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Abstract

The cell-centered finite volume approximation of the Laplace equation in

dimension one is considered. An exact expression of the error between the

exact and numerical solutions is derived through the use of continuous

and discrete Green functions. This allows to discuss convergence of

the method in the L∞ and L2 norms with respect to the choice of the

control points in the cells and with respect to the regularity of the

data. Well-known second-order convergence results are recovered if

those control points are properly chosen and if the data belongs to H1.

Counterexamples are constructed to show that second-order may be lost

if these conditions are not met.

Key words : finite volumes, Laplace equation, error estimates, Green

functions

1 Introduction and statement of the problem

The finite volume method (FVM) is a popular technique used to compute approx-
imate solutions of various engineering problems encountered for example in fluid
mechanics and heat and mass transfer, to cite only a few of its many applications.
Simplicity, robustness and local conservativity are some of the features which are at
the basis of the popularity of this method.

As far as the numerical analysis of the FVM is concerned, there have been many
works devoted to the proof of convergence of such schemes, and to the derivation of
error estimates. We refer for example to [16] for a review of such results covering
elliptic, parabolic and hyperbolic equations.
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In this paper, we shall be interested in a very specific problem, namely the nu-
merical solution of the Laplace equation in dimension one by means of cell-centered
finite volumes:

Let Ω =]0; 1[ be the domain of computation; let f be a given function in L2(Ω)
and let φ̂ be the exact solution of the following problem:

{

−φ′′ = f in Ω ,
φ(0) = φ(1) = 0 .

(1)

We recall that φ̂ ∈ H1
0(Ω) verifies the weak formulation of Eq. (1):
(

φ̂′, ψ′
)

Ω
= (f, ψ)Ω , ∀ψ ∈ H1

0 (Ω) , (2)

where we have used the following definition

Definition 1.1 The standard continuous L2 scalar product over a generic domain
K will be denoted by (·, ·)K , while the associated L2 norm will be denoted by ||·||0,K .
The H1

0 semi-norm and the H1 norm over K will be respectively denoted by | · |1,K

and || · ||1,K .

For the finite volume method, we split Ω̄ into N segments named Ki and defined
by Ki := [xi− 1

2

, xi+ 1

2

] for i ∈ [1,N ]N with x 1

2

= 0 < x 3

2

< . . . < xN− 1

2

< xN+ 1

2

= 1.

We shall denote by
hi = |Ki| = xi+ 1

2

− xi− 1

2

the length of Ki and set
h = sup

i∈[1,N ]N

hi. (3)

In each of these intervals, we choose a point xi, which is not necessarily equal to

the midpoint of Ki. Then, we build dual cells Ki+ 1

2

in the following way: Ki+ 1

2

=

[xi, xi+1] for i ∈ [0, N ]N, with, by convention, x0 = 0 and xN+1 = 1. We set

hi+ 1

2

=
∣

∣

∣
Ki+ 1

2

∣

∣

∣
= xi+1 − xi

and remark that since xi ∈ Ki and xi+1 ∈ Ki+1, there holds hi+ 1

2

≤ hi+1+hi, which,

due to the definition (3), leads to

hi+ 1

2

≤ 2h , ∀i ∈ [0,N ]N. (4)

The cell-centered FVM defined by Eqs. (5.8)–(5.11) of [16] amounts to find a set of
values (φi)i∈[0,N+1]N such that:











− 1
hi

(

Fi+1/2 − Fi−1/2

)

= fi , ∀i ∈ [1,N ]N ,

Fi+1/2 = 1
hi+1/2

(φi+1 − φi) , ∀i ∈ [0,N ]N ,

φ0 = φN+1 = 0 ,

(5)

where fi is the average value of f on Ki:

fi =
1

hi

∫

Ki

f(x) dx . (6)
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The numerical analysis of this FVM is reviewed in [16, Theorem 6.1, Remarks 6.2,
6.3 and 6.4]. Additional useful references are [19, 20], while [24] treats a slightly
different scheme in which fi is ”a linear combination of the values of f evaluated at
certain points”. A second-order convergence result in the L∞ norm ([17]) and in the
H1

0 norm ([20]) is proved provided that the exact solution is regular enough (C4 in
[17] and H3 in [20]) and provided that the points xi are chosen to be the midpoints
of the cells Ki. If these conditions are not met, the only proved result is first-order
convergence both in the L∞ and the (discrete) H1

0 norms.
Additionally, we mention that the authors of [30] have studied the same FVM

but for the case of homogeneous Neumann boundary conditions. This latter case is
much simpler than that studied here, since the first equation in (5) with the initial
condition F1/2 = 0 obviously leads to the exact value of Fi+1/2 for all i; then φ is
recovered by the second equation in (5) and is easily shown to be a second-order
approximation of φ̂(xi) through Taylor expansions if xj is the midpoint of Kj for
all j or if xj+1/2 is the midpoint of Kj+1/2 for all j ∈ [1,N − 1]N.

Our main goal in the present work is to discuss the convergence order of the
solution of the FVM (5) with respect to the regularity of f and with respect to the
choice of the set of points (xi), keeping in mind possible extensions of this FVM to
dimensions greater than one. Let us now detail these two points.

1) In dimension one, the fact that f belongs to Hm(Ω), m ∈ N, is equivalent
to φ̂ being in Hm+2(Ω), and thus, discussing the dependence of the convergence
order of the FVM with respect to the regularity of φ̂ is equivalent to discussing
it with respect to the regularity of f . This is however not the case in dimensions
greater than one. Indeed, since −∆φ̂ = f , then Hm+2(Ω) regularity of φ̂ obviously
implies Hm(Ω) regularity of f ; on the other hand, Hm(Ω) regularity of f implies
Hm+2(Ω) regularity of φ̂ only under sufficient regularity of the boundary ∂Ω. In
the related context of vertex-centered finite volume element methods (FVEM), on
(primal) triangular meshes, this has led to distinguish regularity conditions over φ̂
on the one hand, and over f on the other hand, in the convergence order results
in the L2 norm: second-order convergence is obtained provided that φ̂ belongs to
H2(Ω), that f belongs to H1(Ω) and that the dual mesh associated to the method
is the barycentric one (see [9, 14]). The H1 regularity condition over f comes
from the fact that the error depends on the L2 norm of (f − f̄), where f̄ is the L2

projection of f on the cells of the mesh. This is in contrast to the linear finite element
method (FEM) (both conforming or of Crouzeix-Raviart type), where second-order
convergence in the L2 norm is proved under the sole condition that f belongs to
L2(Ω) (in dimension one, and in dimension two under supplementary conditions on
∂Ω, e.g. it suffices that Ω is polygonal convex). Indeed, in the FEM, the Aubin-
Nitsche trick uses Galerkin orthogonality, which has no equivalent form in the FVM.
A discrete version of this trick was proposed in [20] for the error analysis in the L2

norm of cell-centered FVM for convection-diffusion associated to non-homogeneous
boundary conditions in dimension two over square grids, under the assumption that

the right-hand side in the convection-diffusion equation vanishes. The authors obtain
second-order convergence provided the exact solution is in H2(Ω) and the boundary
data in H3/2(Γ), but the above-mentioned assumption circumvents the discussion
on the regularity of the data in the convection-diffusion equation.
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2) In dimension one, the natural choice for the point xi is the midpoint of Ki.
Therefore, one might wonder why there should be any interest in considering a
different choice. The reason stands in the generalization of this FVM to dimensions
higher than one; for the sake of simplicity, let us restrict the discussion to the
dimension two. In such a case, the FVM may be used on meshes made up of
polygonal convex cells which may have an arbitrary number of edges, provided the
choice of the set of points (xi) satisfies some orthogonality conditions given in the
definition of so-called “admissible meshes” (see [16, Definition 9.1]). So what is the
equivalent of the “midpoint” for a polygonal convex cell? A reasonable answer to
this question seems to be the barycenter of the cell; however the above-mentioned
orthogonality conditions lead to choose the circumcenters of the triangles, when the
mesh is a Delaunay triangulation (see [16, Example 9.1]). Note that even in that
particular case of admissible meshes, the order of convergence of the FVM in the L2

norm is still an open issue, although, based on numerical evidence, some authors
believe it to be two [3]. However, the only proved result in this context is the
order one, see [16, Theorem 9.4] and [1, Proposition 5]. This first-order convergence
result given by [16] also holds for another important example of admissible mesh,
namely the Voronoi diagram associated with a given set of points (xi). In that case,
from the geometrical point of view, a point xi may hardly be considered as ”the
center” of its associated Voronoi cell Ki. Note that, as recalled above, the second-
order convergence in the L2 norm proved in [9, 14] requires the dual mesh to be
the barycentric one, so that this result does not apply to (dual) Voronoi meshes
associated to (primal) Delaunay triangulations. These two examples justify the
interest in choosing points xi which are not the midpoints of the segments Ki in
dimension one.

In this paper, we give exact expressions of the errors φ̂(xi) − φi, through the
introduction of continuous and discrete Green functions. While this is a pretty
common tool in the FEM, Galerkin or Petrov-Galerkin approximations, (see e.g.
[8, 10, 11, 12, 22, 26, 28, 29]) and in the Finite Difference context (see e.g. [2, 4, 5,
6, 7, 13, 18, 25]), it has been rarely used, to our knowledge, in the FVM context.
As far as the vertex-centered FVM is concerned, the authors of [23] consider a non-
compact discretization of convection-diffusion problems and prove pointwise error
estimates thanks to estimations of the discrete Green functions associated to the
scheme. In [21], a finite volume scheme for convection-reaction-diffusion equations
is recast into a finite difference form and bounds on the associated Green functions
are derived to prove first-order pointwise error estimates. As far as the cell-centered
FVM is concerned, the only reference to discrete Green functions we are aware of,
is a Master Lecture by R. Eymard [15], where this tool is used on regular grids with
the point xi being the midpoint of Ki. On more general grids, this tool will allow us
to discuss the convergence order of the FVM with respect to the regularity of f and
with respect to the choice of the points xi in Ki. It turns out of our investigations
that if f ∈ H1(Ω) and if either xi lies within O(h2) of the midpoint of Ki for all
i ∈ [1, N ] or xi+1/2 lies within O(h2) of the midpoint of Ki+1/2 for all i ∈ [1,N − 1],
then second-order convergence is obtained by the FVM in the L∞ norm (and thus
in the L2 norm). On the other hand, it is shown by counterexamples that if f is not
in H1(Ω) or if the points xi are not properly chosen, we may have a reduced order
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of convergence.
This paper is organized as follows: in section 2 we give some definitions and

notations, while in section 3, we define and give the expressions of continuous and
discrete Green functions associated to the equation (1) and to the scheme (5). This
enables us to deduce the exact expression of the error φ̂(xi) − φi. In section 4,
we provide sufficient conditions for second-order convergence of the FVM and give
in section 5 counterexamples in less favorable cases. We give our conclusions in
section 6.

2 Definitions and notations

Definition 2.1 Like in [30], we define an operator named “primal discrete deriva-
tive”, denoted by ∇P

h , on the cells Ki by the following formula:

R
N+1 → R

N

(

ui+ 1

2

)

i∈[0,N ]N
7→

(

∇P
h u
)

i
=

1

hi

(

ui+ 1

2

− ui− 1

2

)

, ∀i ∈ [1,N ]N .

Definition 2.2 In the same way, we define an operator named “dual discrete deriva-
tive”, denoted by ∇D

h on the cells Ki+ 1

2

by the following formula:

R
N+2 → R

N+1

(ψi)i∈[0,N+1]N
7→

(

∇D
h ψ
)

i+ 1

2

=
1

hi+1/2
(ψi+1 − ψi) , ∀i ∈ [0,N ]N . (7)

Proposition 2.3 These operators are linked by the discrete Green formula:

∀u =
(

ui+ 1

2

)

i∈[0,N ]N
∈ R

N+1 ,∀ψ = (ψi)i∈[0,N+1]N
∈ R

N+2,

(

∇P
h u, ψ

)

P
= −

(

u,∇D
h ψ
)

D
+
[

uN+ 1

2

ψN+1 − u 1

2

ψ0

]

, (8)

where we defined the following primal and dual discrete scalar products

Definition 2.4

(φ,ψ)P =
N
∑

i=1

hiφiψi

(u, v)D =

N
∑

i=0

hi+1/2ui+ 1

2

vi+ 1

2

.

With these definitions, the FVM (5) reads: find (φi)i∈[0,N+1]N such that:

{

−
(

∇P
h ∇

D
h φ
)

i
= fi , ∀i ∈ [1,N ]N ,

φ0 = φN+1 = 0 .
(9)
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3 Continuous and discrete Green functions

The definition of continuous and discrete Green functions will be useful to obtain
error estimates.

Definition 3.1 Let Ki be a cell, with i ∈ [1,N ]N. Let us define the Green function
gi associated with the point xi:

{

−
(

gi
)′′

= δxi in D
′

(Ω) ,
gi(0) = gi(1) = 0 .

Proposition 3.2 It is straightforward to check that the expression of gi is given
by the following formula

gi(x) =

{

(1 − xi)x if x ≤ xi

xi(1 − x) if x ≥ xi
. (10)

Since gi ∈ H1
0 (Ω), we have by Eq. (2),

(f, gi)Ω =
(

φ̂′,
(

gi
)′
)

Ω
= (1 − xi)

∫ xi

0
φ̂′(x)dx− xi

∫ 1

xi

φ̂′(x)dx = φ̂ (xi) , (11)

by direct integration and because φ̂ vanishes in x = 0 and x = 1.

Definition 3.3 Let us also define the discrete Green function
(

Gi
j

)

j∈[0,N+1]N
asso-

ciated with Ki in the following way, where δi
j is the standard Kronecker symbol:

−
(

∇P
h ∇D

h G
i
)

j
=

δi
j

hi
, ∀j ∈ [1,N ]N , (12)

Gi
0 = Gi

N+1 = 0 .

Proposition 3.4 Let us check that the expression of Gi is given by the following
formula:

Gi
j = gi(xj) , ∀j ∈ [0,N + 1]N , (13)

where the function gi is defined by (10).

Indeed, the application of (12) for j in [1, i − 1]N on the one hand, and for j in
[i+ 1, N ]N on the other hand leads to

(

∇D
h G

i
)

j+ 1

2

=
(

∇D
h G

i
)

j− 1

2

, ∀j ∈ [1, i − 1]N

and
(

∇D
h G

i
)

j+ 1

2

=
(

∇D
h G

i
)

j− 1

2

, ∀j ∈ [i+ 1,N ]N .

Let us denote by aL the common value of
(

∇D
h G

i
)

j+ 1

2

for all j ∈ [0, i − 1]N, and

by aR the common value of
(

∇D
h G

i
)

j+ 1

2

for all j ∈ [i,N ]N. Then, according to the
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definition of
(

∇D
h G

i
)

j+ 1

2

(see formula (7)) and since hi+1/2 = xi+1 − xi and Gi
0 = 0,

x0 = 0, Gi
N+1 = 0 and xN+1 = 1, there holds

Gi
j = aLxj , ∀j ∈ [0, i]N , (14)

Gi
j = −aR(1 − xj) , ∀j ∈ [i,N + 1]N . (15)

Applying these two equalities for j = i, we get

aLxi = −aR(1 − xi) . (16)

On the other hand, the application of (12) for j = i leads to

−(aR − aL) = 1 . (17)

Equations (16) and (17) lead to aL = 1 − xi and aR = −xi, which, together with
(14) and (15) and the definition of gi by (10), leads to (13).

Proposition 3.5 The following exact expression of the error φ̂(xi) − φi holds

φ̂ (xi) − φi =
(

f, gi − gi
∗

)

Ω
, (18)

where the piecewise constant function gi
∗ is defined by

gi
∗(x) = Gi

j = gi(xj) , ∀x ∈ Kj , ∀j ∈ [1,N ]N .

Since both Gi and φ vanish on the boundary, we have, by double application of the
discrete Green formula (8):

φi =
(

−∇P
h ∇D

h G
i, φ
)

P
=
(

∇D
h G

i,∇P
h φ
)

D
=
(

Gi,−∇P
h ∇D

h φ
)

P
.

Next, by definition of the scheme, Eq. (5), and by definition of the mean values fj,
Eq. (6), there holds

φi =
(

Gi, f
)

P
=

N
∑

j=1

hjfjG
i
j =

(

gi
∗, f
)

Ω
.

The result follows from the previous equality and from (11).

4 Second order convergence

Proposition 3.5 enables us to study the errors at the points xi and also the error in
the discrete L2 norm defined by

ei :=
∣

∣

∣
φ̂(xi) − φi

∣

∣

∣
, e =

(

N
∑

i=1

hi

∣

∣

∣
φ̂ (xi) − φi

∣

∣

∣

2
)

1

2

.

We can state the following results:
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Proposition 4.1 Let x∗j be the midpoint of Kj . If f ∈ H1(Ω) and if there exists a

constant C, independent of the grid, such that ∀j ∈ [1,N ]N,
∣

∣

∣
xj − x∗j

∣

∣

∣
≤ Ch2, then

there is a constant K, depending only on f , such that

∀i ∈ [1,N ]N, ei ≤ Kh2 , (19)

e ≤ Kh2 . (20)

Indeed, equation (18) may also be written

φ̂ (xi) − φi =
(

f, gi − gi
∗

)

Ω
=
(

f − Πf, gi − gi
∗

)

Ω
+
(

Πf, gi − gi
∗

)

Ω
, (21)

where Πf is the L2 projection of f on the grid:

(Πf)(x) = fj , ∀x ∈ Kj , ∀j ∈ [1,N ]N .

Since f ∈ H1(Ω), a standard result (see, e.g. [27]) states that there exists a con-
stant K, which does not depend on the grid such that

‖f − Πf‖0,Kj
≤ K hj |f |1,Kj

≤ Kh
1

2h
1

2

j |f |1,Kj
, ∀j ∈ [1,N ]N . (22)

In addition, for all x ∈ Kj ,

∣

∣

(

gi − gi
∗

)

(x)
∣

∣ ≤ |x− xj | sup(xi, 1 − xi) ≤ |x− xj| ≤ h . (23)

This implies of course that
∥

∥gi − gi
∗

∥

∥

0,Kj
≤ h

3

2 . (24)

By the Cauchy-Schwarz formula there holds

∣

∣

(

f − Πf, gi − gi
∗

)

Ω

∣

∣ ≤

N
∑

j=1

‖f − Πf‖0,Kj

∥

∥gi − gi
∗

∥

∥

0,Kj
≤ Kh2

N
∑

j=1

h
1

2

j |f |1,Kj
(25)

thanks to Eq. (22) and (24). Finally, since
∑N

j=1 hj = |Ω| = 1, the discrete Cauchy-
Schwarz formula yields

∣

∣

(

f − Πf, gi − gi
∗

)

Ω

∣

∣ ≤ Kh2 |f |1,Ω . (26)

In addition, the function gi − gi
∗ being linear on each Kj (for j 6= i), its integral can

be evaluated by the midpoint rule, and we have

∣

∣

(

Πf, gi − gi
∗

)

Ω

∣

∣ ≤

∣

∣

∣

∣

∣

∣

∑

j<i

fjhj(1 − xi)
(

x∗j − xj

)

+
∑

j>i

fjhjxi

(

xj − x∗j
)

∣

∣

∣

∣

∣

∣

(27)

+

∣

∣

∣

∣

1

2
fi

[

(

xi − xi− 1

2

)2
(1 − xi) +

(

xi+ 1

2

− xi

)2
xi

]
∣

∣

∣

∣

.
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Since xi and (1 − xi) are both bounded by 1, and since

|fj|hj =

∣

∣

∣

∣

∣

∫

Kj

f(x)dx

∣

∣

∣

∣

∣

≤ h
1

2

j ‖f‖0,Kj
,

the assumption
∣

∣

∣
xj − x∗j

∣

∣

∣
≤ Ch2 leads to

∣

∣

∣

∣

∣

∣

∑

j<i

fjhj(1 − xi)
(

x∗j − xj

)

+
∑

j>i

fjhjxi

(

xj − x∗j
)

∣

∣

∣

∣

∣

∣

≤ Ch2
N
∑

j=1

h
1

2

j ‖f‖0,Kj
.

By the discrete Cauchy-Schwarz inequality, this implies that the first line in (27) is
bounded by Ch2 ‖f‖0,Ω. As far as the second line in (27) is concerned, it is bounded

by Ch2 |fi|. But since f is in H1 (and since we are in dimension 1), this function is
bounded on Ω by C ‖f‖1,Ω, where the constant C depends only on Ω. Finally, we
can thus write

∣

∣

(

Πf, gi − gi
∗

)

Ω

∣

∣ ≤ Ch2 ‖f‖1,Ω . (28)

The result (19) follows from (21), (26) and (28), and the result (20) immediately
from (19).

Proposition 4.2 If f ∈ H1(Ω) and if there exists a constant C, independent of the

grid, such that ∀j ∈ [1, N−1]N,
∣

∣

∣
xj+ 1

2

−
xj+xj+1

2

∣

∣

∣
≤ Ch2, then there is a constant K,

depending only on f , such that

∀i ∈ [1,N ]N, ei ≤ Kh2 , (29)

e ≤ Kh2 . (30)

The preceding calculations still hold if we consider the mean-values of f on the dual
cells Kj+ 1

2

instead of its mean-values on the primal cells Kj. We define

(Pf)(x) = fj+ 1

2

:=
1

hj+1/2

∫

K
j+1

2

f(y) dy ∀x ∈ Kj+ 1

2

, ∀j ∈ [0,N ]N .

Then, we have

φ̂ (xi) − φi =
(

f, gi − gi
∗

)

Ω
=
(

f − Pf, gi − gi
∗

)

Ω
+
(

Pf, gi − gi
∗

)

Ω
. (31)

For f ∈ H1(Ω), there exists a constant K, which does not depend on the grid such
that

‖f − Pf‖0,K
j+ 1

2

≤ K diam(Kj+ 1

2

) |f |1,K
j+1

2

≤ 2Kh |f |1,K
j+ 1

2

, ∀j ∈ [0,N ]N ,

thanks to (4). In addition, for all x ∈ Kj+ 1

2

,

∣

∣

(

gi − gi
∗

)

(x)
∣

∣ ≤ sup (|x− xj | , |x− xj+1|) sup(xi, 1 − xi) ≤ 2h .
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Thus, by the Cauchy-Schwarz inequality and then the discrete Cauchy-Schwarz in-
equality, there holds

∣

∣

(

f − Pf, gi − gi
∗

)

Ω

∣

∣ ≤ Kh2 |f |1,Ω . (32)

In addition,

(

Pf, gi − gi
∗

)

Ω
= −f 1

2

h1/2(1 − xi)
x1

2
− fN+ 1

2

hN+1/2xi
(1 − xN )

2
(33)

+

N−1
∑

j=1

fj+ 1

2

∫

K
j+1

2

(

gi − gi
∗

)

(x) dx .

For 1 ≤ j ≤ i− 1, we have

∫

K
j+ 1

2

(

gi − gi
∗

)

(x) dx = (1 − xi)

[

(xj+1 − xj)
xj+1 + xj

2

−xj

(

xj+ 1

2

− xj

)

− xj+1

(

xj+1 − xj+ 1

2

)

]

= (1 − xi)

(

xj+ 1

2

−
xj+1 + xj

2

)

hj+1/2 .

In the same way, for i ≤ j ≤ N − 1, we have

∫

K
j+ 1

2

(

gi − gi
∗

)

(x) dx = −xi

(

xj+ 1

2

−
xj+1 + xj

2

)

hj+1/2 .

Using the Cauchy-Schwarz inequality, and the assumption on
∣

∣

∣
xj+ 1

2

−
xj+1+xj

2

∣

∣

∣
, these

equalities enable us to bound the second line of (33) by Kh2 ‖f‖0,Ω. As for the
first line of this expression, it can be bounded by taking into account the following
inequalities

|x1| ≤ h , |1 − xN | ≤ h ,
∣

∣

∣
K 1

2

∣

∣

∣
≤ h ,

∣

∣

∣
KN+ 1

2

∣

∣

∣
≤ h ,

∣

∣

∣
f 1

2

∣

∣

∣
≤ C ‖f‖1,Ω ,

∣

∣

∣
fN+ 1

2

∣

∣

∣
≤ C ‖f‖1,Ω ,

where the constant C depends only on Ω for reasons evoked in the proof of propo-
sition 4.1. Finally, we have

∣

∣

(

Pf, gi − gi
∗

)

Ω

∣

∣ ≤ Kh2 ‖f‖1,Ω . (34)

The result (29) follows from (31), (32) and (34), and the result (30) immediately
from (29).
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5 Counterexamples in less favorable cases

We will now check that for less regular functions f , the error can be of an order lower
than 2, even if the grid verifies the assumptions of proposition 4.1. Since in that
case gi − gi

∗ changes sign at the midpoint of Ki, the idea is to choose a function f
that will systematically be ”much” greater on the first half of Kj than on its second
half, so that Eq. (18) will imply an accumulation of errors.

Proposition 5.1 Let the grid be made up of N identical segments of length h = 1
N

and let the points xj be chosen as the midpoints of the segments

xj = (j − 1/2) h , 1 ≤ j ≤ N .

Let in addition α ∈]0; 1/2[ and let us choose f(x) = x−α. (Of course, f ∈ L2(Ω)
but f /∈ H1(Ω)). Let in addition x∗ ∈]0; 1[, be fixed independently of the grid and
let us denote by N∗ the integer such that N∗h ≤ x∗ < (N∗ + 1)h. We will suppose
h sufficiently small so that N∗ ≥ 2. Then, there exists K > 0 depending only on α
and x∗, such that for h sufficiently small

ei ≥ Kh2−α , ∀i ∈ [2,N∗]N , (35)

e ≥ Kh2−α. (36)

Let indeed i be fixed in [2, N∗]N. Formula (18) enables us to write

φ̂ (xi) − φi ≤

∫ (i−1)h

0

(

gi(x) − gi
∗(x)

)

x−α dx+

∫ 1

ih

(

gi(x) − gi
∗(x)

)

x−α dx (37)

because the function gi − gi
∗ is negative over [(i − 1)h; ih] since on this interval

gi
∗(x) = gi(xi) ≥ gi(x). Then, let us set, for 1 ≤ j ≤ i− 1,

Aj =

∫ jh

(j−1)h

(

gi(x) − gi
∗(x)

)

x−α dx = (1 − xi)

∫ jh

(j−1)h
(x− xj)x

−α dx .

By carrying out the change of variable x = xj − s on [(j − 1)h;xj ] and x = xj + s
on [xj; jh], we obtain the following expression, since xj = (j − 1/2)h

Aj = (1 − xi)

∫ h/2

0

[

(xj + s)−α − (xj − s)−α
]

s ds .

We can write

(xj − s)−α = x−α
j

(

1 −
s

xj

)−α

≥ x−α
j

(

1 + α
s

xj

)

, ∀s ∈ [0;h/2] .

In addition,
(xj + s)−α ≤ x−α

j , ∀s ∈ [0;h/2] .

Thus,

Aj ≤ −(1 − xi)αx
−1−α
j

∫ h/2

0
s2ds .
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By taking into account the equality xj = (j − 1/2) h, we finally obtain

Aj ≤ −(1 − xi)
α

24

h2−α

(j − 1/2)1+α .

Then, we can bound the first term of (37):

∫ (i−1)h

0

(

gi(x) − gi
∗(x)

)

x−α ≤ −(1 − xi)
α

24
h2−α

i−1
∑

j=1

1

(j − 1/2)1+α . (38)

The sum in (38) comprises at least a term, since we consider i ≥ 2. Thus, we have

∫ (i−1)h

0

(

gi(x) − gi
∗(x)

)

x−α ≤ −(1 − xi)
21+αα

24
h2−α . (39)

Let us set in addition, for i+ 1 ≤ j ≤ N ,

Bj =

∫ jh

(j−1)h

(

gi(x) − gi
∗(x)

)

x−α dx = xi

∫ jh

(j−1)h
(xj − x)x−α dx .

By carrying out the same changes of variable as previously, we obtain

Bj = xi

∫ h/2

0

[

(xj − s)−α − (xj + s)−α
]

s ds .

We can write

(xj − s)−α − (xj + s)−α ≤ (xj − h/2)−α − (xj + h/2)−α , ∀s ∈ [0, h/2] ,

and thus

Bj ≤ xi
h2

8

{

[(j − 1)h]−α − (jh)−α} .

Then, we can bound the second term of (37):

∫ 1

ih

(

gi(x) − gi
∗(x)

)

x−α dx ≤ xi
h2

8

[

(ih)−α − (Nh)−α]

≤ xi

(

x−α
i − 1

) h2

8

because Nh = 1 and xi ≤ ih. Since 1 > α > 0 and 0 ≤ xi ≤ 1, we have
xi

(

x−α
i − 1

)

= x1−α
i (1 − xα

i ) ≤ 1, which implies

∫ 1

ih

(

gi(x) − gi
∗(x)

)

x−α dx ≤
h2

8
. (40)

By gathering (37), (39) and (40), we obtain

φ̂ (xi) − φi ≤ −(1 − xi)
21+αα

24
h2−α +

h2

8
.
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Figure 1: Discrete L2 error for the counterexample f(x) = x−α with α = 1/4.

Now, if we want the result not to depend on xi, we note that (1 − xi) ≥ (1 − x∗)
since i ≤ N∗, so that

φ̂ (xi) − φi ≤ −(1 − x∗)
21+αα

24
h2−α +

h2

8
. (41)

For h sufficiently small, (for example such that h2

8 ≤ (1 − x∗)
21+αα

48 h2−α), the result
(35) is obtained by taking the absolute value of the two sides of this inequality. The
result (36) is obtained, starting from (35), by writing

e2 ≥

N∗
∑

i=2

h
∣

∣

∣
φ̂ (xi) − φi

∣

∣

∣

2
≥ (N∗ − 1)hK (1 − x∗)

2h4−2α

≥ (x∗ − 2h)K (1 − x∗)
2h4−2α

≥ K h4−2α ,

where the constant K, for h sufficiently small, does not depend on the grid. Fig-
ure 1 displays the observed discrete L2 norm of the error, e(h), as a function of the
meshstep size h for α = 1/4, as well as a reference curve with slope 2 − α = 7/4,
which confirms that the order of convergence in the L2 norm behaves like 2 − α.

We shall now take into consideration a case where the assumptions of proposi-
tions 4.1 and 4.2 concerning the grid are not verified. Keeping in mind formula (18),
the idea is to choose f as a constant function, and points (xi) so that f(gi − gi

∗)
will be positive on a much greater part of Ω than the part of Ω on which it will be
negative. We can state the following result

Proposition 5.2 On general grids, and even if f is regular, we may not get a better
estimate than

F (xi)h ≤ ei ≤ Kh , (42)

C1h ≤ e ≤ C2h , (43)

where the constants K, C1 and C2 and the function F are independent of the grid.
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First of all, formula (18) together with estimate (23), coupled with the Cauchy-
Schwarz inequality, allow us to write that for all i ∈ [1,N ]N,

∣

∣

∣
φ̂ (xi) − φi

∣

∣

∣
≤ ‖f‖0,Ω h ,

which immediately implies
e ≤ ‖f‖0,Ω h .

These two inequalities lead to the inequalities in the right-hand sides of (42) and
(43). To show the left-hand side inequalities, let us consider now the following
example: the grid consists of N = 2P identical segments of length h = 1

2P and we
choose the points xj defined by

xj =

{ (

j − 3
4

)

h if j ≤ P
(

j − 1
4

)

h if j > P
.

In addition, the function f is chosen so that

f(x) = 1 ∀x ∈ Ω ,

and we thus have φ̂(x) = 1
2(1 − x)x. Setting vj = φj+1 − φj and taking into

account (5) and the size of the various dual cells, we obtain the following system































v1 − 4v0 = −h2

vj − vj−1 = −h2 ∀j s.t. 2 ≤ j ≤ P − 1
2
3vP − vP−1 = −h2

vP+1 −
2
3vP = −h2

vj − vj−1 = −h2 ∀j s.t. P + 2 ≤ j ≤ 2P − 1
4v2P − v2P−1 = −h2

.

This allows us to get the following expressions















vj = 4v0 − jh2 ∀j s.t. 1 ≤ j ≤ P − 1

vP = 6v0 −
3P
2 h

2

vj = 4v0 − jh2 ∀j s.t. P + 1 ≤ j ≤ 2P − 1

v2P = v0 −
P
2 h

2

.

In addition,
∑2P

j=0 vj = φ2P+1 − φ0 = 0, which implies v0 = P
4 h

2. We thus have







v0 = P
4 h

2

vj = (P − j)h2 ∀j s.t. 1 ≤ j ≤ 2P − 1

v2P = −P
4 h

2
.

This allows us to write






φ0 = 0

φi = P
4 h

2 + (i− 1)
(

P − i
2

)

h2 , ∀i ∈ [1, 2P ]N
φ2P+1 = 0

.
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Figure 2: Discrete L2 error for the counterexample in which the control points
associated to the control volumes are badly chosen.

In addition, since 2Ph = 1, we can write

φi =
h

8
+

1

2

(

1 −
i

2P

)

×
(i− 1)

2P
, ∀i ∈ [1, 2P ]N .

But for 1 ≤ i ≤ P we have by definition

xi =

(

i− 3
4

)

2P
=

i

2P
−

3

4
h =

(i− 1)

2P
+

1

4
h .

Thus, we find the expression of φi to be

φi =
1

2
(1 − xi)xi −

h

4
xi +

3

32
h2

= φ̂(xi) −
h

4
xi +

3

32
h2 , ∀i ∈ [1, P ]N.

That is to say

ei = xih

∣

∣

∣

∣

1

4
−

3

8(4i− 3)

∣

∣

∣

∣

≥ xi
h

8
, ∀i ∈ [1, P ]N.

In the same way,

φi =
1

2
(1 − xi)xi −

h

4
(1 − xi) +

3

32
h2

= φ̂(xi) −
h

4
(1 − xi) +

3

32
h2 , ∀i ∈ [P + 1, 2P ]N ,

which implies
∣

∣

∣
φ̂(xi) − φi

∣

∣

∣
≥ (1 − xi)

h

8
, ∀i ∈ [P + 1, 2P ]N.

This allows to obtain the left inequality in (42), and then easily the left inequality
in (43). Figure 2 displays the observed discrete L2 norm of the error, e(h), as a
function of the meshstep size h, as well as a reference curve with slope 1, which
confirms that the order of convergence in the L2 norm is exactly one in this case.
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6 Conclusions

Through the introduction of discrete Green functions, we have computed the exact
error between the numerical solution of the one dimensional Laplace equation dis-
cretized by cell-centered finite volumes and its exact solution evaluated at the points
associated to the control volumes. We have recovered the well-known second-order
accuracy result under the conditions that these points are chosen as (or O(h2) close
to) the centers of the control volumes, and that the right-hand side of the Laplace
equation belongs to H1(Ω). This result also holds if the endpoints of the control vol-
umes are (O(h2) close to) the centers of the dual cells. However, if either the points
associated to the control volumes are not properly chosen, or if the right-hand side
of the Laplace equation does not belong to H1(Ω), second-order accuracy may be
lost. This gives us indications on what to expect in higher dimensions: not properly
chosen families of admissible meshes may display a reduced order of convergence,
and, like in the FVEM, H1 regularity of the right-hand side seems to be necessary
to get second-order convergence.
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