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On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes

Introduction

Finite volume schemes are popular methods to obtain approximations of the solutions of various types of partial differential equations. In the present work, we consider approximations by such schemes of the Laplace equation -∆u = f in a two-dimensional convex polygonal bounded domain Ω, associated with homogeneous Dirichlet boundary conditions. Starting from a given mesh covering Ω, we may distinguish three families of finite volume schemes. First, the principle of the so-called "cell-centered" schemes is to associate discrete unknowns with the cells of the mesh and to integrate the Laplace equation on each cell. Among various approaches, (which have been developed mainly for anisotropic diffusion, but which may of course be applied to the Laplace equation), we may cite [START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods[END_REF][START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results[END_REF][START_REF] Bertolazzi | On vertex reconstructions for cell-centered finite volume approximations of 2D anisotropic diffusion problems[END_REF][START_REF] Breil | A cell-centered diffusion scheme on two-dimensional unstructured meshes[END_REF][START_REF] Coudière | Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem[END_REF][START_REF] Herbin | An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh[END_REF][START_REF] Potier | Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes[END_REF][START_REF] Potier | Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes[END_REF][START_REF] Potier | A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators[END_REF]. The principle of the second family, the so-called "vertex-centered" schemes, is to associate discrete unknowns with the vertices of the primal mesh, and then integrate the Laplace equation on the cells of a dual mesh, centered on the vertices [START_REF] Angermann | Numerical solution of second-order elliptic equations on plane domains[END_REF][START_REF] Bank | Some error estimates for the box method[END_REF][START_REF] Cai | On the finite volume element method[END_REF][START_REF] Cai | The finite volume element method for diffusion equations on general triangulations[END_REF][START_REF] Hackbucsh | On first and second order box schemes[END_REF][START_REF] Süli | Convergence of finite volume schemes for Poisson's equation on nonuniform meshes[END_REF]. More recently, a third family of schemes has emerged, which combines the previous two approaches, since these schemes associate unknowns with both the cells and the vertices of the mesh, and integrate the Laplace equation on both the cells of the primal and dual meshes [START_REF] Andreianov | Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes[END_REF][START_REF] Chainais-Hillairet | Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models[END_REF][START_REF] Coudière | A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation[END_REF][START_REF] Delcourte | A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes[END_REF][START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF][START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF][START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF][START_REF] Njifenjou | Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media[END_REF]. The originality of these schemes is that they work well on all kind of meshes, including very distorted, degenerating, or highly nonconforming meshes (see the numerical tests in [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF]). Since these schemes are based on the definition of discrete gradient and divergence operators which verify a discrete Green formula, they are called "discrete duality finite volume" (DDFV) schemes.

In this work, we shall be interested in the convergence analysis in the L 2 norm of a broken piecewise P 1 function constructed from the solutions of the first two families of schemes when the primal mesh is triangular, and the dual mesh is the Voronoi diagram associated to the vertices of the primal mesh. This broken piecewise P 1 function is actually the solution of the associated DDFV scheme, and the analysis is thus performed with the help of tools introduced for the third family in [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF].

Let us first review how the above-mentioned three families of schemes are constructed. First, both sides of the Laplace equation are integrated on the cells of the primal and/or dual mesh; for each cell, the resulting left-hand side is then transformed into the integral of -∇u • n on the boundary of the cell, thanks to the Green formula. The evaluation of this boundary integral in terms of the discrete unknowns of the scheme is a key issue in the construction and analysis of any of these schemes.

As far as cell-centered schemes are concerned, a simple answer to this question is obtained in the case of so-called "admissible meshes" [START_REF] Eymard | Handbook of numerical analysis[END_REF]Definition 9.1]. Roughly speaking, a mesh is said to be admissible if one may associate a point x K to each cell K of the mesh and a point x σ to each boundary edge σ of the mesh such that • The point x K lies inside K.

• For all pairs of neighboring cells K and L the segment [x K x L ] is orthogonal to the common edge ∂K ∩∂L of K and L. • For any boundary cell K which has an edge σ on the boundary, the segment [x K x σ ] is orthogonal to σ.

In that case, on the interface ∂K ∩ ∂L, the value of ∇u • n is approached in terms of the unknowns u K and u L associated to the cells K and L, respectively, by the finite difference uL-uK xK xL , if n is oriented from K to L. On the boundary edge σ, with σ ⊂ ∂K ∩ ∂Ω, the approximation of ∇u • n is given by -uK xK xσ in the case of homogeneous Dirichlet boundary conditions. The case of non admissible meshes, and/or anisotropic diffusion has recently drawn much attention as reported in the above-cited papers, but is out of the scope of this work. In the case of admissible meshes, the resulting scheme has as many unknowns as equations (one per cell) and is shown to possess a unique solution which converges to the solution with first-order accuracy in a discrete energy norm (if the solution itself belongs to H 2 (Ω) and with some additional constraints on the mesh, see [START_REF] Eymard | Handbook of numerical analysis[END_REF]Definition 9.4]), and, as a consequence of the discrete Poincaré inequality (see [START_REF] Eymard | Handbook of numerical analysis[END_REF]Lemma 9.1]), in the discrete L 2 norm as well, [START_REF] Eymard | Handbook of numerical analysis[END_REF]Theorem 9.4]. Related results in the energy norm have been shown in [START_REF] Mishev | Finite volume methods on Voronoi meshes[END_REF][START_REF] Vanselow | Convergence analysis of a finite volume method via a new nonconforming finite element method[END_REF]. On the other hand, deriving necessary and/or sufficient conditions to obtain second-order accuracy in the discrete L 2 norm is still an open issue on general admissible meshes. This issue has been positively answered in a very special case, namely for rectangular Cartesian grids when the point x K is the center of the rectangle K and under various regularity assumptions over the solution of the Laplace equation. We refer for example to [START_REF] Forsyth | Quadratic convergence for cell-centered grids[END_REF][START_REF] Lazarov | Finite volume methods for convection-diffusion problems[END_REF][START_REF] Weiser | On convergence of block centered finite differences for elliptic problems[END_REF]. On Delaunay triangular meshes, when the points x K are the circumcenters of the triangles K, the answer is believed to be true by some authors (see, e.g. [START_REF] Boivin | A Finite Volume method to solve the Navier Stokes equations for incompressible flows on unstructured meshes[END_REF]), based on numerical evidence. However, it has been shown in [START_REF] Omnes | Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions[END_REF], by means of one-dimensional counter-examples, that second-order convergence in the discrete L 2 norm may be lost if the right-hand side of the Laplace equation does not belong to H 1 (Ω), or if the points x k associated to the one-dimensional segments K are not properly chosen.

As far as vertex-centered schemes are concerned, a simple way to evaluate ∇u • n on the boundaries of the dual cells has been proposed in what is known as the Finite Volume Element (FVE) scheme, also named "box method" and may be explained in the following way in the case of a triangular primal mesh: each segment of the boundary of any dual cell is included in a triangle, in which u is approached locally by a standard Lagrange P 1 finite element function u h constructed with the help of the three unknowns located at the vertices of the triangle. This way to proceed leads to a linear system with as many unknowns as equations (one per vertex) and is shown to possess a unique solution u h which converges to the solution with first-order accuracy in the standard energy norm, as reported in [START_REF] Bank | Some error estimates for the box method[END_REF][START_REF] Cai | On the finite volume element method[END_REF][START_REF] Cai | The finite volume element method for diffusion equations on general triangulations[END_REF]. Second order convergence of u h in the L 2 norm has been shown in the special case in which the dual cell is the barycentric dual cell constructed by connecting the barycenter of each triangle to the midpoints of its edges. Sufficient hypotheses for this result to hold are that the solution of the Laplace equation is in H 2 (Ω), and the right-hand f is in H 1 (Ω). The proofs of second-order accuracy in the L 2 norm explicitly use properties of the barycentric dual cell, and, thus, may not be extended to other constructions of the dual cells (see in particular [START_REF] Chou | L p error estimates and superconvergence for covolume or finite volume element methods[END_REF]Assumption (1.4)], [21, page 1873], [START_REF] Ewing | Finite volume element approximations of nonlocal reactive flows in porous media[END_REF]Page 297]). Especially, second-order accuracy when the dual mesh is the Voronoi diagram associated to the vertices of the triangular primal mesh is an open issue.

Finally, DDFV schemes use a four-point gradient formula defined in [START_REF] Coudière | Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem[END_REF] on the so-called "diamond cells", whose diagonals are the primal and associated dual edges. Such schemes for the Laplace equation have been shown to converge in [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF] on very general meshes, with first-order accuracy in the broken energy norm, as well as in the discrete L 2 (Ω) norm, provided the solution of the Laplace equation belongs to H 2 (Ω). Additional convergence results for anisotropic and/or non linear diffusion and/or discontinuous coefficients may be found in [START_REF] Andreianov | Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes[END_REF][START_REF] Boyer | Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities[END_REF], see also [START_REF] Njifenjou | Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media[END_REF]. For such schemes, an almost second-order accuracy result in the L 2 norm was shown (see [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF]Theorem 7.2]) for homothetically refined triangular grids (see the definition in section 7 of [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF]) in which the points x K associated to the primal cells K are their isobarycenters, under the supplementary assumption that the right-hand side of the Laplace equation belongs to H 1 (Ω). Since the main argument in the proof is that for homothetically refined triangular grids, almost all diamond-cells are parallelograms, the proof of [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF]Theorem 7.2] may be adapted to the case of homothetically refined triangular grids in which the point x K associated to a triangle K is the circumcenter of K. However, second-order accuracy in the L 2 norm on more general meshes is an open issue, in particular on families of non homothetically refined triangular meshes.

The aim of this article is to show that, when Ω is a two-dimensional convex polygonal bounded domain covered by a family of finer and finer triangular primal meshes (with some restrictions on the angles of the triangles), the DDFV function constructed from the solutions of the cell-centered and vertex-centered (on the Voronoi duals) schemes converges to the solution of the Laplace equation with second-order accuracy, under the sufficient condition that the right-hand side f belongs to H 1 (Ω). Therefore, though this result does not give a complete answer to the above-mentioned open issues, it constitutes an important improvement over what was previously known. The tool we shall use to prove this, is the combination of the above-mentioned two schemes into a single DDFV scheme, which, in turn, is shown to be equivalent to a finite element-like scheme (only the right-hand side of the resulting linear system slightly differs). Then, the traditional Aubin-Nitsche lemma allows us to prove second-order convergence. The additional difficulty with respect to genuine finite element schemes is the lack of Galerkin orthogonality associated to finite volume schemes. The three main points in the proof are, first, that f is regular, second, that the diamond-cells are symmetric with respect to the dual edges, and, third, that since the point x K associated to a primal cell K is its circumcenter, it is equidistant from the vertices of K. The regularity of f is used in Lemmas 4.12, 4.15 and 4.16; the symmetry of the diamond-cells in Lemma 4.13 and the equidistance of x K from the vertices of K in Lemma 4. 14. This article is constructed as follows. In section 1, we construct the primal and dual meshes and introduce some notations. In section 2, we present the finite volume schemes on the primal and dual meshes, while in section 3, we combine them into a single finite element-like scheme. This allows us to perform the error analysis in section 4. We discuss in Section 5 possible extensions of this technique to a more general diffusion equation. Conclusions are drawn in section 6.

The primal and dual meshes and associated notations

We shall consider in what follows a two-dimensional bounded convex polygonal domain Ω covered by a family of triangulations T characterized by h := sup K∈T diam(K).

Due to some technicalities in the proofs of our results, we shall state the following hypothesis Hypothesis 1.1. We suppose that there exists an angle θ * > 0, not depending on h, such that any angle of any triangle K in the triangulation is lower than (or equal to) π/2 -θ * .

Note that this hypothesis immediately implies that, choosing the circumcenter of K for the point x K associated to the triangle K and the midpoint of σ for the point x σ associated to the boundary edge σ, properly defines an admissible mesh as defined in the introduction.

We shall use the following notations, summarized on Fig. 1, 2 and 3: For any K ∈ T , we shall denote by m(K) the area of K; we shall call E K the set of three edges of K. Then, E = ∪ K∈T E K is the set of all edges in the mesh. Further, E ext is the set of boundary edges, while E int is the set of interior edges. For any edge σ ∈ E, we shall call x σ the midpoint of σ. If σ ∈ E int , we shall name K and L the two triangles such that σ = ∂K ∩ ∂L. We shall often write σ = K|L. The unit normal vector to σ = K|L pointing outward K

x L σ=K|L x K RK x σ n KL L K σ σ m (σ) d d K Figure 1.
Notations for two neighboring primal cells will be denoted by n KL or, equivalently, by n Kσ . Note that n KL = -n LK . If σ ∈ E ext , the unit normal vector pointing outward K will be denoted by n Kσ . The one-dimensional measure of σ will be denoted by m(σ). We shall call x K the intersection of the orthogonal bisectors of the three edges of K and R K the distance from x K to the vertices of K, which is the radius of the circle in which K is inscribed. For any σ ∈ E K , we shall denote by V K,σ the convex hull of σ ∪ {x K }. The distance between x K and x σ will be denoted by d Kσ . If σ = K|L, we shall denote by

d σ = d Kσ + d Lσ the norm of (x K -x L ). If σ ∈ E ext , d σ = d Kσ is the norm of (x K -x σ ).
We also consider the Voronoi (dual) mesh T * associated with the vertices of the primal triangulation T of Ω. This mesh is obtained by joining the points x K to the points x L as soon as K and L are neighboring triangles and the points x K to the points x σ as soon as σ ∈ E ext ∩ E K . The elements of T * are denoted by K * , L * , etc. Any K * ∈ T * is associated to a vertex x K * of the primal mesh. We define T * int as the set of dual elements which are such that x K * / ∈ Γ and we set T * ext = T * \ T * int . For any K * ∈ T * , we shall denote by m(K * ) the area of K * ; we shall call E K * the set of edges of K * . Then, E * = ∪ K * ∈T * E K * is the set of all edges of the dual mesh. Further, E * ext is the set of boundary edges of the dual mesh, while E * int is the set of interior dual edges. There is an obvious one-to-one correspondence between one given primal edge σ ∈ E and an interior dual edge σ * ∈ E * int . Indeed, for any σ = K|L ∈ E int , we may associate

σ * = [x K x L ], while if σ ⊂ ∂K ∩ Γ ∈ E ext , we may associate σ * = [x K x σ ]. For any σ ∈ E we shall denote by V σ,σ * the convex hull of σ ∪ σ * . We note that if σ = K|L ∈ E int then V σ,σ * = V K,σ ∪ V L,σ . And if σ ⊂ ∂K ∩ Γ ∈ E ext , then V σ,σ * = V K,σ . For any σ * ∈ E * int , with σ * = ∂K * ∩ ∂L * , we shall write σ * = K * |L * .
The unit normal vector directed from K * to L * will be denoted by n K * L * , and we shall denote by

V K * ,σ * the convex hull of σ * ∪ {x K * }. Then there holds V σ,σ * = V K * ,σ * ∪ V L * ,σ * . We shall denote by m(V σ,σ * ) the area of V σ,σ * and remark that m(V σ,σ * ) = 1 2 m(σ)d σ . (1) 
We first prove a lemma that will be useful in the error estimations Then the smallest angle in the triangles x σ x K * x K and x σ x L * x K and in the triangles x σ x K * x L and x σ x L * x L when they exist (i.e. if σ is an interior primal edge), is bounded by below by a strictly positive angle which depends only on θ * , and thus independently of h. • There exists a constant C(θ * ), not depending on h, such that for any triangle K and any of its edges σ there holds

θ /2- π * K x x σ K x d Kσ σ ' ' σ ' ' β α x σ ' K σ m ( ) m( )
m(σ) d Kσ ≤ diam(K) d Kσ ≤ C(θ * ).
Proof. The first point of the lemma is obvious. For the remaining two points, we refer to Fig. 4 for the notations, and we prove the second point for the triangle x σ x K * x K only, since the proof is the same for the other three cases.

Let us start by considering the triangle x K x σ x σ ′ . Since x σ x σ ′ is parallel to σ ′′ , there holds

d Kσ sin(π/2 -θ 1 ) = ||x σ x σ ′ || sin β = m(σ ′′ ) 2 sin β so that d Kσ ≥ m(σ ′′ ) sin(π/2 -θ 1 ) 2 sin β ≥ m(σ ′′ ) sin(θ * ) 2 . (2) 
Now, consider the triangle

x σ x K * x K . There holds tan(α) = 2d Kσ m(σ) ≥ m(σ ′′ ) m(σ) sin(θ * ) = sin(θ 2 ) sin(θ 1 ) sin(θ * ) ≥ sin(2θ * ) sin(θ * ), (3) 
thanks to (2) and since sin(θ 2 ) ≥ sin(2θ * ), as noticed in the first point of the lemma. Moreover, the other acute angle in the triangle

x σ x K * x K is equal to π/2 -α ≥ θ * since α ≤ θ 2 ≤ π/2 -θ * .
This proves the second point in the lemma. As far as the third point is concerned, a bound for m(σ) dKσ easily follows from the estimation (3) on tan(α); the bound for diam(K) dKσ follows from the bound for m(σ) dKσ and the fact that diam(K) m(σ)

≤ 1 sin(2θ * ) .

The finite volume schemes

We shall consider two finite volume schemes which approach the solution û ∈ H 1 0 (Ω) of the Laplace equation -∆u = f associated to homogeneous Dirichlet boundary conditions on Γ. The first scheme has unknowns u K associated to the elements K of the primal mesh T . The second scheme has unknowns u K * associated to the elements K * of the dual mesh T * . Both of them are constructed by integrating the Laplace equation over the elements of their respective (primal or dual) mesh and by using a Green formula, which leads to the evaluation of the normal gradient of u at the interfaces between neighboring elements, or on the boundary Γ. Thanks to the orthogonality between the edges of the primal and dual meshes, these normal derivatives may be approached by simple expressions. More precisely, the first scheme reads

- 1 m(K) σ∈EK F K,σ = f K , ∀K ∈ T , (4) 
with the fluxes

F K,σ = m(σ) (u L -u K ) d σ , if σ ∈ E int , σ = K|L , (5) 
F K,σ = m(σ) (u σ -u K ) d σ , if σ ∈ E ext , σ ⊂ ∂K ∩ Γ . (6) 
In ( 4), the right-hand side is the mean-value of f over K:

f K = 1 m(K) K f (x)dx . (7) 
In ( 6), we set u σ = 0 according to the homogeneous Dirichlet boundary condition.

The second scheme reads

- 1 m(K * ) σ * ∈E K * F K * ,σ * = f K * , ∀K * ∈ T * int , (8) 
with the fluxes

F K * ,σ * = d σ (u L * -u K * ) m(σ) , if σ * ∈ E * int , σ * = K * |L * (9) 
and boundary conditions

u K * = 0 , ∀K * ∈ T * ext . (10) 
Note that in Eq. ( 9), the quantities d σ and m(σ) refer to the primal edge σ associated to the internal dual edge σ * as explained previously. Moreover, boundary fluxes over ∂K * ∩ ∂Ω are not needed in the definition of the second scheme, since Eq. ( 8) is only written for interior dual cells. In [START_REF] Boyer | Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities[END_REF], the right-hand side is the mean-value of f over K * :

f K * = 1 m(K * ) K * f (x)dx . ( 11 
)
Note that although the values of f K * when K * ∈ T * ext are not needed by the scheme ( 8)-( 10), we may still define the mean-values of f over these boundary dual cells by Eq. ( 11).

An equivalent finite element-like scheme

First, we shall prove that a certain combination of the schemes considered above verify a discrete variational formulation. For this, we shall first define the set in which the unknowns of the above two schemes are to be searched Definition 3.1. We set

V 0 (T ) := v = ((v K ) K∈T , (v σ ) σ∈Eext , (v K * ) K * ∈T * ) , s.t. v σ = 0 , ∀σ ∈ E ext , v K * = 0 , ∀ K * ∈ T * ext (12)
With these discrete values, we shall associate two functions. We start with Definition 3.2. Let θ K be the characteristic function of K. Identically, let θ K * be the characteristic function of

K * . Let v = ((v K ) K∈T , (v σ ) σ∈Eext , (v K * ) K * ∈T * ) be in V 0 (T ) defined above. We define the function v △, * h as follows v △, * h := 1 2 K∈T v K θ K + K * ∈T * v K * θ K * . (13) 
In the notation v △, * h , the superscript △ stands for the primal (triangular) mesh and the superscript * stands for the dual mesh.

The second function is defined by its restrictions on the diamond-cells of the mesh

Definition 3.3. Let v = ((v K ) K∈T , (v σ ) σ∈Eext , (v K * ) K * ∈T * ) be in V 0 (T ) defined above.
With these values, we define a function v h constructed in the following way. Let us first consider an inner primal edge σ ∈ E int with σ = K|L and σ * = K * |L * its associated inner dual edge. The restriction of v h on V σ,σ * is defined as the only P 1 function over V σ,σ * which is such that (see Fig. 5)

v h x K + x K * 2 = v K + v K * 2 , v h x K + x L * 2 = v K + v L * 2 , v h x L + x L * 2 = v L + v L * 2 , v h x L + x K * 2 = v L + v K * 2 . (14) 
A similar formula defines

v h on V σ,σ * if σ ∈ E ext with σ ⊂ ∂K ∩ Γ associated to the inner dual edge σ * = K * |L * : v h x K + x K * 2 = v K + v K * 2 , v h x K + x L * 2 = v K + v L * 2 , v h x σ + x L * 2 = v σ + v L * 2 , v h x σ + x K * 2 = v σ + v K * 2 . ( 15 
)
Of course, the definition of a P 1 function by four of its values is in general impossible. However, it may be checked that (see [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF]Prop. 4.1] for details), in the present case, such a function exists and is unique thanks to the fact that the quadrangle

xK +x K * 2 xK +x L * 2 xL+x L * 2 xL+x K * 2
is a rectangle (actually, a parallelogram would be enough) and since the four prescribed values in the right-hand sides of ( 14) are not independent but verify

v K + v K * 2 + v L + v L * 2 = v K + v L * 2 + v L + v K * 2 .
Note that the function v h is non-conforming since it is only continuous at the midpoints of the boundaries of the cells V σ,σ * . Note that thanks to the second line in [START_REF] Coudière | A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation[END_REF], and since v σ = 0 for all σ ∈ E ext and v K * = 0 for all K * ∈ T * ext , the function v h vanishes on Γ. Definition 3.4. We call L the linear operator which associates to the element v ∈ V 0 (T ) the function v h defined above. Next, we define V h0 := L(V 0 (T )) the set of all possible functions v h defined by ( 14) and [START_REF] Coudière | A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation[END_REF].

A direct calculation leads to the following proposition

x K v v * Κ + Κ 2 v v L + L 2 * σ d K 2 σ d L 2 σ σ * L * x x K * x L x σ v v + Κ 2 v v * Κ + L 2 L * Figure 5. Values of the P 1 function v h on the diamond-cell V σ,σ * .
Proposition 3.5. Let v h be in V h0 . Then its broken (diamond-cell per diamond-cell) gradient ∇ h v h has the following expression

(∇ h v h ) V σ,σ * =            (v L -v K ) d σ n KL + (v L * -v K * ) m(σ) n K * L * if σ ∈ E int (v σ -v K ) d σ n Kσ + (v L * -v K * ) m(σ) n K * L * if σ ∈ E ext , ∀V σ,σ * . (16) 
We may now state the main result of this section Proposition 3.6. The finite volume formulations ( 4)-( 11) may be combined into a single finite element-like formulation which reads: Find u h in V h0 such that for all v h in V h0 ,

a h (u h , v h ) = ℓ(v △, * h ) , ( 17 
)
where

a h (u h , v h ) = V σ,σ * V σ,σ * ∇ h u h • ∇ h v h dx and ℓ(v △, * h ) = Ω f v △, * h (x) dx . ( 18 
)
Moreover, there exists a constant C not depending on the mesh such that, if û is in H 2 (Ω), there holds

|û -u h | 1,h := a h (û -u h , û -u h ) 1/2 ≤ Ch û H 2 (Ω) . (19) 
Note that the definitions of the bilinear form a h and of the linear form ℓ may be extended to functions belonging to H 1 (Ω). For such functions, the broken gradient in the definition of a h should be replaced by the classical continuous gradient ∇.

Proof. The equivalence between the finite element like formulation and the finite volume schemes is a particular case of the proof given in [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF]Prop. 4.4]. As an illustration, we shall only show how to derive (17) from ( 4)- [START_REF] Cai | The finite volume element method for diffusion equations on general triangulations[END_REF]. 4) and ( 7), there holds

Consider any vector

v = ((v K ) K∈T , (v σ ) σ∈Eext , (v K * ) K * ∈T * ) in V 0 (T ). Thanks to (
-v K σ∈EK F K,σ = m(K)v K f K = Ω f (x)v K θ K (x)dx , ∀K ∈ T .
Then, thanks to ( 8) and [START_REF] Cai | The finite volume element method for diffusion equations on general triangulations[END_REF], there holds for all

K * ∈ T * int -v K * σ * ∈E K * F K * ,σ * = m(K * )v K * f K * = Ω f (x)v K * θ K * (x)dx . ( 20 
)
But since v K * vanishes for all K * ∈ T * ext , we may also write, for

K * ∈ T * ext -v K * σ * ∈E K * ∩E * int F K * ,σ * = Ω f (x)v K * θ K * (x)dx .
Thus, for any vector v in V 0 (T ), there holds

- 1 2   K∈T v K σ∈EK F K,σ + K * ∈T * v K * σ * ∈E K * ∩E * int F K * ,σ *   = Ω f v △, * h (x)dx . ( 21 
)
Now the sums in the left-hand side of Eq. ( 21) can be reorganized in the following way. Let us first consider a given σ ∈ E int and its associated σ * ∈ E * int . They both appear twice in the sums in the left-hand side of Eq. ( 21). Since F K,σ = -F L,σ and F K * ,σ * = -F L * ,σ * if σ = K|L and σ * = K * |L * , we may write, thanks to the expressions of F K,σ and F K * ,σ * , respectively given by ( 5) and ( 9)

- 1 2 (v K F K,σ + v L F L,σ + v K * F K * ,σ * + v L * F L * ,σ * ) = 1 2 m(σ) (u L -u K ) d σ (v L -v K ) + 1 2 d σ (u L * -u K * ) m(σ) (v L * -v K * ) = m(V σ,σ * ) (u L -u K ) d σ (v L -v K ) d σ + (u L * -u K * ) m(σ) (v L * -v K * ) m(σ) ,
thanks to [START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods[END_REF]. Let us now consider a given σ ∈ E ext and its associated σ * ∈ E * int . In Eq. ( 21), σ appears only once since it is a boundary edge. On the other hand, σ * still appears twice and we may write

- 1 2 (v K F K,σ + v K * F K * ,σ * + v L * F L * ,σ * ) = - 1 2 m(σ) (u σ -u K ) d σ v K + 1 2 d σ (u L * -u K * ) m(σ) (v L * -v K * ) = m(V σ,σ * ) (u σ -u K ) d σ (v σ -v K ) d σ + (u L * -u K * ) m(σ) (v L * -v K * ) m(σ) ,
since v σ vanishes. Finally, since n KL • n K * L * = 0, Eq. ( 21) may be rewritten as

V σ,σ * m(V σ,σ * ) (∇ h u h ) V σ,σ * • (∇ h v) V σ,σ * = V σ,σ * V σ,σ * ∇ h u h • ∇ h v h = Ω f v △, * h (x)dx ,
which is the desired result.

Moreover, the error estimation ( 19) is inferred from [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF]Th. 5.20], in which the angle τ * is always equal to π/2 in the special case of Delaunay-Voronoi meshes. Related convergence results in a discrete norm for each component (primal or dual) of the gradient may be found in [START_REF] Eymard | Handbook of numerical analysis[END_REF][START_REF] Mishev | Finite volume methods on Voronoi meshes[END_REF][START_REF] Vanselow | Convergence analysis of a finite volume method via a new nonconforming finite element method[END_REF].

Error estimation in the L 2 norm

Using the equivalent (non-conforming) finite element formulation, we shall derive an estimation in the L 2 norm using the traditional Aubin-Nitsche lemma. An additional difficulty will arise due to the fact that the right-hand side in ( 17) is given by ( 18) instead of the more traditional term Ω f v h (x) dx which would arise in a genuine finite element method. In order to evaluate errors coming from the difference between these two terms, we shall state a regularity hypothesis on f , which is the same as that involved in the studies concerning vertex-centered finite volume element schemes, see, e.g., [START_REF] Ewing | On the accuracy of the finite volume element method based on piecewise linear polynomials[END_REF] and one-dimensional cell-centered finite volume schemes, see [START_REF] Omnes | Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions[END_REF].

Hypothesis 4.1. We suppose that the function f belongs to H 1 (Ω).

Remark 4.2. The first consequence of this hypothesis (actually, f in L 2 (Ω) would be enough for this) is that, since Ω has been supposed to be a convex polygonal domain, the exact solution û of the Laplace equation belongs to H 2 (Ω) and there exists a constant C, not depending in f such that û H 2 (Ω) ≤ C f L 2 (Ω) . As a corollary, the error estimation [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF] provides

|û -u h | 1,h ≤ Ch f L 2 (Ω) , (22) 
with a constant C that does not depend on the mesh.

A representation formula for the error in the L 2 (Ω) norm

We start by writing

û -u h L 2 (Ω) = sup g∈L 2 (Ω) Ω (u h -û)g(x)dx g L 2 (Ω) . (23) 
Now, for a given g ∈ L 2 (Ω), let us define φ ∈ H 1 0 (Ω) which is the unique solution of the following problem

-∆ φ = g in Ω φ = 0 on Γ . ( 24 
)
Since g is in L 2 (Ω), and since we have supposed that Ω is a convex polygonal domain, φ belongs to H 2 (Ω) and there exists a constant C depending only on Ω such that φ

H 2 (Ω) ≤ C g L 2 (Ω) . (25) 
We may write the following representation formula Proposition 4.3. Let φ = ((φ K ) K∈T , (φ σ ) σ∈Eext , (φ K * ) K * ∈T * ) be given in V 0 (T ) and let

φ h = L(φ) ∈ V h0 ( 26 
)
be the function associated to φ through Def. 3.4. There holds

Ω (u h -û)g(x)dx = a h (u h -û, φ -φ h ) - Ω f φ h -φ △, * h (x) dx - V σ,σ * ∂V σ,σ * ∇û • n φ h dσ (27) - V σ,σ * ∂V σ,σ * (u h -û) ∇ φ • n dσ .
Proof. Through Eq. ( 24), there holds

Ω (u h -û)g(x)dx = - V σ,σ * V σ,σ * (u h -û) ∆ φ (x) dx = a h (u h -û, φ) - V σ,σ * ∂V σ,σ * (u h -û) ∇ φ • n dσ, (28) 
thanks to a Green formula on each V σ,σ * , and where n is the unit exterior normal vector on ∂V σ,σ * . Now let us consider an arbitrary φ given in V 0 (T ) and let φ h = L(φ) be its associated function. There holds, by definition of the bilinear form a h

a h h -û, φ) = a h (u h -û, φ -φ h ) + a h (u h , φ h ) - V σ,σ * V σ,σ * ∇û • ∇ h φ h (x)dx . (29) 
Thanks to [START_REF] Crouzeix | Conforming and nonconforming finite element methods for solving the stationary Stokes equations[END_REF], we have

a h (u h , φ h ) = Ω f φ △, * h (x)dx . ( 30 
)
On the other hand, since -∆û = f , a Green formula on each V σ,σ * provides

- V σ,σ * V σ,σ * ∇û • ∇ h φ h (x)dx = - V σ,σ * V σ,σ * f φ h (x)dx - V σ,σ * ∂V σ,σ * ∇û • n φ h dσ . (31) 
Gathering ( 28)-( 31), the result ( 27) is obtained.

Up to now, the values of φ are arbitrary, but since they will play a key role in the evaluation of the various terms in [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF], we shall precise them now.

Choosing φ

Of course, we shall choose φ so that the associated function φ h = L(φ) (see Def. 3.4) will be a good approximation of φ. We propose to choose the values ((φ K ) K∈T , (φ σ ) σ∈Eext , (φ K * ) K * ∈T * ) as the solutions of the primal and dual finite volume schemes of section 2, associated to the Laplace equation ( 24) satisfied by φ. More precisely, we write

- σ∈EK F K,σ = K g(x)dx, , ∀K ∈ T , (32) 
with the fluxes

F K,σ = m(σ) (φ L -φ K ) d σ , if σ ∈ E int , σ = K|L , (33) 
F K,σ = m(σ) (φ σ -φ K ) d σ , if σ ∈ E ext , σ ⊂ ∂K ∩ Γ . (34) 
In [START_REF] Njifenjou | Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media[END_REF], we set φ σ = 0 [START_REF] Omnes | Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions[END_REF] according to the homogeneous Dirichlet boundary condition.

The second scheme reads

- σ * ∈E K * F K * ,σ * = K * g(x)dx , ∀K * ∈ T * int , (36) 
with the fluxes

F K * ,σ * = d σ (φ L * -φ K * ) m(σ) , if σ * ∈ E * int , σ * = K * |L * ( 37 
)
and boundary conditions

φ K * = 0 , ∀K * ∈ T * ext . ( 38 
)
Note that Eqs ( 35) and ( 38) ensure that φ is indeed in V 0 (T ) as required in Prop. 4.3.

In particular, two points will be important in what follows. First, since φ is in H 2 (Ω), we may apply the error estimate given by [START_REF] Domelevo | A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF], in which we replace û and u h by φ and φ h , so that there holds, taking into account ( 25)

φ -φ h 1,h ≤ Ch g L 2 (Ω) . ( 39 
)
with a constant C not depending on the mesh. Moreover, it is clear from the definitions ( 16) and from ( 32) and [START_REF] Mishev | Finite volume methods on Voronoi meshes[END_REF], that φ h verifies

- σ∈EK m(σ)∇ h φ h • n Kσ = K g(x)dx, , ∀K ∈ T . (40) 
For this, we recall that we have set n KL = n Kσ if σ = K|L.

Estimations of the various terms in (27)

The technique used to evaluate the last two terms in Eq. ( 27) is classical and dates back to [START_REF] Crouzeix | Conforming and nonconforming finite element methods for solving the stationary Stokes equations[END_REF]. It is based on [17, lemma 3], in which we choose m = 0: Lemma 4.4. Let T be a triangle and let T ′ be any of its edges; there exists a constant C independent of T such that for all v in H 1 (T ), and for all ϕ in H 1 (T ), there holds

T ′ ϕ(v -M T ′ v) dσ ≤ Cσ(T ) diam(T ) |ϕ| 1,T |v| 1,T , (41) 
where

M T ′ v := 1 m(T ′ ) T ′ v dσ is the mean value of v over T ′ and where σ(T ) := diam(T ) ρ(T )

is classically the ratio of the diameter of T to the diameter of the largest circle inscribed in T .

Let us start by the last term in [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF]. Lemma 4.5. There exists a constant C depending only on θ * such that Proof. The function u h is piecewise P 1 and continuous at the midpoint of each edge of the diamond mesh and vanishes on the boundary Γ. Moreover, φ is in H 2 (Ω). Thus, there holds

V σ,σ * ∂V σ,σ * (u h -û) ∇ φ • n dσ ≤ Ch 2 f L 2 (Ω) g L 2 (Ω) . ( 42 
) * K x x σ K x T T'
V σ,σ * T ′ ⊂∂V σ,σ * T ′ u h M T ′ ∇ φ • n = 0 .
Moreover, since û is in H 2 (Ω) and vanishes on Γ

V σ,σ * T ′ ⊂∂V σ,σ * T ′ û M T ′ ∇ φ • n = 0 . Therefore, V σ,σ * ∂V σ,σ * (u h -û) ∇ φ • n dσ = V σ,σ * T ′ ⊂∂V σ,σ * T ′ (u h -û) (∇ φ • n -M T ′ ∇ φ • n) dσ .
Next, for each V σ,σ * and each edge T ′ ⊂ ∂V σ,σ * , we shall apply lemma 4.4 on a triangle T defined to be the convex hull of T ′ ∪ {x σ } (see Fig. 6)

with v = ∇ φ • n ∈ H 1 (T ) (since φ ∈ H 2 (Ω)) and ϕ = (u h -û) ∈ H 1 (T ) (since u h is in P 1 (T ) and û ∈ H 2 (Ω)). Since diam(T ) ≤ h and since it is well-known that σ(T ) ≤ 2 sin θ(T )
where θ(T ) is the smallest angle in T , the second point of lemma 1.2 and (41) lead to the existence of a constant C depending only on θ * such that

T ′ (u h -û) (∇ φ • n -M T ′ ∇ φ • n) dσ ≤ Ch ∇(û -u h ) L 2 (T ) φ H 2 (T )
.

Since the set of such triangles T constitutes a partition of Ω, a discrete Cauchy-Schwarz inequality, together with ( 25) and ( 22) leads to (42). Now, we turn to the third term in the right-hand side of [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF].

Lemma 4.6. There exists a constant C depending only on θ * such that

V σ,σ * ∂V σ,σ * ∇û • n φ h dσ ≤ Ch 2 f L 2 (Ω) g L 2 (Ω) . ( 43 
)
Proof. The third term in the right-hand side of ( 27) may be transformed into

- V σ,σ * ∂V σ,σ * ∇û • n (φ h -φ) dσ ( 44 
)
since φ is continuous and vanishes along Γ and since there is no jump of ∇û ∈ H 1 (Ω) across ∂V σ,σ * . Now, the technique we have used above to obtain (42) may be applied to evaluate (44) and we end up with

V σ,σ * ∂V σ,σ * (φ h -φ) ∇û • n dσ ≤ Ch φ -φ h 1,h f L 2 (Ω)
with a constant depending only on θ * , and we conclude with (39).

Next, bounding the first term in the right-hand side of ( 27) is performed by the Cauchy-Schwarz inequality and by ( 22) and (39). We obtain Lemma 4.7. There exists a constant C not depending on the mesh such that

a h (u h -û, φ -φ h ) ≤ Ch 2 f L 2 (Ω) g L 2 (Ω) . (45) 
Now, the term which remains to be evaluated in [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF] is that coming from the fact that ( 17)-( 18) is not a genuine finite element formulation, like explained in the introduction of section 4.

We shall first define the following functions Definition 4.8. Let ((φ K ) K∈T , (φ σ ) σ∈Eext , (φ K * ) K * ∈T * ) be given, we define φ △ h and φ * h by

φ △ h |K (x) := φ K 2 , ∀x ∈ K , ∀K ∈ T , (46) 
φ * h|K * (x) := φ K * 2 , ∀x ∈ K * , ∀K * ∈ T * , (47) 
Definition 4.9. Let ((φ K ) K∈T , (φ σ ) σ∈Eext , (φ K * ) K * ∈T * ) be given, we define φ 1 h and φ 2 h by

φ 1 h (x) |V σ,σ * :=        d Kσ φ L + d Lσ φ K 2d σ + (x -x σ ) • φ L -φ K d σ n KL , ∀x ∈ V σ,σ * if σ = K|L ∈ E int φ σ 2 + (x -x σ ) • φ σ -φ K d σ n Kσ , ∀x ∈ V σ,σ * if σ ∈ E ext , (48) 
and

φ 2 h (x) |V σ,σ * := φ L * + φ K * 4 + (x -x σ ) • φ L * -φ K * m(σ) n K * L * , ∀x ∈ V σ,σ * , with σ * = K * |L * , (49) 
With these definitions, there holds Lemma 4.10.

φ h -φ △, * h = φ 1 h -φ △ h + φ 2 h -φ * h . (50) 
Proof. From ( 13), ( 46) and (47), there holds

φ △, * h (x) = φ △ h (x) + φ * h (x) , ∀x ∈ Ω . (51) 
Moreover, the following equality may also be easily checked by simple interpolation (see Fig. 5)

φ h (x σ ) =      d Kσ φ L + d Lσ φ K 2d σ + φ L * + φ K * 4 if σ = K|L ∈ E int , σ * = K * |L * φ σ 2 + φ L * + φ K * 4 if σ ∈ E ext , σ * = K * |L * so that, since φ h is a P 1 function in V σ,σ * , φ h (x) |V σ,σ * =      d Kσ φ L + d Lσ φ K 2d σ + φ L * + φ K * 4 + (x -x σ ) • ∇ h φ h , ∀x ∈ V σ,σ * if σ = K|L ∈ E int φ σ 2 + φ L * + φ K * 4 + (x -x σ ) • ∇ h φ h , ∀x ∈ V σ,σ * if σ ∈ E ext ,
with, in both cases, σ * = K * |L * . Recalling that ∇ h φ h is given by ( 16), and with the definitions (48) and ( 49), there holds

φ h (x) |V σ,σ * = φ 1 h (x) |V σ,σ * + φ 2 h (x)
|V σ,σ * , which, together with (51), leads to (50).

Moreover, from (48), ( 49) and ( 16), recalling that we have set n KL = n Kσ if σ = K|L, there holds Lemma 4.11.

(∇ h φ 1 h ) |V σ,σ * • n Kσ =        φ L -φ K d σ = (∇ h φ h ) |V σ,σ * • n Kσ if σ = K|L ∈ E int φ σ -φ K d σ = (∇ h φ h ) |V σ,σ * • n Kσ if σ ∈ E ext (52) 
and

(∇ h φ 2 h ) |V σ,σ * • n K * L * = φ L * -φ K * m(σ) = (∇ h φ h ) |V σ,σ * • n K * L * . (53) 
With these definitions, the remaining term which has to be evaluated in [START_REF] Hermeline | Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes[END_REF] reads

Ω f φ h -φ △, * h (x) dx = Ω f -f △ φ 1 h -φ △ h (x) dx + Ω f △ φ 1 h -φ △ h (x) dx + Ω f -f σσ * φ 2 h -φ * h (x) dx (54) 
+ Ω f σσ * φ 2 h -φ * h (x) dx ,
where the following L 2 projections have been used:

f △ (x) = f K = 1 m(K) K f (x)dx , ∀x ∈ K , ∀K ∈ T , (55) 
f σσ * (x) = f V σ,σ * = 1 m(V σ,σ * ) V σ,σ * f (x)dx , ∀x ∈ V σ,σ * , ∀V σ,σ * .
We shall first evaluate the first and third terms in the right-hand side of Eq. (54).

Lemma 4.12. There exists a constant C, not depending on the mesh, such that

Ω f -f △ φ 1 h -φ △ h (x) dx + Ω f -f σσ * φ 2 h -φ * h (x) dx ≤ Ch 2 f H 1 (Ω) g L 2 (Ω) . (56) 
Proof. From (48), if σ ∈ E int , with σ = K|L, there holds

φ 1 h x K + x σ 2 = d Kσ φ L + d Lσ φ K 2d σ + x K -x σ 2 • φ L -φ K d σ n KL = d Kσ φ L + d Lσ φ K 2d σ - d Kσ (φ L -φ K ) 2d σ = d Kσ + d Lσ 2d σ φ K = φ K 2 = φ △ h |K , (57) 
and the same equality holds if σ ∈ E ext , with σ ⊂ ∂K ∩ ∂Ω. This shows that the function φ △ h interpolates the function

φ 1 h at xK +xσ 2 ∈ V K,σ . Thus, since φ 1 h -φ △ h is a P 1 function in V K,σ
, there holds, with (52)

φ 1 h -φ △ h 2 L 2 (VK,σ) ≤ diam 2 (V K,σ ) ∇ h φ 1 h 2 L 2 (VK,σ) ≤ diam 2 (V K,σ ) ∇ h φ h 2 L 2 (VK,σ) .
Summing over all V K,σ for σ ∈ E K and K ∈ T , and since diam(V K,σ ) ≤ h, we obtain

φ 1 h -φ △ h L 2 (Ω) ≤ h |φ h | 1,h .
In the same way, it may be shown from (49) that φ * h interpolates φ 2 h at x K ⋆ +xσ 2 ∈ V K * ,σ * , so that

φ 2 h -φ * h L 2 (Ω) ≤ h |φ h | 1,h .
On the other hand, since, through Hyp. 4.1, f ∈ H 1 (Ω), and since every K and every V σ,σ * are convex, there exists a constant C that does not depend on f , K or V σ,σ * such that

f -f △ L 2 (K) ≤ Cdiam(K) ∇f L 2 (K) and f -f σσ * L 2 (V σ,σ * ) ≤ Cdiam(V σ,σ * ) ∇f L 2 (V σ,σ * ) . This leads to f -f △ L 2 (Ω) ≤ Ch ∇f L 2 (Ω) and f -f σσ * L 2 (Ω) ≤ Ch ∇f L 2 (Ω) .
We conclude that

Ω f -f △ φ 1 h -φ △ h (x) dx + Ω f -f σσ * φ 2 h -φ * h (x) dx ≤ Ch 2 ∇f L 2 (Ω) |φ h | 1,h , (58) 
Moreover, the triangle inequality and (39) lead to

|φ h | 1,h ≤ φ H 1 (Ω) + φ -φ h 1,h ≤ φ H 2 (Ω) + Ch||g|| L 2 (Ω) , (59) 
which, injected in (58), and taking [START_REF] Herbin | An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh[END_REF] into account, lead to (56).

We now evaluate the last term in Eq. (54).

Lemma 4.13. There holds

Ω f σσ * φ 2 h -φ * h (x) dx = 0 . ( 60 
)
Proof. Since f σσ * is a constant over each V σ,σ * , there holds

Ω f σσ * φ 2 h -φ * h (x) dx = V σ,σ * f V σ,σ * V σ,σ * φ 2 h -φ * h (x) dx. (61) 
Since x σ is the midpoint of σ, and by symmetry of V σ,σ * with respect to [x K x L ], there holds

V σ,σ * (x -x σ ) • n K * L * dx = 0 .
Thus, from Eq. ( 49), we infer that

V σ,σ * φ 2 h (x)dx = m(V σ,σ * ) φ L * + φ K * 4 . (62) 
Moreover, from Eq. ( 47)

V σ,σ * φ * h (x)dx = V K * ,σ * φ K * 2 dx + V L * ,σ * φ L * 2 dx .
By symmetry of V σ,σ * with respect to [x K x L ], there holds m(V K * ,σ * ) = m(V L * ,σ * ) = 1 2 m(V σ,σ * ). Thus,

V σ,σ * φ * h (x)dx = m(V σ,σ * ) φ L * + φ K * 4 . (63) 
Thus, (60) follows from (61), ( 62) and (63).

Finally, there remains to evaluate the second term in the right-hand side of (54). The following lemma will be helpful for this. Lemma 4.14. Recall that R K is the radius of the circle in which the triangle K is inscribed. There holds

Ω f △ φ 1 h -φ △ h (x) dx = K∈T f K R 2 K 12 σ∈EK m(σ)∇ h φ h • n Kσ - 1 48 K∈T f K σ∈EK (m(σ)) 3 ∇ h φ h • n Kσ . ( 64 
)
Proof. By definition of φ △ h , see (46), and of f △ , see (55), there holds

Ω f △ φ 1 h -φ △ h (x) dx = K∈T f K σ∈EK VK,σ φ 1 h - φ K 2 (x) dx . (65) 
Since φ 1 h is a P 1 function over the triangle V K,σ , the following quadrature formula is exact

VK,σ φ 1 h (x)dx = m(V K,σ ) 3 φ 1 h (x K ) + 2φ 1 h (x σ ) . (66) 
But we also have

φ 1 h (x K ) + φ 1 h (x σ ) = 2φ 1 h x K + x σ 2 (67) 
and

φ 1 h (x σ ) = φ 1 h x K + x σ 2 + x σ -x K 2 • ∇ h φ 1 h . (68) 
Summing ( 67) and (68), and using (57), the fact that x σx K = d Kσ n Kσ and (52), Eq. (66) writes

VK,σ φ 1 h (x)dx = m(V K,σ ) 3 3 φ K 2 + d Kσ 2 ∇ h φ h • n Kσ . Since m(V K,σ ) = dKσm(σ)

2

, we finally have

VK,σ φ 1 h - φ K 2 (x) dx = d 2 Kσ m(σ) 12 ∇ h φ h • n Kσ .
The next step is the calculation of

σ∈EK VK,σ φ 1 h - φ K 2 (x) dx = σ∈EK d 2 Kσ m(σ) 12 ∇ h φ h • n Kσ .
This is performed using the fact that

d 2 Kσ = R 2 K -(m(σ)) 2 4
(see Fig. 1). Thus,

σ∈EK VK,σ φ 1 h - φ K 2 (x) dx = R 2 K 12 σ∈EK m(σ)∇ h φ h • n Kσ - 1 48 σ∈EK (m(σ)) 3 ∇ h φ h • n Kσ . (69) 
Inserting (69) into (65) yields (64). Now, we bound the first term in the right-hand side of (64).

Lemma 4.15. There exists a constant C such that

K∈T f K R 2 K 12 σ∈EK m(σ)∇ h φ h • n Kσ ≤ Ch 2 f L 2 (Ω) g L 2 (Ω) . ( 70 
)
Proof. Recall that φ has been chosen so that (40) holds. This implies

R 2 K σ∈EK m(σ)∇ h φ h • n Kσ = -R 2 K K g(x)dx
so that, using a continuous and then a discrete Cauchy-Schwarz inequality,

K∈T f K R 2 K 12 σ∈EK m(σ)∇ h φ h • n Kσ ≤ 1 12 K∈T f K R 2 K m(K) g L 2 (K) ≤ 1 12 h 2 K∈T m(K) |f K | 2 1/2 g L 2 (Ω) ,
since R K ≤ h by definition. Eq. ( 70) is then obtained since

K∈T m(K) |f K | 2 1/2 ≤ f L 2 (Ω) .
Lemma 4.16. Under Hyp. 1.1 and 4.1, there exists a constant C, depending only on θ * , such that

1 48 K∈T f K σ∈EK (m(σ)) 3 ∇ h φ h • n Kσ ≤ Ch 2 f H 1 (Ω) g L 2 (Ω) . (71) 
Proof. Recall that for any σ = K|L, there holds

∇ h φ h • n KL = -∇ h φ h • n LK . Thus, K∈T f K σ∈EK (m(σ)) 3 ∇ h φ h • n KL = σ∈Eint,σ=K|L (m(σ)) 3 (f K -f L ) ∇ h φ h • n KL + σ∈Eext (m(σ)) 3 f K ∇ h φ h • n KL . ( 72 
) Since m(V σ,σ * ) = m(σ) dσ 2 
, and m(σ) ≤ h there holds

(m(σ)) 3 = √ 2 m(V σ,σ * )(m(σ)) 2 m(σ) d σ ≤ Ch 2 m(V σ,σ * ) m(σ) d σ ,
so that, using a discrete Cauchy-Schwarz inequality yields σ∈Eint,σ=K|L

(m(σ)) 3 (f K -f L ) ∇ h φ h • n KL ≤ Ch 2   σ∈Eint,σ=K|L m(σ) d σ (f K -f L ) 2   1/2 |φ h | 1,h .
Thanks to the last point of Lemma 1.2, we may now directly apply [START_REF] Eymard | Handbook of numerical analysis[END_REF]Lemma 9.4] to conclude that σ∈Eint,σ=K|L

(m(σ)) 3 (f K -f L ) ∇ h φ h • n KL ≤ Ch 2 f H 1 (Ω) |φ h | 1,h .
Using (59) and taking (25) into account, this yields σ∈Eint,σ=K|L

(m(σ)) 3 (f K -f L ) ∇ h φ h • n KL ≤ Ch 2 f H 1 (Ω) g L 2 (Ω) . (73) 
Now the last term in (72) may be estimated in the following way

σ∈Eext (m(σ)) 3 f K ∇ h φ h • n KL = σ∈Eext (m(σ)) 3 m 1/2 (K)m 1/2 (V σ,σ * ) m 1/2 (K)f K m 1/2 (V σ,σ * )∇ h φ h • n KL . (74) 
Since for boundary triangles V σ,σ * = V K,σ ⊂ K, there holds

m 1/2 (K)m 1/2 (V σ,σ * ) ≥ m(V K,σ ) = m(σ)d Kσ 2 , so that (m(σ)) 3 m 1/2 (K)m 1/2 (V σ,σ * ) ≤ 2 (m(σ)) 2 d Kσ ≤ Ch ,
with a constant depending only on θ * , thanks to the last point in lemma 1.2. Taking this into account in (74) and applying a discrete Cauchy-Schwarz inequality, there holds

σ∈Eext (m(σ)) 3 f K ∇ h φ h • n KL ≤ Ch ∇ h φ h L 2 (B h ) f L 2 (B h ) , (75) 
since f K is the L 2 orthogonal projection of f over K. We have denoted by B h the strip around Γ which contains all K such that m(∂K ∩ Γ) = 0. Note that this strip has a width of at most h, so that, according to Ilin's inequality (see, e.g. [12, Formula (2.1)]), and since φ ∈ H 2 (Ω), there holds

∇ φ L 2 (B h ) ≤ Ch 1/2 φ H 2 (Ω) , which implies ∇ h φ h L 2 (B h ) ≤ φ h -φ 1,h + ∇ φ L 2 (B h ) ≤ Ch g L 2 (Ω) + Ch 1/2 φ H 2 (Ω) ≤ Ch 1/2 g L 2 (Ω) , (76) 
according to (39). Moreover, since by Hyp. 4.1, f belongs to H 1 (Ω), we may apply Ilin's inequality again to obtain

f L 2 (B h ) ≤ Ch 1/2 f H 1 (Ω) . (77) 
Inserting ( 76) and (77) into (75), we conclude that there exists a constant C such that

σ∈Eext (m(σ)) 3 f K ∇ h φ h • n KL ≤ Ch 2 g L 2 (Ω) f H 1 (Ω) . (78) 
Gathering ( 78) and ( 73) into (72) yields (71).

Starting from [START_REF] Forsyth | Quadratic convergence for cell-centered grids[END_REF], we may now gather all the intermediary results ( 27), ( 42), ( 43), ( 45), ( 54), ( 56), ( 60), (64), ( 70) and (71) to get the main result of this article Theorem 4.17. Let Ω be a two-dimensional convex polygonal domain. Let û be the exact solution of the equation -∆û = f in Ω, with homogeneous Dirichlet boundary conditions. Let u = ((u K ) K∈T , (u σ ) σ∈Eext , (u K * ) K * ∈T * ) be the solution of the finite volumes schemes ( 4)- [START_REF] Cai | The finite volume element method for diffusion equations on general triangulations[END_REF], and let u h be the function in V h0 associated to u through definitions 3.3 and 3.4. Then, under Hyp. 1.1 and 4.1, there exists a constant C depending only on θ * , such that

û -u h L 2 (Ω) ≤ Ch 2 f H 1 (Ω) .

Extension to a more general diffusion equation

The question of extending the result presented in this article to more general situations actually contains three sub-questions: a) What would the finite volume schemes in these more general situations be? b) Given these FV schemes, can they be recast into an equivalent finite element -like scheme? c) From this equivalent scheme, is it possible to infer second order convergence?

In case of a diffusion equation -∇ • (η∇û) = f with a regular scalar coefficient η, the usual answer to subquestion a) is that in equations ( 4) and ( 8) the fluxes are now defined in the following way (we restrict the discussion to inner edges for the sake of simplicity):

F K,σ = m(σ)η σ (u L -u K ) d σ , if σ = K|L F K * ,σ * = d σ η σ * (u L * -u K * ) m(σ) , if σ * = K * |L *
Several choices may be proposed for η σ and η σ * ; for example the choice

η σ = 1 m(σ) σ η dℓ η σ * = 1 d σ σ * η dℓ
corresponds to mean-values of η along the edges (see, e.g., Ref. [START_REF] Bertolazzi | On vertex reconstructions for cell-centered finite volume approximations of 2D anisotropic diffusion problems[END_REF]). Another possibility is suggested by Ref. [22, pp. 816-818]:

η σ = η K η L d σ η K d Lσ + η L d Kσ η σ * = 2η K * η L * η K * + η L * ,
which corresponds to harmonic averaging of cell-defined values η K , η L , η K * and η L * which may themselves be defined as mean-values of η over the respective associated cells.

Regarding sub-question b), it may be checked that the resulting FV schemes may be rewritten into a finite element -like scheme which reads a h (u h , v h ) = ℓ(v ∆, * h ), where the definition of the bilinear form a h is now given by

a h (u h , v h ) := V σ,σ * V σ,σ * (A σ,σ * ∇ h u h ) • ∇ h v h
where, if we denote by (n xKL , n yKL ) the coordinates of the normal vector n KL , the diamond-cell dependent matrix A σ,σ * is defined by

A σ,σ * = η σ n 2 xKL + η σ * n 2 yKL (η σ -η σ * )n xKL n yKL (η σ -η σ * )n xKL n yKL η σ * n 2 xKL + η σ n 2 yKL .
Although this is not a very natural finite element -like technique, this is still acceptable because if η is regular, then A σ,σ * = η(x)Id + O(h). We may admit that if η is regular, uniformly strictly positive and bounded then

|û -u h | 1,h ≤ Ch||f || L 2 (Ω) . (79) 
However, we may now face a difficulty coming from point c). Indeed, the first line of Eq. ( 24) is now replaced by -∇ • (η∇ φ) = g, and for a sufficiently regular η and a polygonal convex domain, there holds φ ∈ H 

and we may prove that ( 27) is replaced by

Ω (u h -û)g(x)dx = V σ,σ * V σ,σ * η (∇ h u h -∇û) • (∇ φ -∇ h φ h )(x)dx - Ω f (φ h -φ ∆, * h ) + V σ,σ * V σ,σ * (η(x) Id -A σ,σ * )∇ h u h • ∇ h φ h dx (81) - V σ,σ * ∂V σ,σ * η ∇û • n φ h (x) dℓ - V σ,σ * ∂V σ,σ * (u h -û) η ∇ φ • n(x) dℓ.
All but the third term of the above formula are similar to Eq. ( 27) and may be treated with small modifications that we detail now. First, we choose the discrete φ (and its associated reconstruction φ h ) as the solution of both finite volume schemes associated to the solution of the Laplace equation with right-hand side g := -∆ φ. It holds that g belongs to L 2 (Ω) since φ is in H 2 (Ω) and

||g|| L 2 (Ω) ≤ || φ|| H 2 (Ω) ≤ C||g|| L 2 (Ω) (82) 
thanks to (80). We get that

| φ -φ h | 1,h ≤ Ch||g|| L 2 (Ω) . (83) 
Equations ( 79) and (83) and the fact that η is bounded imply that the first term in (81) is bounded by Ch 2 ||g|| L 2 (Ω) ||f || L 2 (Ω) . As far as the second term is concerned, we may apply Lemmas 4.12, 4.13, 4.14, 4.15 and 4.16 in which we sometimes have to replace g by g; but in view of (82), this causes no additional difficulty and we finally get that the second term in (81) is controlled by Ch 2 ||g|| L 2 (Ω) . As far as the fourth and fifth terms in (81) are concerned, we may treat them like in Lemmas 4.5 and 4.6, replacing ∇ φ by η∇ φ and ∇û by η∇û. Now, the constants appearing in those lemmas will depend on the W 1,∞ norm of η.

On the other hand, the third term in (81) will behave like O(h), unless we choose

η σ = η σ * = η σ,σ * := 1 |V σ,σ * | V σ,σ * η(x) dx.
Indeed, in that case, A σ,σ * = η σ,σ * Id and since ∇ h u h and ∇ h φ h are constants over the cell V σ,σ * , the third term in (81) actually vanishes. As a conclusion, the method used to prove the second-order convergence result for the Laplace equation may extend to the more general case of a smoothly varying coefficient η only if the corresponding finite volume scheme is properly defined.

Conclusion

In a two-dimensional convex polygonal domain, we have proved convergence in the L 2 norm with secondorder accuracy of a well chosen function constructed with the help of the solutions of two finite volume schemes for the Laplace equation, one defined on a (primal) triangular mesh and the other defined on the Voronoi (dual) mesh associated to the vertices of the primal mesh, under the sufficient condition that the right-hand side of the Laplace equation is in H 1 (Ω). Extensions to more general diffusion equations must be handled with care.
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