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Abstract. We address a simple but fundamental issue arising in the study of

graphene, as well as of other systems that have a crystalline structure with

more than one atom per unit cell. For these systems, the choice of the tight-

binding basis is not unique. For monolayer graphene two bases are widely used

in the literature. While the expectation values of operators describing physical

quantities should be independent of basis, the form of the operators may depend

on the basis, especially in the presence of disorder or of an applied magnetic field.

Using an inappropriate form of certain operators may lead to erroneous physical

predictions. We discuss the two bases used to describe monolayer graphene, as

well as the form of the most commonly used operators in the two bases. We

repeat our analysis for the case of bilayer graphene.

3 Author to whom any correspondence should be addressed.
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1. Introduction

A peculiar characteristic of graphene is the presence of two atoms per unit cell. While such

systems can be treated with very high accuracy numerically4, in order to extract the most general

analytical information, the solid-state theory for such systems necessitates the introduction of

multi-dimensional tight-binding bases, the choice of which is not unique. The expectation values

of physically measurable quantities are of course independent of basis; however, in practice

this is oftentimes not straightforward to see. In particular, if the expectation values of certain

operators are to be independent of basis, their form must be basis dependent.

There appears to exist quite a lot of confusion in the literature about the form of various

operators in the two tight-binding bases most commonly used to describe graphene. The

operators that are most commonly misidentified are the k-space Hamiltonian, the density, the

density of states and the single-impurity potential. Some of these operators are used to describe

the effects of impurity scattering in graphene [1]–[6]. Using the correct form of these operators

is essential for correctly computing the density of states in the presence of impurities, which is

measured in STM experiments [7]–[9]. The errors that can arise from the dual basis description

of the problem are most often related to writing one operator (i.e. the Hamiltonian) in one basis

and another operator (i.e. the density) in the other basis, yielding the wrong expression for the

expectation value of a physical observable such as the density of states.

Our purpose is to clarify the subtleties associated with the correct form of these operators.

We carefully present the two bases, and write down the tight-binding Hamiltonian and its

low energy expansion in first-quantized language. We also describe the corresponding second-

quantized formalism, and show that the choice of basis is equivalent to choosing the manner

of taking the Fourier transform (FT) of the second-quantized operators. This allows us to write

down the form of various operators in the two languages.

For monolayer graphene, one can choose a basis [10] in which only one point per unit

cell is used as the origin for the Bloch wavefunctions. This basis consists of two pz orbital

4 See e.g. a few numerical approaches using ‘tight-binding-like’ Hamiltonians: http://www.wien2k.at, http://

www.fkf.mpg.de/andersen/, http://www.crystal.unito.it and http://www.icmab.es/siesta.
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wavefunctions centered on the two carbon atoms of the unit cell; these wavefunctions have the

same phase factor, determined by the position of the ‘origin’ of the unit cell. Alternatively,

one can use a second basis, in which the positions of the two atoms in the unit cell are

used as ‘centers’ for Bloch’s theorem; hence the second basis also consists of two pz orbital

wavefunctions centered at the two carbon atoms, but their phase factors (determined by the

position of the corresponding atom) are different [11, 12].

Bilayer graphene, on the other hand, has four atoms per unit cell. Consequently, there are

at least two choices of tight-binding basis. We present the canonical form, which is widely used

in the literature [13, 14], and in which all four pz orbital wavefunctions have different phases

(given by the positions of the four atoms in the unit cell). We also discuss an alternative basis,

in which the four wavefunctions have the same phase factor.

In section 2, we present the two tight-binding bases and the tight-binding Hamiltonian

for monolayer graphene and its low-energy expansion using a first-quantized formalism and

Bloch’s theorem. In section 3, we present the second-quantized formalism. In sections 4 and 5,

we present the density operator and the impurity potential, respectively. In section 6, we discuss

the case of bilayer graphene and we conclude in section 7.

2. Lattice considerations

Given the honeycomb hexagonal lattice of graphene with two atoms per unit cell, one can use

Bloch’s theorem to write down the eigenstates of the lattice Hamiltonian. In the tight-binding

approximation, one searches for eigenfunctions of the Hamiltonian as linear combinations

9k(Er) of atomic wavefunctions. A common representation of this combination is

9k
I (Er) = cA

I (Ek)9 Ak
I (Er) + cB

I (Ek)9Bk
I (Er)

= 1√
N

∑

j

eiEk· ER j [cA
I (Ek)φ(Er − ER A

j ) + cB
I (Ek)φ(Er − ERB

j )], (1)

where N is the number of elementary cells, and the functions φ(Er) are the wavefunctions

of the pz orbitals of the carbon atoms. As described below, the coefficients c
A/B

I are chosen

such that 9k(Er) is an eigenstate of the tight-binding Hamiltonian. The vectors ER j = nEa1 + mEa2

with j = (n, m) specify the position of one graphene unit cell, with Ea1 = a
√

3x̂/2 + 3aŷ/2, and

Ea2 = −a
√

3x̂/2 + 3aŷ/2, where a is the distance between two nearest neighbors. Also, ER A/B

j are

the positions of the A and B atoms, respectively.

For simplicity we took the positions of the unit cells to be given by the positions of the A

atoms,

ER A
j = ER j . (2)

In our choice of the coordinate system, the B atoms are located at ERB
j = ER j + Eδ3, where the vector

Eδ3 ≡ EδAB is one of the three vectors connecting an atom A with its three nearest neighbors:
Eδ1 = a

√
3x̂/2 + aŷ/2, Eδ2 = −a

√
3x̂/2 + aŷ/2 and Eδ3 = −aŷ, as depicted in figure 1. Note that

the choice of the origin, as well as of the axes of the coordinate system, is arbitrary, but once

the choice has been made it has to be used consistently in later analysis.

In this representation of the tight-binding Hamiltonian eigenstates, one first constructs a

combination of the atomic wavefunctions within the unit cell and then attaches a phase factor

New Journal of Physics 11 (2009) 095003 (http://www.njp.org/)
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Figure 1. Hexagonal honeycomb lattice of graphene (a) and its band structure

(b). In (b) the equal energy contours are drawn, and the Brillouin zone (BZ) is

indicated by dashed lines. The Dirac points K and K ′ are marked by arrows, and

the reciprocal lattice vectors Ea∗
1,2 are also drawn.

to each cell to construct a Bloch function. This is the ‘textbook procedure’ (see for example

Ashcroft and Mermin [10], equation (10.26)).

In the second representation, one writes the Hamiltonian eigenstates as linear combinations

of two Bloch functions corresponding respectively to the A and B atoms, but with a different

phase factor attached to each of atoms A and B.

9k
I I (Er) = cA

I I (
Ek)9 Ak

I I (Er) + cB
I I (

Ek)9Bk
I I (Er)

= 1√
N

∑

j

[eiEk· ER A
j cA

I I (
Ek)φ(Er − ER j

A) + eiEk· ERB
j cB

I I (
Ek)φ(Er − ERB

j )]. (3)

This second representation is used, for example, in the paper by Wallace on the band structure

of graphite [11], and in many recent papers on graphene [12].

Note that in each representation we have chosen a tight-binding basis {9 Ak
ν (Er), 9Bk

ν (Er)}
where ν = I/I I , and 9

A/Bk

I (Er) = 1√
N

∑

j eiEk· ER j φ(Er − ER A/B

j ), while 9
A/Bk

I I (Er) = 1√
N

∑

j eiEk· ER A/B

j

φ(Er − ER A/B

j ). We can see that the two bases differ by relative phase factors between their

components. The eigenstates of the tight-binding Hamiltonian are linear combinations of each

basis wavefunctions. We will show that, while the coefficients of the linear combinations are

basis-dependent, the eigenfunctions of the tight-binding Hamiltonian are the same in both bases.

Also, the expectation value of any physical quantity is independent of the basis chosen.

2.1. The tight-binding Hamiltonian

The tight-binding Hamiltonian used to describe graphene allows for hopping between nearest

neighbors ( j, A) and (i, B), so that electrons on an atom of the type A/B can hop on the three

nearest B/A atoms, respectively. Thus we can write

H= −t
∑

〈i j〉
(|φA

j 〉〈φB
i | + h.c.), (4)

where |φA/B

j 〉 is the standard notation for wavefunctions 〈φA/B

j |Er〉 = φ(Er − ER A/B

j ). The

eigenequations for the coefficients cA(Ek) and cB(Ek) in equations (1) and (3) are straightforwardly

New Journal of Physics 11 (2009) 095003 (http://www.njp.org/)
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obtained by evaluating 〈φA/B

j |H|9k
ν 〉 using equation (1), where ν = I/I I and 〈9k

ν |Er〉 = 9k
ν (Er).

Thus we obtain

ǫ(Ek) cA
I (Ek) = −t

(

e−iEk·Ea1 + e−iEk·Ea2 + 1
)

cB
I (Ek),

ǫ(Ek) cB
I (Ek) = −t

(

eiEk·Ea1 + eiEk·Ea2 + 1
)

cB
I (Ek)

(5)

in the first basis or

ǫ(Ek) cA
I I (

Ek) = −t
(

e−iEk·Eδ1 + e−iEk·Eδ2 + e−iEk·Eδ3

)

cB
I I (

Ek),

ǫ(Ek) cB
I I (

Ek) = −t
(

eiEk·Eδ1 + eiEk·Eδ2 + eiEk·Eδ3

)

cA
I I (

Ek)
(6)

in the second basis. Defining

f I (Ek) = −t (e−iEk·Ea1 + e−iEk·Ea2 + 1), (7)

f I I (Ek) = −t (e−iEk·Eδ1 + e−iEk·Eδ2 + e−iEk·Eδ3), (8)

the Hamiltonian density is written as (ν = I or I I )

Hν(Ek) =
(

0 fν(Ek)

f ∗
ν (Ek) 0

)

, (9)

with the eigenvalues

ǫ(Ek) = ±| f I (Ek)| = ±| f I I (Ek)| = ±t

√

3 + 2 cos(
√

3kxa) + 4 cos(
√

3kxa/2), cos(3kya/2). (10)

One should note that the eigenvalues of the Hamiltonian (which give the energy dispersion

of the two bands of graphene) are the same in both bases, as expected. This is because in the

two representations, the two functions f I and f I I differ simply by a phase factor:

f I I (Ek) = f I (Ek)e−iEk·EδAB = f I (Ek)eikya, (11)

where EδAB ≡ Eδ3 = −aŷ is the vector connecting the A and B atoms in a unit cell.

Given that f I (Ek) = |ǫ(Ek)|e−iθ(Ek), the Hamiltonian density in the first representation can be

rewritten as

HI (Ek) = |ǫ(Ek)|
(

0 e−iθI (Ek)

eiθI (Ek) 0

)

(12)

with the phase θI (Ek) = −arg[ f I (Ek)].

The Ek dependence of this phase is shown in figure 2. One can clearly see the two

inequivalent BZ corners K and K ′. Each of the two points is equivalent to all the points that can

be obtained by translations with the reciprocal lattice vectors.

In the second representation, the Hamiltonian carries an inconvenient phase:

HI I (Ek) = |ǫ(Ek)|
(

0 e−iθI I (Ek)

eiθI I (Ek) 0

)

(13)

with θI I (Ek) = θI (Ek) + Ek · EδAB . The Ek dependence of the phase θI I (Ek) is shown in figure 3.

New Journal of Physics 11 (2009) 095003 (http://www.njp.org/)
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Figure 2. The Ek dependence of the phase θI (Ek) is represented by small segments

in two-dimensional Ek space. One can clearly see the two inequivalent BZ corners

K and K ′ having different topologies, and being characterized by opposite Berry

phases [15].
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Figure 3. The Ek dependence of the phase θI I (Ek) carries an inconvenient addition,

so that all the six Ek points of the first BZ appear different.

We can go back and rewrite the eigenfunctions of the tight-binding Hamiltonian in the

two bases:

9k
I (Er) = 1√

2N

∑

j

eiEk· ER j

[

φ
(

Er − ER A

j

)

± e−iθI (Ek)φ
(

Er − ERB

j

)]

, (14)

New Journal of Physics 11 (2009) 095003 (http://www.njp.org/)
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where the ± signs correspond to the eigenfunctions describing the conduction band and the

valence band, respectively. In the second representation,

9k
I I (Er) = 1√

2N

∑

j

[

eiEk· ER A

j φ
(

Er − ER j

A

)

± e−iθI I (Ek)eiEk· ERB

j φ
(

Er − ERB

j

)]

. (15)

Considering that θI I (Ek) = θI (Ek) + Ek · EδAB and that EδAB = ERB

j − ER A

j , one can easily check that the

two representations lead to the same expression of the eigenfunctions 9k
I I (Er) = 9k

I (Er).

2.2. Low-energy expansions

As is well known, the energy vanishes at the Dirac points, which are at

Ekξ
mn = ξ

Ea∗
1 − Ea∗

2

3
+ mEa∗

1 + nEa∗
2 .

Here ξ = ± is the valley index (there are two such points for each elementary cell of the

reciprocal space). Each point is equivalent to all the points in the reciprocal space that have

the same ξ but different (m, n) and that can be obtained by translations with the reciprocal

lattice vectors. The ξ = ± pair that is chosen most often contains two corners of the first BZ,
EK ≡ EK +

00 and EK ′ ≡ EK −
00, as described in figures 1–3. Note that

EK ξ
mn · Ea1 = 2πξ

3
+ 2 mπ, EK ξ

mn · Ea2 = −2πξ

3
+ 2nπ.

Thus, we can expand the Hamiltonian in the first basis around the Dirac points to find

f
ξ

I (Ek) = t

[

ξ

√
3

2
Eq · (Ea1 − Ea2) − i

2
Eq · (Ea1 + Ea2)

]

,

where Ek = EK ξ
mn + Eq and ξ = ±1 is the valley index. We see that in this basis the expansion does

not depend on the choice of (m, n). The six corners of the BZ thus appear to be equivalent to

either EK or EK ′, and can be recovered by a translation of EK and EK ′ by various reciprocal lattice

vectors. Given the above choice of vectors Ea1 and Ea2, one obtains

f
ξ

I (Ek) = v(ξqx − iqy), (16)

where v = 3t/(2a). We can now write the low-energy Hamiltonian density in the 4 × 4 space

defined by ( EK A, EK B, EK ′B, EK ′ A) as

H(Eq) =









0 f +
I 0 0

f +∗
I 0 0 0

0 0 0 f −∗
I

0 0 f −
I 0









= v









0 qx − iqy 0 0

qx + iqy 0 0 0

0 0 0 −qx + iqy

0 0 −qx − iqy 0









, (17)

which can be expressed in the compact form:

H(Eq) = vτz ⊗ (qxσx + qyσy),

New Journal of Physics 11 (2009) 095003 (http://www.njp.org/)
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where σ and τ are the usual Pauli spin matrices. Alternatively, we can write the low-energy

Hamiltonian density in equation (17) as

HI (Eq) = v|q|









0 e−iθ(Eq) 0 0

eiθ(Eq) 0 0 0

0 0 0 −e−iθ(Eq)

0 0 −eiθ(Eq) 0









,

where θ(Eq) = arctan(qy/qx).

In the second basis, the expression of the Hamiltonian is less easy because it contains the

phase factor e−i EK ξ
mn ·EδAB = ei EK ξ

mn ·ŷa, where

EK ξ
mn · EδAB = −2π(m + n)/3

is independent of the valley index ξ , but depends on the index (m, n). This makes the six

corners of the BZ appear inequivalent. Thus, in basis I I , in the 4 × 4 space defined by

( EK +
mn A, EK +

mn B, EK −
mn B, EK −

mn A), the Hamiltonian density is

HI I (Eq) =









0 f +
I I 0 0

f +∗
I I 0 0 0

0 0 f −∗
I I

0 0 f −
I I 0









= v









0 zmn(qx − iqy) 0 0

z∗
mn(qx + iqy) 0 0 0

0 0 −z∗
mn(qx − iqy)

0 0 −zmn(qx + iqy) 0









, (18)

where the phase factor zmn = e2iπ(m+n)/3 depends on the choice of the vector EK ±
mn in the reciprocal

space. In the standard choice for the two valley-points ( EK = EK +
00 and EK ′ = EK −

00), we have

m = n = 0 and the low-energy expansion of the Hamiltonian is the same in both bases.

3. The second quantization

In the second quantized formalism, we can define the operators a
†
j and b

†
j that correspond to

creating electrons on the sublattices A and B, at sites ER A
j and ERB

j , respectively. From equation

(1) we can see that the FT of the a j and b j operators should depend on the basis, so that

aI (Ek) =
∑

j

eiEk· ER j a j ,

bI (Ek) =
∑

j

eiEk· ER j b j

(19)

and

aI I (Ek) =
∑

j

eiEk· ER A
j a j ,

bI I (Ek) =
∑

j

eiEk· ERB
j b j ,

(20)

New Journal of Physics 11 (2009) 095003 (http://www.njp.org/)
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where the sum is taken over all lattice unit cells. The inverse FT of these operators will be

a j =
∫

Ek∈BZ

e−iEk· ER j aI (Ek) =
∫

Ek∈BZ

e−iEk· ER A
j aI I (Ek),

b j =
∫

Ek∈BZ

e−iEk· ER j bI (Ek) =
∫

Ek∈BZ

e−iEk· ERB
j bI I (Ek),

(21)

where we define
∫

Ek∈BZ
≡
∫

BZ
d2k

SBZ
, and SBZ = 8π2/3

√
3. Given the choice for the origin of the

unit cell, ER j = ER A
j , we can see easily that aI (Ek) = aI I (Ek), but bI (Ek) = eiEk·EδAB bI I (Ek). Thus the

change of basis described in the previous section introduces a different momentum-dependent

phase factor in the definition of the k-space Fourier-transformed operators.

In the second-quantized formalism, we can write the tight-binding Hamiltonian as

H= −t
∑

〈i j〉
(a

†
j bi + h.c.), (22)

where t is the nearest-neighbor hoping amplitude, and 〈i j〉 denotes summing over the nearest

neighbors. In momentum space, the tight-binding Hamiltonian becomes

H=
∫

Ek∈BZ

[a†
ν(

Ek)bν(Ek) fν(Ek) + h.c.], (23)

where ν = I/I I , and the f functions have been defined in equations (7) and (8) in the previous

section. We can see that, exactly as in the first-quantized formalism, the form of the Hamiltonian

is unique in real space, but depends on the basis in momentum space.

4. The density and density of states operators

It is quite interesting to keep track consistently of the correct form of a few other operators in

the two bases. First we focus on the local charge-density operator:

ρ(Er) =
∑

j

[δ(Er − ER A
j )a

†
j a j + δ(Er − ERB

j )b
†
j b j ]. (24)

In the absence of disorder, the density will be independent of position. However, if impurities

are present, the density will fluctuate, and it is useful to define its FT:

ρ(Eq) =
∫

d2r eiEq·Erρ(Er) =
∑

j

eiEq· ER A
j a

†
j a j +

∑

j

eiEq· ERB
j b

†
j b j , (25)

whose expectation value may be related to the results of FTSTS measurements [7]–[9].

In basis I , the FT of the charge density becomes the following (see the appendix for the

complete derivation):

ρ(Eq) =
∫

Ek∈BZ

[a
†
I (

Ek)aI (Ek + Eq) + eiEq·EδAB b
†
I (

Ek)bI (Ek + Eq)]. (26)

Similarly, we can redo the analysis in the basis I I :

ρ(Eq) =
∫

Ek∈BZ

[a
†
I I (

Ek)aI I (Ek + Eq) + b
†
I I (

Ek)bI I (Ek + Eq)]. (27)

Note that for systems that conserve momentum (translationally invariant), as in the absence

of disorder and magnetic fields, only the q = 0 term is nonzero. Furthermore, if one is interested

New Journal of Physics 11 (2009) 095003 (http://www.njp.org/)
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in average quantities, only the q = 0 term is relevant. Hence, in these cases the operators have

the same form in the two bases.

Another operator of interest is the local density of states (LDOS), given by the number of

electrons of energy ω at a given position. Its integral over ω gives the total density described

above. The previous formulae can be trivially extended to the LDOS by taking all operators at

a specific energy ω.

The expectation values of the density of states operator at various positions on the two

sublattices and at energy ω are given by

〈ρ( ER A
j , ω)〉 =

∫

Eq

∫

Ek∈BZ

e−iEq· ER j 〈a†
I (

Ek, ω)aI (Ek + Eq, ω)〉

=
∫

Eq

∫

Ek∈BZ

e−iEq· ER A
j 〈a†

I I (
Ek, ω)aI I (Ek + Eq, ω)〉 (28)

and

〈ρ( ERB
j , ω)〉 =

∫

Eq

∫

Ek∈BZ

e−iEq· ER j 〈b†
I (

Ek, ω)bI (Ek + Eq, ω)〉

=
∫

Eq

∫

Ek∈B Z

e−iEq· ERB
j 〈b†

I I (
Ek, ω)bI I (Ek + Eq, ω)〉, (29)

where
∫

Ek∈BZ
≡
∫

B Z
d2k

SBZ
is performed over the first BZ, and

∫

Eq ≡
∫

d2q

4π2 is performed over the entire

reciprocal space. One can straightforwardly show that if Er = ER A
j only the a†a terms contribute,

and the b†b terms vanish; conversely, if Er = ERB
j only the b†b terms contribute, and the a†a terms

vanish.

Evaluating the density of A and B electrons in the unit cell is also different in the two

bases. Since in basis I both the A and the B operators are defined at the origin of the unit cell,

both densities have to be evaluated at this position (which we chose to be the position of the A

atom, ER A
j ). In the basis I I , the density of states is evaluated for each atom at its corresponding

position ( ER A
j or ERB

j ).

5. Impurity potential

We can also write down the form of a delta-function impurity potential. For an impurity located

on sublattice A, we have

VA = vAa
†
j a j =

∫

Ek,Ek′∈BZ

ei(Ek−Ek′)· ERimp
j a

†
I (

Ek)aI (Ek ′)

=
∫

Ek,Ek′∈BZ

ei(Ek−Ek′)· ER Aimp
j a

†
I I (

Ek)aI I (Ek ′), (30)

while for an impurity on the sublattice B

VB = vBb
†
j b j =

∫

Ek,Ek′∈BZ

ei(Ek−Ek′)· ERimp
j b

†
I (

Ek)bI (Ek ′)

=
∫

Ek,Ek′∈BZ

ei(Ek−Ek′)· ERBimp
j b

†
I I (

Ek)bI I (Ek ′). (31)
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Figure 4. Bilayer graphene lattice.

In the case of a single impurity, it is most convenient to choose the origin of the coordinate

system such that ERimp

j = 0. Thus, in basis I the impurity potential will be independent of

momentum, regardless of whether the impurity is on the A or on the B site.

In basis I I , ER Aimp

j = 0, and no phase factors will appear when the impurity is on sublattice

A (at the origin of the coordinate system). However, when the impurity is on sublattice B,
ERBimp

j = EδAB , and a momentum-dependent phase factor will appear in the form of the impurity

potential. We should note that this phase factor comes from choosing the origin of the coordinate

system on an A atom. Indeed, if one performs an FT of the Friedel oscillations generated by

an impurity at a B atom while using a coordinate system with the origin at a neighboring A

atom, one generates a momentum-dependent phase factor in the FT. This can be eliminated by

changing the origin of the coordinate system from the A atom to the B atom, and by carefully

tracking the change in the form of the other operators.

6. Bilayer graphene

We can generalize the formalism presented in the previous sections to systems with arbitrary

numbers of electrons per unit cell. Bilayer graphene is made of two coupled graphene

monolayers (see figure 4), and there are four atoms per unit cell, two for each layer. In real

space the tight-binding Hamiltonian can be written as

H= −t
(

∑

〈i j〉1

a
†
j bi +

∑

〈i j〉2

ã
†
j b̃i

)

− tp

∑

jc

b
†
jc
ã jc + h.c. (32)

The operators a
†
i and b

†
i denote the creation of particles at sites A and B in layer 1, while ã

†
i and

b̃
†
i denote the creation of particles at sites Ã and B̃ in layer 2. The sites B in the first layer lie

on top of the sites Ã in the second layer, and there is a nonzero tp hopping of electrons between

them. Also
∑

〈i j〉1,2
denotes summing over the nearest neighbors in layers 1 and 2, respectively;

∑

jc
denotes summing only over the sites B in the first layer that are on top of sites Ã in the

second layer.

As for monolayer graphene, we can define two types of FT, consistent with two

different tight-binding bases. In the first basis, one first constructs a combination of the

atomic wavefunctions within the unit cell and then attaches a phase factor to each cell
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to construct a Bloch function. The corresponding Fourier-transformed operators in second-

quantized formalism are given by

aI (Ek) =
∑

j

eiEk· ER j a j ,

bI (Ek) =
∑

j

eiEk· ER j b j ,

ãI (Ek) =
∑

j

eiEk· ER j ã j ,

b̃I (Ek) =
∑

j

eiEk· ER j b̃ j .

(33)

The vectors ER j = nEa1 + mEa2, with j = (n, m), specify the position of the unit cell of the top

layer, which we also take to be the origin of the four-atom unit cell of bilayer graphene (see

figure 4). Here we chose the origin of the coordinate system on an A atom in layer 1.

In the second basis, the positions of the four atoms in the unit cell are used as ‘centers’ for

Bloch’s theorem, and the corresponding Fourier-transformed operators are

aI I (Ek) =
∑

j

eiEk· ER A
j a j ,

bI I (Ek) =
∑

j

eiEk· ERB
j b j ,

ãI I (Ek) =
∑

j

eiEk· ER Ã
j ã j ,

b̃I I (Ek) =
∑

j

eiEk· ER B̃
j b̃ j ,

(34)

where ER A
j = ER j and ERB

j = ER j + EδAB are the positions of the A and B atoms in layer 1, while

ER Ã
j = ER j + EδAB and ER B̃

j = ER j + 2EδAB are the positions of the Ã and B̃ atoms in layer 2. This is

the basis that is most often used in the literature to describe bilayer graphene.

In momentum space the tight-binding Hamiltonian becomes

H=
∫

Ek∈BZ

[a†
ν(

Ek)bν(Ek) fν(Ek) + ã†
ν(

Ek)b̃ν(Ek) fν(Ek) + tpã
†
i (k)b̃i(k) + h.c.], (35)

where ν = I/I I and the f ’s are the same as the ones defined in equations (7) and (8) for

monolayer graphene.

The density operator is given by

ρ(Er) =
∑

j

[δ(Er − ER A
j )a

†
j a j + δ(Er − ERB

j )b
†
j b j + δ(Er − ER Ã

j )ã
†
j ã j + δ(Er − ER B̃

j )b̃
†
j b̃ j ], (36)

and its FT is

ρ(Eq, ω)=
∫

Ek∈BZ

[a†
ν(

Ek)aν(Ek + Eq)+βνb†
ν(

Ek)bν(Ek + Eq)+α̃ν ã†
ν(

Ek)ãν(Ek+Eq) + β̃ν b̃†
ν(

Ek)b̃ν(Ek + Eq)], (37)

where ν = I/I I , βI = α̃I = eiEq·EδAB , and β̃I = e2i Eq·EδAB , whereas in basis I I there are no relative

phase factors, βI I = α̃I I = β̃I I = 1.
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We can also evaluate the density and the density of states at various positions:

〈ρ( ER A
j , ω)〉 =

∫

Eq

∫

Ek∈BZ

e−iEq· ER j 〈a†
I (

Ek, ω)aI (Ek + Eq, ω)〉 =
∫

Eq

∫

Ek∈BZ

e−iEq· ER A
j 〈a†

I I (
Ek)aI I (Ek + Eq, ω)〉,

〈ρ( ERB
j , ω)〉 =

∫

Eq

∫

Ek∈BZ

e−iEq· ER j 〈b†
I (

Ek, ω)bI (Ek + Eq, ω)〉 =
∫

Eq

∫

Ek∈BZ

e−iEq· ERB
j 〈b†

I I (
Ek, ω)bI I (Ek + Eq, ω)〉,

〈ρ( ER Ã
j , ω)〉 =

∫

Eq

∫

Ek∈BZ

e−iEq· ER j 〈ã†
I (

Ek, ω)ãI (Ek + Eq, ω)〉 =
∫

Eq

∫

Ek∈BZ

e−iEq· ER Ã
j 〈ã†

I I (
Ek, ω)ãI I (Ek + Eq, ω)〉,

〈ρ( ER B̃
j , ω)〉 =

∫

Eq

∫

Ek∈BZ

e−iEq· ER j 〈b̃†
I (

Ek, ω)b̃I (Ek + Eq, ω)〉 =
∫

Eq

∫

Ek∈BZ

e−iEq· ER B̃
j 〈b̃†

I I (
Ek, ω)b̃I I (Ek + Eq, ω)〉,

(38)

where, as before,
∫

Ek∈BZ
≡
∫

BZ
d2k

SBZ
is performed over the first BZ, while

∫

Eq ≡
∫

d2q

4π2 is performed

over the entire reciprocal space.

Note that (as in the case of monolayer graphene) when working in basis I , all the four

densities of states are evaluated at the position of the unit cell vector ER j (which we chose to be

the position of the A atom, ER A
j ). In basis I I , however, the density of states is evaluated for each

atom at its corresponding position: ER A/B/ Ã/B̃

j .

7. Conclusions

We analyzed the two tight-binding bases used to describe monolayer graphene. We showed

that, while the eigenstates of the tight-binding Hamiltonian, as well as the expectation values

of physical quantities, are independent of basis, the form of certain operators depends on the

basis. We also showed that the choice of basis is equivalent to the choice of the manner of

performing the FTs of second-quantized operators. We wrote down in the two languages the

Hamiltonian, the density and the LDOS, as well as the impurity potential. We also analyzed the

case of bilayer graphene and presented two possible choices of tight-binding basis, and the form

of the aforementioned operators in these bases.

In general, the basis choice of convenience depends on the quantities of interest. The form

of the Hamiltonian is generally simpler in the first basis (especially in the linearized form),

so if we are interested mainly in the Hamiltonian, as well as in spatial averages or position-

independent quantities, it is more convenient to use the first basis. The first basis is also more

convenient as the Hamiltonian matrix coefficients, as well as Green’s functions, are periodic in

the momentum space with a BZ periodicity; in the second basis, extra phase factors arise when

shifting the momentum wavevectors out of the first BZ. However, if we want to study quantities

that depend on position, such as the LDOS in the presence of disorder, the second basis may

sometimes be more convenient. In the first basis, a relative phase factor between the electronic

densities on the two sublattices arises. In the second basis no such phase factor is present;

however, the simpler form of the density operator is traded off against a more complicated and

less periodic expression of the Hamiltonian.

While the choice of basis affects the form of specific operators, it does not affect the

calculated value of a physical observable. For this one needs to ensure that all the operators

used are written consistently in the same basis. The most common error is to write the form of

one operator in one basis (i.e. the Hamiltonian), and the form of a different operator in the other
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basis (i.e. the density). This will yield the wrong expression for an observable quantity such as

the LDOS and may sometimes appear in the result as an unexpected breaking of some intrinsic

symmetry of the problem.

For the case of the Fourier-transformed density operator, it is also important to note that due

to the (arbitrary) choice of the coordinate system, its expectation value may be related only to the

FT of the experimental data if this FT is taken using the same coordinate system (axes and origin

as depicted in figure 1). If the FT is taken using a different coordinate system, a momentum-

dependent phase factor is introduced and needs to be accounted for before comparing theory

and experiment. This inadvertence may lead in some cases to a simple rotation of the data, but

other more complicated phase factors can also be introduced by a mismatch of the origins of the

coordinate systems. For the case of a single impurity, it is most convenient to use a coordinate

system with the origin at the impurity site. However, if multiple impurities are present, one

needs to keep track of the relative phase factors introduced by their spatial distribution.

We should comment that our careful tracking of the phase factors generated by the change

of basis is in general not relevant if one is only interested in uniform properties or in spatial

averages. However, a careful analysis of the phase factors is crucial if one studies systems

with disorder, in the presence of an applied magnetic field, and more generally with broken

translational invariance.
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Appendix

In basis I , the FT of the charge density is written as

ρ(Eq) =
∑

j

∫

Ek,Ek′∈BZ

ei(Ek−Ek′+Eq)· ER j [a
†
I (

Ek)aI ( Ek ′) + eiEq·EδAB b
†
I (

Ek)bI ( Ek ′)]. (39)

The sum over the lattice unit cells j can be performed to obtain
∑

RL δ(Ek − Ek ′ + Eq + EQRL), where
EQRL is any vector of the reciprocal lattice. However, as the integral over Ek ′ is constrained

to the BZ, not all the terms of the sum contribute to the result, but only those for which
Ek ′ = Ek + Eq + EQRL is in the BZ. For each Eq and Ek there is a unique EQRL that satisfies this condition.

Consequently, we have

ρ(Eq) =
∫

Ek∈BZ

[a
†
I (

Ek)aI (Ek + Eq + EQRL) + eiEq·EδAB b
†
I (

Ek)bI (Ek + Eq + EQRL)]

∣

∣

∣Ek+Eq+ EQRL∈BZ
. (40)

However, given the FT definitions in equation (19), aI (Ek + EQRL) = aI (Ek) and bI (Ek + EQRL) =
bI (Ek), we therefore have

ρ(Eq) =
∫

Ek∈BZ

[a
†
I (

Ek)aI (Ek + Eq) + eiEq·EδAB b
†
I (

Ek)bI (Ek + Eq)]. (41)

Similarly, we can redo the analysis for the second basis:

ρ(Eq) =
∑

j

∫

Ek,Ek′∈BZ

[ei(Ek−Ek′+Eq)· ER A
j a

†
I I (

Ek)aI I ( Ek ′) + ei(Ek−Ek′+Eq)· ERB
j b

†
I I (

Ek)bI I ( Ek ′)]. (42)
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The sum over the sites ER A
j can be performed to obtain:

∑

RL δ(Ek − Ek ′ + Eq + EQRL), where EQRL

is again any vector of the reciprocal lattice. However, the sum over the sites ERB
j gives

∑

RL exp(−i EQRL · EδAB)δ(Ek − Ek ′ + Eq + EQRL). Consequently, we get

ρ(Eq) =
∫

Ek∈BZ

[a
†
I I (

Ek)aI I (Ek + Eq + EQRL) + e−i EQRL·EδAB b
†
I I (

Ek)bI I (Ek + Eq + EQRL)]

∣

∣

∣Ek+Eq+ EQRL∈BZ
. (43)

From the definitions in equation (20), we see that aI I (Ek + EQRL) = aI I (Ek) and bI I (Ek + EQRL) =
bI I (Ek)ei EQRL·EδAB , and thus

ρ(Eq) =
∫

Ek∈BZ

[a
†
I I (

Ek)aI I (Ek + Eq) + b
†
I I (

Ek)bI I (Ek + Eq)]. (44)
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