dashed line on Figure 5A). Knowing 

the decay time of this ‘slow’ C2 [41], i.e., τ2 = 144 ± 6 µs, and that it contributes to 58.8 ± 4.0 % of 

the luminescence at D = 10 µs, the normalized signal of this component 2 can be subtracted to the 

luminescence signal at D = 10 µs to obtain the spectrum of the ‘fast’ component C1 (dotted line on 

Figure 5A). It is then evident that the two contributions have different spectra. The 5D0→
7F0/

5D0→
7F1 

ratios of 1.1 and 0.8 for the ‘fast’ and ‘slow’ components, respectively, can be obtained. Similarly, the 
5D0→

7F2/
5D0→

7F1 ratios are around 3.4 and 3.9 for the fast and slow component, respectively. 

The same treatment can be done for the Eu(III)–SRHA complex. Under these conditions, τ1 = 53 ± 

6 µs and τ2 = 191 ± 12 µs [41], which means that the ‘fast’ C1 component only contributes to 1.4 ± 

0.3 % of the luminescence at D = 300 µs. Using the same approximation than in the case of 

Eu(III)-SRFA, the ‘slow’ component C2 contributes to 57.4 ± 12.4 % of the total luminescence at D = 

10 µs, and the spectra can be proposed (Figure 5B). The two contributions end in different spectra: 
5D0→

7F0/
5D0→

7F1 ratios of 1.2 and 0.7, and the 5D0→
7F2/

5D0→
7F1 ratios are around 3.6 and 3.9 for 

the ‘fast’ and ‘slow’ components, respectively. These values are less reliable than in the case of 

Eu(III)–SRFA due to the higher uncertainties of the parameters of the fit [41]. 
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Figure 5. Spectra of Eu(III)-HS complexes (bold plain line) at λexc = 394.6 nm, D = 10 µs, W = 300 

µs, of Eu-SRFA (A) and Eu-SRHA (B) complexes, and spectra of the slow component (C2, thin 

plain) at D = 300 µs, W = 300 µs normalized to its relative importance at D = 10 µs; the spectrum of 

the fast components (C1, dotted line) are obtained subtracting C2 from the signal F at D = 10 µs. 

The occurrence of a bi–exponential decay was not solely observed in the case of humic complexes. 

Fujiwara et al. [31], observed also a bi-exponential decay of two complexes between Eu(III) 4,4,4-

trifluoro-1-(2-thienyl)-1,3-butanedione and 4,7-diphenyl-1,10-phenanthroline disulfonate at the 

toluene-water interface. Tsukahara et al. [32], observed that in the presence of thenoyl trifluoroacetone 

(TTA), EuTTA2+ complex undergone a luminescence decay with k1 = 3.6 104 s-1 (τ1 = 27.7 µs) and k2 
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= 5.78 103 s-1 (τ2 = 173 µs). The authors proposed that the Eu*-TTA2+ excited complex can undergo a 

deactivation to Eu-TTA2+ and a dissociation reaction ((Eu3+)* + TTA–). The fast component, i.e., k1 = 

1/τ1, being the deactivation of (Eu3+)*, after the dissociation of Eu*-TTA2+, and the slow component, 

i.e., k2 = 1/τ2, being the sum of the dissociation of Eu*-TTA2+ and of its deactivation. The system of 

equation was solved with the hypothesis that Eu-TTA2+ complex should have seven remaining water 

molecules. This reaction and deactivation scheme is difficult to be fully applied here as we do not have 

enough information about the hydration number of the humic complexe(s). Particularly, the influence 

of D2O in the particular humic mixtures is not fully clarified for Ln/An(III). Under these conditions 

one could come to the conclusion, after Tsukahara et al. scheme [32], that the slow component C2 

could be the spectrum of the excited complex, and fast component C1 could be the spectrum of the 

excited (Eu)* in the system. 

Freyer et al. also proposed a fast exchange mechanism between Cm3+ and Cm(III)–HA complex 

[33] when pH ≤ 5.5, but comparing the results is difficult because Freyer et al. seem to detect the 

characteristic luminescence spectrum of Cm3+ both in D2O and H2O (λmax = 594 nm, τ1 ≈ τCm3+), while 

the spectrum we are obtaining at low delay is not characteristic of Eu3+ (5D0→
7F2/

5D0→
7F1 = 0.25). 

Also the reasons of the luminescence quenching (τ1 ≤ τEu3+) is not clear. As recalled earlier, either 

Förster resonance or Dexter energy transfer are likely in humic substances’ structure. It is thus likely 

that the excited (Eu)* is more efficiently quenched than (Cm)*. Regarding the 5D0→
7F2/

5D0→
7F1 

ratios and spectra, this means that only few differences exist between these species in term of 

symmetry because (Eu)* seem to be still be under the influence of the complexation environment [33]. 

Billard & Lützenkirchen [61] proposed that in the case of a fast exchange mechanism, where 

photochemical processes are not fast enough to fully mix the excited states, the apparent decay time 

values should change with the concentration of ligand. This was observed in two of our previous 

studies were Eu(III) was fully complexed by the same HA sample from Gorleben, Germany [11, 41], 

but was not put in relation until now. In Marang et al. for cEu = 7 µmol L-1 and cHA = 20 mg L-1 (I = 1 

mmolNO3
 L-1, 99.2% Eu–HA, 2.86 mgAH mol

-1

Eu
), τ1 = 17 ± 2 µs and τ2 = 135 ± 2 µs were obtained [11], 

whereas in Brevet et al. for cEu = 10 µmol L-1 and cHA = 200 mg L-1 (I = 0.1 molClO4
 L-1, 99.4% of Eu–

HA, 20 mgHA mol
-1

Eu
), τ1 = 60 ± 6 µs and τ2 = 172 ± 11 µs were obtained [41]. Further works are in 

progress to ascertain this trend. 

Another likely explanation would be two populations of complexes of relatively close symmetry, as 

proposed between two successive glycolate complexes by Stumpf et al. [62], or by Rabung and 

Geckeis [26] for fast and slow dissociating Eu(III)–HA complexes after the works from Monsallier et 

al. [30]. This interpretation would lead to two complexes of slightly different symmetry, as evidence 

by changes in shape of 5D0→
7F0 and 5D0→

7F2 transitions, but comparable complexation strength from 

the 5D0→
7F2/

5D0→
7F1 ratio. It is up to now not possible to firmly discriminate between these 

situations. 

4. Conclusion 

It is shown that the bi–exponential decay commonly observed for the luminescence of Eu(III)–HS 

complexes is the result of the deactivation of at least two different excited states. The main evolution 

of the luminescence spectra of the two decays resides in the 5D0→
7F0 transition. When increasing the 

delay of observation after the laser pulse, a decrease of the 5D0→
7F0/

5D0→
7F1 ratio is clearly 

evidenced, as well as a slight red shift of the 5D0→
7F0 transition. The 5D0→

7F1 transition do not seem 

to undergo any noticeable change, but the shoulder around 612 nm of the 5D0→
7F2 transition, already 
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implied in the differences of luminescence spectra of Eu(III)–HS complexes of different origins [41], 

is submitted to a subtle decrease with delay. Both the decrease of 5D0→
7F0 transition and slight 

modification of 5D0→
7F2 transition are indications of at least two species sharing a very close 

symmetry. It is then possible that the fast component of the bi-exponential decay could be a dissociated 

excited species (Eu)*, still under the influence of the ligand field induced by the HS environment 

and/or a fast exchanging humic species. This fast component exhibiting a decay time shorter than the 

aquo Eu3+ is submitted to quenching mechanisms by the chromophores within the humic structure. 

Further works are required in order to discriminate the component of the slow component, which 

should be composed of the eigen luminescence decay of the (Eu*)–HS excited complex, and its 

dissociation to Eu* + HS, to ascertain the mechanism. 
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