Effect of ionic strength on complexation of Pu(IV) with humic acid

Gyula Szabo, J. Guczi, Pascal E. Reiller, T. Miyajima, Robert A. Bulman

To cite this version:

HAL Id: cea-00442447
https://cea.hal.science/cea-00442447
Submitted on 13 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effect of ionic strength on complexation of Pu(IV) with humic acid

By G. Szabó1,*, J. Guzci1, P. Reiller2, T. Miyajima3 and R. A. Bulman4

1 National Research Institute for Radiobiology and Radiohygiene, P.O. Box 101, 1775 Budapest, Hungary
2 Commissariat à l’Énergie Atomique, CE Saclay, Nuclear Energy Division/DPC/SECR, Laboratoire de Spéciation des Radionucléides et des Molécules, Bât. 391 PC 33, 91191 Gif-sur-Yvette Cedex, France
3 Department of Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
4 Radiation Protection Division, Health Protection Agency, Chilton, Didcot, OX11 ORQ, United Kingdom

(Received November 21, 2008; accepted in revised form June 6, 2009)

Plutonium / Humic acid / Analogy / Complexation / Conditional interaction constant (β)

Summary. Successful geochemical modelling of the migration of radioactive materials, such as the transuranic elements, from nuclear waste repositories is dependent upon an understanding of their interaction with biogeochemical processes such as humic acids, the most likely complexing agents in groundwaters. An established silica/humic acid composite has been evaluated as a model substrate for naturally occurring humate-coated minerals that are likely to be present in the vicinity of the repositories. The binding of Pu(IV), the highly likely oxidation stage, by the silica/humic substrate was examined at pH 4 in the range 0.02 to 3.00 M NaClO4 by the titration method. Pu(IV)-humate conditional stability constants have been evaluated from data obtained from these experiments by using non-linear regression of binding isotherms. The results have been interpreted in terms of complexes of 1:1 stoichiometry. Analysis of the complex formation dependency with ionic strength shows that the effect of ionic strength on humate complexation of Pu(IV) is not dramatically pronounced. The complexation constants are evaluated for the humate interaction with Pu(IV) at pH 4. The complexation constants are found, respectively, to be log K^β_{1}(Pu(IV)) = 16.6±0.3 and log K^β_{2}1 = 46.6 ± 2.3. The estimations through analogy from previous results are in agreement with these new experimental data.

1. Introduction

It is now well established that humic substances play an important role in the geochemical cycling of various metal ions, some of which could be radionuclides of the transuranic series. From the chemical features of humic acids, it was evident that they would influence the speciation of plutonium in the environment. Many investigations have confirmed the suppositions [1–5]. The recovery of chelatable plutonium from humates from a salt marsh soil, which had been radiolabelled by a marine environmental process, was sufficient evidence [4] for a series of in vitro investigations of the interaction of transuranic radionuclides with humic acid. The chemistry of the interactions of plutonium with humic substances needs to be understood in sufficient detail to predict interactions of the transuranic element with humate-coated phases that might mediate its movement out of waste repositories [4, 6–8]. Satisfactory data on tetravalent and redox sensitive actinides, such as plutonium, are scarce and arise from experimental difficulties posed by the low solubility of their oxide-hydroxide [9, 10] and, also, their high affinity for vessel walls [11]. Although pH and ionic strength are the two main factors that affect the complexation of actinides with humic acids, the literature appears to lack a systematic study of the ionic strength effect on the complexation of plutonium ions. The main objectives of this work are to provide equilibrium complexation data for interaction of plutonium with humic acid in controlled systems. Currently, scientifically proven data for Pu-humate complexes are under represented in the literature. An insufficient might impair computer simulation of the migration of plutonium from waste repositories.

2. Experimental

2.1 Materials and methods

Humic acid was immobilized on silica gel and characterised by using a previously described procedure [12–14] to yield the composite material SiO2-HA. The proton exchange capacity of the immobilised HA, determined by potentiometric titration, and the specific surface area of the prepared solid phase, determined by the BET method are given in Table 1. C, H and N analyses of SiO2-HA were conducted on an automatic CHNS-O analyzer. The citrate of 239Pu was prepared from stock solutions of the nitrates dissolved in 4 M HNO3. An aliquot of the stock solution was evaporated to dryness and the residue dissolved in 0.01 M HNO3 to which was added 2% trisodium citrate solution to rich 1:1 stoichiometry for Pu: citrate. The resulting solution was adjusted to pH 4 and passed through a membrane of porosity 25 nm (Millipore Ltd.) to minimize the presence of polynuclear plutonium species. 239Pu were determined by liquid scintillation counting (LSC) in a Packard Tri-Carb 2550 liquid scintillation counter. The oxidation states of plutonium in the stock solution, in the clarified aliquot after the sorption experiment and in the washing solution were determined.

*Author for correspondence (E-mail: szabogy@hp.oskki.hu).
every 96 h, by the TTA extraction method and NdF3 co-
precipitation method [15, 16]. Plutonium, as Pu(IV), was
the dominant oxidation state and was in excess of 90%. The
stability of Pu(IV) in humic solution was verified by Marquardt
et al. [5] and the slow reduction to Pu(III) was neglected
under our conditions. The binding of plutonium(IV) by the
immobilized humic acid was examined at pH 4 in 0.02, 0.05,
0.10, 0.20, 0.50, 1.00, 2.00 and 3.00 M NaClO4 containing
4.2 × 10⁻⁸ M concentration of plutonium by the titration
method.

Determination of maximal complexing capacity (Bmax)
and conditional interaction constants of SiO₂-HA (\(B_{\alpha}B\))
for Pu(IV)
The complexing capacity (Bmax) of SiO₂-HA was determined
for Pu(IV). Accurately weighed quantities of the gels, typi-
cally about 10 or 20 mg, were added to 9 mL of 0.02, 0.05,
0.10, 0.20, 0.50, 1.00, 2.00 and 3.00 M NaClO4 solutions
(pH 4). The resulting suspensions were titrated by adding
1 mL of the plutonium stock solution (C0, 4.2 × 10⁻⁵ M) and
shaken at room temperature for 48 h. The suspension was
clarified after 48 h by centrifugation at 4000 rpm. Aliquots,
1 mL, from the supernatant were taken for measurement of
Pu(IV) remaining in solution in the foregoing parallel study.
The suspension was prepared from the gel at each step (mol
/ml), less than 3% using the data in Kantar and Honey-
man [17] and the slow reduction to Pu(III) was neglected
under these conditions, Pu(IV) remaining on the gel at the end of
(i - 1)th titration step (mol/L); CI is Pu(IV) concentration in
the solution at the end of the ith titration step (mol/L); Ci−1 is Pu(IV) concentration in the solution at the end of the (i-1) step (mol/L); C0 is the concentration of the stock solution (mol/L) and W is the solid concentration in the suspension (g/L).

A parallel titration study evaluated the sorption of
Pu(IV), in the absence of SiO₂-HA on to vial walls. The
Page 14
accounting for the Pu(IV) hydrolysis, the reaction between
Pu(IV) and HA can be written:

\[
\text{Pu}^{(IV)} + \text{HA} \rightleftharpoons \text{Pu-HA}\]

with \(B_{\alpha}B\) = \[
\frac{[\text{Pu-HA}]_{\text{total}}}{[\text{Pu}^{(IV)}]_{\text{total}}[\text{HA}]}\].

where Pu(IV)_{total} is the Pu(IV) cations at the given pH, HA is the humic acid, [HA]_{i} is the concentration of the free hu-
meric acid, [Pu(IV)]_{total} is the concentration of the free Pu(IV)
ion. The concentration of total Pu-HA species is given by the
sum:

\[
[\text{Pu-HA}]_{\text{total}} = [\text{PuHA}] + [\text{Pu(OH)HA}] + [\text{Pu(OH)}_{2}\text{HA}] + [\text{Pu(OH)}_{3}\text{HA}].
\]

The assumption is made that the macromolecule is the cen-
tral group and the complexation can be described in terms of
a Langmuir-type adsorption equation. The free ligand con-
tent can be calculated in Eq. (3) by introducing B_max

\[
[\text{HA}]_{i} = B_{\text{max}} - [\text{Pu(IV)-HA}]_{\text{total}},
\]

where B_max is the maximal complexing capacity of humic
acid.

Calculation of maximal binding capacity (B_max)
and conditional interaction constants (\(B_{\alpha}B\)) of Pu_{total}
from binding isotherm
The conditional interaction constant \(B_{\alpha}B\) is relative to the
following equilibrium:

\[
q_{i} = q_{i-1} + \frac{C_{i} + 9C_{i-1} - 10C_{i-2}}{W},
\]

where \(q_{i}\) is the concentration of Pu(IV) bound on the gel at
the end of the \(i\)th titration step (mol/g); \(q_{i-1}\) is the concentra-
tion of Pu(IV) remaining on the gel at the end of the (i - 1)th titra-
tion step (mol/g); \(C_{i}\) is Pu(IV) concentration in the solution
at the end of the \(i\)th titration step (mol/L); \(C_{i-1}\) is Pu(IV) con-
centration in the solution at the end of the (i - 1) step (mol/L);
\(C_{0}\) is the concentration of the stock solution (mol/L) and \(W\)
is the solid concentration in the suspension (g/L).

A parallel titration study evaluated the sorption of
Pu(IV), in the absence of SiO₂-HA on to vial walls. The
amount of Pu(IV) bound by SiO₂-HA was calculated by
using the difference between the Pu(IV) concentrations
measured in titration experiment and the concentration of
Pu(IV) remaining in solution in the foregoing parallel study.
Isotherms were then plotted.

It is important to note that the proportion of Pu(IV)-
citrate complex should be very low under these conditions,
i.e., less than 3% using the data in Kantar and Honey-
man [17] at 0.101 mol/kg. Recent studies on Np(IV) seem
ph acid [18], but given the large extent of hydrolysis, these
species were not considered important in the following.

Calculation of maximal binding capacity (B_max)
and conditional interaction constants (\(B_{\alpha}B\)) of Pu_{total}
from binding isotherm
The conditional interaction constant \(B_{\alpha}B\) is relative to the
following equilibrium:

\[
\text{Pu(IV)}_{\text{total}} + \text{HA} \rightleftharpoons \text{Pu-HA}_{\text{total}}\]

with \(B_{\alpha}B\) = \[
\frac{[\text{Pu-HA}]_{\text{total}}}{[\text{Pu}^{(IV)}]_{\text{total}}[\text{HA}]}\].

where Pu(IV)_{total} is the Pu(IV) cations at the given pH, HA is the humic acid, [HA]_{i} is the concentration of the free hu-
meric acid, [Pu(IV)]_{total} is the concentration of the free Pu(IV)
ion. The concentration of total Pu-HA species is given by the
sum:

\[
[\text{Pu-HA}]_{\text{total}} = [\text{PuHA}] + [\text{Pu(OH)HA}] + [\text{Pu(OH)}_{2}\text{HA}] + [\text{Pu(OH)}_{3}\text{HA}].
\]

The assumption is made that the macromolecule is the cen-
tral group and the complexation can be described in terms of
a Langmuir-type adsorption equation. The free ligand con-
tent can be calculated in Eq. (3) by introducing B_max

\[
[\text{HA}]_{i} = B_{\text{max}} - [\text{Pu(IV)-HA}]_{\text{total}},
\]

where B_max is the maximal complexing capacity of humic
acid.

Combination of Eqs. (3) and (4) gives the relationship
that could be used for calculation of conditional interaction
constants:

\[
B_{\alpha}B = \frac{[\text{Pu-HA}]_{\text{total}}}{[\text{Pu}^{(IV)}]_{\text{total}}(B_{\text{max}} - [\text{Pu(IV)-HA}]_{\text{total}})}\]

or after alteration

\[
[\text{Pu-HA}]_{\text{total}} = \frac{B_{\alpha}B [\text{Pu}^{(IV)}]_{\text{total}}B_{\text{max}}}{1 + B_{\alpha}B [\text{Pu}^{(IV)}]_{\text{total}}}.\]

After plotting [Pu-HA]_{total} vs. [Pu(IV)]_{total} and using the
binding isotherms, the maximal binding capacity and \(B_{\alpha}B\) of
Pu(IV)_{total} could be determined.

Calculation of conditional interaction constants (\(B_{\alpha}B\))
of Pu^{+} with humic acid
Accounting for the Pu(IV) hydrolysis, the reaction between
Pu^{+} and HA can be written:

\[
\text{Pu}^{+} + \text{HA} \rightleftharpoons \text{PuHA}_{\text{total}},
\]

with \(B_{\alpha}B\) = \[
\frac{[\text{Pu-HA}]_{\text{total}}}{[\text{Pu}^{+}]_{\text{total}}[\text{HA}]}\].

Pu^{+} is readily hydrolysed and it is not expected that only
Pu^{+} ions exist in solution at pH 4. From the Pu(IV)_{total} the
[Pu^{+}]_{total} can be calculated by using the stability constants
of the hydroxo complexes Pu(OH)^{3+}, Pu(OH)^{2+}, Pu(OH)^{+}
and Pu(OH)_{3}^{+} [9, 19]:

\[
[\text{Pu}^{(IV)}]_{\text{total}} = \sum_{i=0}^{4} [\text{Pu(OH)}_{i}^{+}],
\]

\[
[\text{Pu}^{(IV)}]_{\text{total}} = [\text{Pu}^{+}]_{\text{total}}[\text{HA}].
\]

where \(\alpha_{\text{Pu}}\) and \(\beta\) are the side reaction coefficient and hy-
drolysis constants, respectively [20]:

\[
\alpha_{\text{Pu}} = 1 + \frac{\beta_{\text{Pu}}}{[\text{H}^{+}]^{2}}.
\]
After measuring the total Pu(IV) concentration in the liquid phase, it becomes possible to calculate the conditional interaction constants $^{\text{HA}\beta}(\text{Pu}^{4+})$ using the following equation:

$$\log^{\text{HA}\beta}(\text{Pu}_{\text{total}}) + \log \alpha_{\text{Pu}} = \log^{\text{HA}\beta}(\text{Pu}^{4+}). \quad (12)$$

3. Results and discussion

The main characteristics of SiO$_2$-HA are reported in Table 1.

Table 1. Characteristics of SiO$_2$-HA.

<table>
<thead>
<tr>
<th>Substrate content (mg HA g$^{-1}$)</th>
<th>19.9 ± 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton exchange capacity (μeq g$^{-1}$ solid matter)</td>
<td>67.3</td>
</tr>
<tr>
<td>BET surface areaa (m2 g$^{-1}$)</td>
<td>74 ± 8</td>
</tr>
</tbody>
</table>

a: The surface area of the parent silica gel is 100 m2 g$^{-1}$.

Table 2. Binding capacity (B_{max}) and loading capacity (LC(1)) of humic substances immobilized on silica gel with plutonium as a function of ionic strength.

<table>
<thead>
<tr>
<th>Ionic strength M</th>
<th>B_{max} (10^{-6} mol/g)</th>
<th>LC$_{\text{calc}}$ (%)</th>
<th>B_{max} (10^{-6} mol/g)</th>
<th>LC$_{\text{calc}}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>157.2 ± 40.4</td>
<td>2.34 ± 0.60</td>
<td>114.1 ± 28.6</td>
<td>1.66 ± 0.57</td>
</tr>
<tr>
<td>0.05</td>
<td>113.8 ± 17.2</td>
<td>1.69 ± 0.25</td>
<td>93.6 ± 24.4</td>
<td>1.39 ± 0.36</td>
</tr>
<tr>
<td>0.10</td>
<td>86.2 ± 7.8</td>
<td>1.28 ± 0.12</td>
<td>73.4 ± 4.2</td>
<td>0.56 ± 0.07</td>
</tr>
<tr>
<td>0.20</td>
<td>53.8 ± 5.8</td>
<td>0.80 ± 0.09</td>
<td>20.2 ± 2.2</td>
<td>0.30 ± 0.03</td>
</tr>
<tr>
<td>0.50</td>
<td>27.6 ± 3.6</td>
<td>0.41 ± 0.05</td>
<td>13.6 ± 0.8</td>
<td>0.20 ± 0.01</td>
</tr>
<tr>
<td>2.00</td>
<td>16.2 ± 1.2</td>
<td>0.24 ± 0.01</td>
<td>9.1 ± 1.2</td>
<td>0.28 ± 0.02</td>
</tr>
<tr>
<td>3.00</td>
<td>27.2 ± 4.2</td>
<td>0.40 ± 0.06</td>
<td>23.4 ± 3.7</td>
<td>0.35 ± 0.05</td>
</tr>
</tbody>
</table>

Table 3. Calculated conditional interaction constants, $\log^{\text{HA}\beta}(\text{Pu}_{\text{total}})$, side reaction coefficient (log α_{Pu}) and conditional interaction constants, $\log^{\text{HA}\beta}(\text{Pu}^{4+})$ of SiO$_2$-HA with plutonium as a function of molal ionic strength.

<table>
<thead>
<tr>
<th>Ionic strength mol/kg$_{\text{water}}$</th>
<th>$\log^{\text{HA}\beta}(\text{Pu}_{\text{total}})$ calculated from binding isotherms data use of Eq. (6)</th>
<th>log α_{Pu}</th>
<th>$\log^{\text{HA}\beta}(\text{Pu}^{4+})$ calculated using of Eq. (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>7.28 ± 0.44</td>
<td>8.87</td>
<td>16.15 ± 0.44</td>
</tr>
<tr>
<td>0.050</td>
<td>7.22 ± 0.63</td>
<td>8.51</td>
<td>15.73 ± 0.63</td>
</tr>
<tr>
<td>0.101</td>
<td>7.42 ± 0.77</td>
<td>8.19</td>
<td>15.61 ± 0.77</td>
</tr>
<tr>
<td>0.202</td>
<td>7.29 ± 0.67</td>
<td>7.85</td>
<td>15.14 ± 0.67</td>
</tr>
<tr>
<td>0.513</td>
<td>7.61 ± 0.51</td>
<td>7.46</td>
<td>15.07 ± 0.51</td>
</tr>
<tr>
<td>1.051</td>
<td>8.05 ± 0.56</td>
<td>7.35</td>
<td>15.40 ± 0.56</td>
</tr>
<tr>
<td>2.212</td>
<td>8.32 ± 0.41</td>
<td>7.63</td>
<td>15.95 ± 0.41</td>
</tr>
<tr>
<td>3.502</td>
<td>7.99 ± 0.45</td>
<td>8.19</td>
<td>16.18 ± 0.45</td>
</tr>
</tbody>
</table>

Fig. 1. Binding isotherms of Pu(IV) on SiO$_2$-HA in different ionic strengths at pH 4.

Fig. 2. Effect of ionic strength on the maximal binding capacity (B_{max}) of SiO$_2$-HA.
Determination of the conditional interaction constants of $\log^{HA}\beta(Pu^{4+})$

The $\log^{HA}\beta$ values for Pu_{total} with humic acid are presented in Table 3. From this table the conditional interaction constants of Pu^{4+} with humic acid, $\log^{HA}\beta(Pu^{4+})$, can be calculated by using Eq. (12) and the hydrolysis constants from Guillaumont et al. [19]. The $\log\alpha_{0}$ values were calculated using the specific ion interaction theory, SIT [24], on the molality scale. Table 3 and Fig. 4 shows the effect of ionic strength on $\log^{HA}\beta(Pu_{total})$.

As was done by Czerwinski et al. [21], one can propose the apparent variation of $\log^{HA}\beta$ as a function of $\sqrt{I_m}$ following the SIT:

$$\log\beta(I_m) = \log\beta(0) - \Delta z^2 \sqrt{\frac{A}{1 + 1.5\sqrt{I_m}}} + \Delta I_m. \quad (13)$$

As neither the definitions of Δz^2 nor of ΔI for a humic acid complexation process are straightforward, the $\log^{HA}\beta(Pu^{4+})$ for zero ionic strength can be calculated from Eq. (13) using a non-linear least square fitting procedure, which gives:

$$\log^{HA}\beta_0(Pu^{4+}) = 16.6 \pm 0.3.$$

$$
\begin{align*}
\text{Fig. 3.} \quad & \text{Effect of ionic strength on the calculated conditional stability constant (log $^{HA}\beta$) of Pu_{total}.} \\
\text{Fig. 4.} \quad & \text{Effect of ionic strength on the calculated conditional stability constant log $^{HA}\beta(Pu^{4+})$ and fitting to Eq. (13).}
\end{align*}
$$

The physical meaning of the values of $\Delta z^2 = 9.5 \pm 2.2$ and $\Delta I = 0.6 \pm 0.1$ in the case of humic acid complexation are evidently arguable as conformation changes with ionic strength occurs [22]. They can only be treated here as adjustment operational parameters. Similar observations have been reported for actinides(III) by Czerwinski et al. [21] but with half a logarithmic unit intensity for log $^{HA}\beta(Pu^{4+})$.

Comparison with the compilation of data in reference [25] is also informative. The authors proposed that the evolution of $\log^{HA}\beta(An^{4+})$ is following a linear relationship (Eq. (11) in [25]) which can be shifted from one actinide(IV) to another by analogy using the relation:

$$\log^{HA}\beta(An^{4+}) = \log^{HA}\beta(An^{4+})_0 + \log\frac{\alpha_{An^{4+}}}{\alpha_{An^{4+}}}, \quad (14)$$

where $\alpha_{An^{4+}}$ is the side reaction coefficient for actinide(IV).

For U(IV), using the hydrolysis constant of Neck and Kim [9] and the Davies correction for non-ideality, the relation

$$\log^{HA}\beta(U^{4+}) = (3.26 \pm 0.10)\sigma(0.14 \pm 0.67) \quad (15)$$

was proposed. A value of log $\alpha_{An^{4+}} = 5.95 \pm 1.05$ can be calculated with Neck and Kim [9] and the Davies correction for non-ideality at 0.101 m, and log $\partial Pu_{total} = 8.19 \pm 0.37$, using data in Guillaumont et al. [19] with SIT. Applying the shift to the previous relation, one can wait at 0.101 m for Pu^{4+}:

$$\log^{HA}\beta(Pu^{4+}) = (13.18 \pm 0.66) - (5.95 \pm 1.05) \approx (8.19 \pm 0.37) = 15.4 \pm 1.3,$$

which is in fair agreement with the experimental data in Table 3.

At pH 4 $Pu(IV)$ is hydrolysed mainly to $Pu(OH){}_3^{+}$ with a speciation range of 89% at 0.02 mol/kg$_w$ down to 84.2% at 0.5 mol/kg$_w$ and then up to 95.6% at 3.5 mol/kg$_w$ [19]. $Pu(OH){}_3^{+}$, $HA(I)$, following [25–27], can be proposed:

$$Pu^{4+} + 3OH^{-} + HA(I) \rightleftharpoons Pu(OH){}_3^{+}HA(I),$$

$$\log A_{Pu^{4+}} = \log^{HA}\beta(Pu^{4+}) - 3\log[OH^{-}] - \log LC(I), \quad (16a)$$

$$Pu^{4+} + 3H_2O + HA(I) \rightleftharpoons Pu(OH){}_3^{+}HA(I) + 3H^{+},$$

$$\log B_{Pu^{4+}} = \log^{HA}\beta(Pu^{4+}) + 3\log[H^{+}] - 3\log a(H_2O) - \log LC(I). \quad (16b)$$

The loading capacity factor $LC(I)$ defined in [26], which in fact is already accounted in log $^{HA}\beta(Pu^{4+})$ as $B_{max} = PEC \times LC(I)$, can be calculated from Tables 1 and 2. The B_{max} values are divided by the number of available sites in the grafted humic, i.e., PEC = 67.3 μmol/g solid, and are reported in Table 2. Hypothetical $LC(I)$ at $I_m = 0$ mol/kg$_w$ can be extrapolated using a weighted linear regression:

$$LC(I) = (0.028 \pm 0.003) - (0.049 \pm 0.007)\sqrt{I_m} \quad (17)$$

in the range $0.02 \leq I_m$ (mol/kg$_w$) ≤ 0.202 (Fig. 5). This yields in turn $LC(I) = 0.023 \pm 0.002$ at 0.101 mol/kg$_w$.

$^1 \sigma(log\alpha)$ estimated using a finite difference calculation.
The potential of SiO$_2$-HA as a model substrate for predicting the complexation of species such as Pu$^{4+}$ by humate-coated minerals has been demonstrated. From an examination of the sorption isotherms of Pu(IV) at different ionic strengths, it is apparent that conditional stability constants log $^{HA}\beta$(Pu$_{\text{max}}$) and log $\beta_{1.1}$ through the charge neutralization model can be easily calculated. Using these values and the side reaction coefficients (α_{HA}), the conditional stability constants $^{HA}\beta$(Pu$^{4+}$) can be calculated. A comparison of log $^{HA}\beta$(Pu$^{4+}$) at different ionic strength with log $^{HA}\beta$(Pu$_{\text{max}}$) indicates that the effect of ionic strength on humate complexation of Pu(IV) is not dramatically pronounced over part of the range but becomes clearly pronounced for ionic strength less than 0.15 mol/kg$_w$. The effect of ionic strength on maximal binding capacity (B_{max}) appears to be significant. The B_{max} and thus loading capacity factor LC(I), decreases gradually with increasing ionic strength. The experimentally determined log $^{HA}\beta$ values obtained here are in fair agreement, although slightly higher than expected, with previous estimations.

Acknowledgment. This was supported by the “HUPA” Project (EC FIKW-CT-2001-00128) and the “FUNMIG” Project (EC FP6-516514).

References

12. Szaboló, Gy., Barkas, Gy., Bulman, R. A.: Evaluation of silica-humate and alumina-humate HPLC stationary phases for estima-

Fig. 5. Effect of ionic strength at pH 4 on the calculated loading capacity of SiO$_2$-HA gel for Pu(OH)$_3^{+}$, and weighted least square fitted linear relationship between 0.02 and 0.101 mol/kg$_w$.

Fig. 6. Effect of ionic strength at pH 4 on log $^{HA}\beta_{1.1}$, for experimental data (C), data obtained from fitting of Eq. (13) (solid), and associated standard deviation (dotted).

a value which is in agreement with the case of NpO$_2^{+}$ [28], i.e., LC(I) = 0.021 at pH 4 and I = 0.1 M. Calculation by using of Eq. (16a) and (16b) results in log $^{HA}\beta_{1.1} = 46.6 \pm 2.3$ (log $^{HA}\beta_{1.1} = 4.6 \pm 2.3$). One can remark that both the amplitude and the validity of the linear domain of LC(I) vs. \sqrt{I} is far less important compared to the results on LC(III) for actinides(III) [21]. This could be the results of a more constrained structure due to the grafting that might change the conformation of humic acid.

From a comparison with previous data [29, 30], further analysis, as indicated in Ref. [25] can be done. A value of log $^{HA}\beta_{1.1} = 38 \pm 1.2$ for Th(IV) was proposed (log $^{HA}\beta_{1.1} = -3.6 \pm 1.2$), which can be adapted to Pu(IV) using Eq. (14):

$$\log^{HA}\beta_{1.1}(0.101 \text{ m}) = (38 \pm 1.2) - (1.24 \pm 0.31) + (8.19 \pm 0.37) = 44.95 \pm 1.29.$$

By using Eq. (13), the value for log $^{HA}\beta_{1.1} = 45.3 \pm 2.3$ at 0.101 m can be calculated (Fig. 6). The 2σ confidence intervals of these constants clearly overlap and cannot be considered different.

4. Summary and conclusions

The potential of SiO$_2$-HA as a model substrate for predicting the complexation of species such as Pu$^{4+}$ by humate-coated minerals has been demonstrated. From an examination of the sorption isotherms of Pu(IV) at different ionic strengths, it is apparent that conditional stability constants log $^{HA}\beta$(Pu$_{\text{max}}$) and log $\beta_{1.1}$ through the charge neutralization model can be easily calculated. Using these values and the side reaction coefficients (α_{HA}), the conditional stability constants $^{HA}\beta$(Pu$^{4+}$) can be calculated. A comparison of log $^{HA}\beta$(Pu$^{4+}$) at different ionic strength with log $^{HA}\beta$(Pu$_{\text{max}}$) indicates that the effect of ionic strength on humate complexation of Pu(IV) is not dramatically pronounced over part of the range but becomes clearly pronounced for ionic strength less than 0.15 mol/kg$_w$. The effect of ionic strength on maximal binding capacity (B_{max}) appears to be significant. The B_{max} and thus loading capacity factor LC(I), decreases gradually with increasing ionic strength. The experimentally determined log $^{HA}\beta$ values obtained here are in fair agreement, although slightly higher than expected, with previous estimations.

Acknowledgment. This was supported by the “HUPA” Project (EC FIKW-CT-2001-00128) and the “FUNMIG” Project (EC FP6-516514).

