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The cell-centered finite volume approximation of the Laplace equation in dimension one is considered. An exact expression of the error between the exact and numerical solutions is derived through the use of continuous and discrete Green functions. This allows to discuss convergence of the method in the L ∞ and L 2 norms with respect to the choice of the control points in the cells and with respect to the regularity of the data. Well-known second-order convergence results are recovered if those control points are properly chosen and if the data belongs to H 1 . Counterexamples are constructed to show that second-order may be lost if these conditions are not met.

Introduction and statement of the problem

The finite volume method (FVM) is a popular technique used to compute approximate solutions of various engineering problems encountered for example in fluid mechanics and heat and mass transfer, to cite only a few of its many applications. Simplicity, robustness and local conservativity are some of the features which are at the basis of the popularity of this method.

As far as the numerical analysis of the FVM is concerned, there have been many works devoted to the proof of convergence of such schemes, and to the derivation of error estimates. We refer for example to [START_REF] Eymard | Finite volume methods[END_REF] for a review of such results covering elliptic, parabolic and hyperbolic equations.

In this paper, we shall be interested in a very specific problem, namely the numerical solution of the Laplace equation in dimension one by means of cell-centered finite volumes:

Let Ω =]0; 1[ be the domain of computation; let f be a given function in L 2 (Ω) and let φ be the exact solution of the following problem:

-φ ′′ = f in Ω , φ(0) = φ(1) = 0 . (1) 
We recall that φ ∈ H 1 0 (Ω) verifies the weak formulation of Eq. ( 1):

φ′ , ψ ′ Ω = (f, ψ) Ω , ∀ψ ∈ H 1 0 (Ω) , (2) 
where we have used the following definition Definition 1.1 The standard continuous L 2 scalar product over a generic domain K will be denoted by (•, •) K , while the associated L 2 norm will be denoted by ||•|| 0,K . The H 1 0 semi-norm and the H 1 norm over K will be respectively denoted by

| • | 1,K and || • || 1,K .
For the finite volume method, we split Ω into N segments named K i and defined by

K i := [x i-1 2 , x i+ 1 2 ] for i ∈ [1, N ] N with x 1 2 = 0 < x 3 2 < . . . < x N -1 2 < x N + 1 2 = 1.
We shall denote by

h i = |K i | = x i+ 1 2 -x i-1 2
the length of K i and set

h = sup i∈[1,N ] N h i . (3) 
In each of these intervals, we choose a point x i , which is not necessarily equal to the midpoint of K i . Then, we build dual cells K i+ 1 2 in the following way: K i+ 1 2 = [x i , x i+1 ] for i ∈ [0, N ] N , with, by convention, x 0 = 0 and x N +1 = 1. We set

h i+ 1 2 = K i+ 1 2 = x i+1 -x i
and remark that since x i ∈ K i and x i+1 ∈ K i+1 , there holds h i+ 1 2 ≤ h i+1 +h i , which, due to the definition (3), leads to

h i+ 1 2 ≤ 2h , ∀i ∈ [0, N ] N . (4) 
The cell-centered FVM defined by Eqs. (5.8)- (5.11) of [START_REF] Eymard | Finite volume methods[END_REF] amounts to find a set of values (φ i ) i∈[0,N +1] N such that:

     -1 h i F i+1/2 -F i-1/2 = f i , ∀i ∈ [1, N ] N , F i+1/2 = 1 h i+1/2 (φ i+1 -φ i ) , ∀i ∈ [0, N ] N , φ 0 = φ N +1 = 0 , (5) 
where f i is the average value of f on K i :

f i = 1 h i K i f (x) dx . (6) 
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The numerical analysis of this FVM is reviewed in [16, Theorem 6.1, Remarks 6.2, 6.3 and 6.4]. Additional useful references are [START_REF] Jones | Analysis of the cell-centred finite volume method for the diffusion equation[END_REF][START_REF] Lazarov | Finite volume methods for convection-diffusion problems[END_REF], while [START_REF] Manteuffel | The numerical solution of second-order boundary value problems on nonuniform meshes[END_REF] treats a slightly different scheme in which f i is "a linear combination of the values of f evaluated at certain points". A second-order convergence result in the L ∞ norm ( [START_REF] Forsyth | Quadratic convergence for cell-centered grids[END_REF]) and in the H 1 0 norm ( [START_REF] Lazarov | Finite volume methods for convection-diffusion problems[END_REF]) is proved provided that the exact solution is regular enough (C 4 in [START_REF] Forsyth | Quadratic convergence for cell-centered grids[END_REF] and H 3 in [START_REF] Lazarov | Finite volume methods for convection-diffusion problems[END_REF]) and provided that the points x i are chosen to be the midpoints of the cells K i . If these conditions are not met, the only proved result is first-order convergence both in the L ∞ and the (discrete) H 1 0 norms. Additionally, we mention that the authors of [START_REF] Weiser | On convergence of block centered finite differences for elliptic problems[END_REF] have studied the same FVM but for the case of homogeneous Neumann boundary conditions. This latter case is much simpler than that studied here, since the first equation in [START_REF] Bramble | Discrete analogues of the Dirichlet problem with isolated singularities[END_REF] with the initial condition F 1/2 = 0 obviously leads to the exact value of F i+1/2 for all i; then φ is recovered by the second equation in [START_REF] Bramble | Discrete analogues of the Dirichlet problem with isolated singularities[END_REF] and is easily shown to be a second-order approximation of φ(x i ) through Taylor expansions if x j is the midpoint of K j for all j or if x j+1/2 is the midpoint of K j+1/2 for all j ∈ [1, N -1] N .

Our main goal in the present work is to discuss the convergence order of the solution of the FVM (5) with respect to the regularity of f and with respect to the choice of the set of points (x i ), keeping in mind possible extensions of this FVM to dimensions greater than one. Let us now detail these two points.

1) In dimension one, the fact that f belongs to H m (Ω), m ∈ N, is equivalent to φ being in H m+2 (Ω), and thus, discussing the dependence of the convergence order of the FVM with respect to the regularity of φ is equivalent to discussing it with respect to the regularity of f . This is however not the case in dimensions greater than one. Indeed, since -∆ φ = f , then H m+2 (Ω) regularity of φ obviously implies H m (Ω) regularity of f ; on the other hand, H m (Ω) regularity of f implies H m+2 (Ω) regularity of φ only under sufficient regularity of the boundary ∂Ω. In the related context of vertex-centered finite volume element methods (FVEM), on (primal) triangular meshes, this has led to distinguish regularity conditions over φ on the one hand, and over f on the other hand, in the convergence order results in the L 2 norm: second-order convergence is obtained provided that φ belongs to H 2 (Ω), that f belongs to H 1 (Ω) and that the dual mesh associated to the method is the barycentric one (see [START_REF] Chou | Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems[END_REF][START_REF] Ewing | On the accuracy of the finite volume element method based on piecewise linear polynomials[END_REF]). The H 1 regularity condition over f comes from the fact that the error depends on the L 2 norm of (f -f ), where f is the L 2 projection of f on the cells of the mesh. This is in contrast to the linear finite element method (FEM) (both conforming or of Crouzeix-Raviart type), where second-order convergence in the L 2 norm is proved under the sole condition that f belongs to L 2 (Ω) (in dimension one, and in dimension two under supplementary conditions on ∂Ω, e.g. it suffices that Ω is polygonal convex). Indeed, in the FEM, the Aubin-Nitsche trick uses Galerkin orthogonality, which has no equivalent form in the FVM.

A discrete version of this trick was proposed in [START_REF] Lazarov | Finite volume methods for convection-diffusion problems[END_REF] for the error analysis in the L 2 norm of cell-centered FVM for convection-diffusion associated to non-homogeneous boundary conditions in dimension two over square grids, under the assumption that the right-hand side in the convection-diffusion equation vanishes. The authors obtain second-order convergence provided the exact solution is in H 2 (Ω) and the boundary data in H 3/2 (Γ), but the above-mentioned assumption circumvents the discussion on the regularity of the data in the convection-diffusion equation.

2) In dimension one, the natural choice for the point x i is the midpoint of K i . Therefore, one might wonder why there should be any interest in considering a different choice. The reason stands in the generalization of this FVM to dimensions higher than one; for the sake of simplicity, let us restrict the discussion to the dimension two. In such a case, the FVM may be used on meshes made up of polygonal convex cells which may have an arbitrary number of edges, provided the choice of the set of points (x i ) satisfies some orthogonality conditions given in the definition of so-called "admissible meshes" (see [START_REF] Eymard | Finite volume methods[END_REF]Definition 9.1]). So what is the equivalent of the "midpoint" for a polygonal convex cell? A reasonable answer to this question seems to be the barycenter of the cell; however the above-mentioned orthogonality conditions lead to choose the circumcenters of the triangles, when the mesh is a Delaunay triangulation (see [START_REF] Eymard | Finite volume methods[END_REF]Example 9.1]). Note that even in that particular case of admissible meshes, the order of convergence of the FVM in the L 2 norm is still an open issue, although, based on numerical evidence, some authors believe it to be two [START_REF] Boivin | A Finite Volume method to solve the Navier Stokes equations for incompressible flows on unstructured meshes[END_REF]. However, the only proved result in this context is the order one, see [START_REF] Eymard | Finite volume methods[END_REF]Theorem 9.4] and [START_REF] Baranger | Connection between finite volume and mixed finite element methods[END_REF]Proposition 5]. This first-order convergence result given by [START_REF] Eymard | Finite volume methods[END_REF] also holds for another important example of admissible mesh, namely the Voronoi diagram associated with a given set of points (x i ). In that case, from the geometrical point of view, a point x i may hardly be considered as "the center" of its associated Voronoi cell K i . Note that, as recalled above, the secondorder convergence in the L 2 norm proved in [START_REF] Chou | Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems[END_REF][START_REF] Ewing | On the accuracy of the finite volume element method based on piecewise linear polynomials[END_REF] requires the dual mesh to be the barycentric one, so that this result does not apply to (dual) Voronoi meshes associated to (primal) Delaunay triangulations. These two examples justify the interest in choosing points x i which are not the midpoints of the segments K i in dimension one.

In this paper, we give exact expressions of the errors φ(x i ) -φ i , through the introduction of continuous and discrete Green functions. While this is a pretty common tool in the FEM, Galerkin or Petrov-Galerkin approximations, (see e.g. [START_REF] Chou | Error estimates in L 2 , H 1 and L ∞ in covolume methods for elliptic and parabolic problems: A unified approach[END_REF][START_REF] Ciarlet | Discrete variational Green's function I[END_REF][START_REF] Ciarlet | Discrete variational Green's function[END_REF][START_REF] Draganescu | Failure of the discrete maximum principle for an elliptic finite element problem[END_REF][START_REF] Linss | Sufficient conditions for uniform convergence on layer-adapted meshes for one-dimensional reaction-diffusion problems[END_REF][START_REF] O'riordan | An analysis of a superconvergence result for a singularly perturbed boundary value problem[END_REF][START_REF] Sacco | Convergence of a second-order accurate Petrov-Galerkin scheme for convection-diffusion problems in semiconductors[END_REF][START_REF] Vejchodsky | Discrete maximum principle for higher-order finite elements in 1[END_REF]) and in the Finite Difference context (see e.g. [START_REF] Beyn | Discrete Green's functions and strong stability properties of the finite difference method[END_REF][START_REF] Bramble | On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation[END_REF][START_REF] Bramble | Discrete analogues of the Dirichlet problem with isolated singularities[END_REF][START_REF] Bramble | Pointwise bounds for discrete Green's functions[END_REF][START_REF] Chen | Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid[END_REF][START_REF] Esser | The Green's function of a compact discretization[END_REF][START_REF] Grigorieff | Convergence of discrete Green's functions for finite difference schemes[END_REF][START_REF] Mcallister | Discrete Green's functions[END_REF]), it has been rarely used, to our knowledge, in the FVM context. As far as the vertex-centered FVM is concerned, the authors of [START_REF] Mackenzie | Finite volume solutions of convectiondiffusion test problems[END_REF] consider a noncompact discretization of convection-diffusion problems and prove pointwise error estimates thanks to estimations of the discrete Green functions associated to the scheme. In [START_REF] Linss | Uniform pointwise convergence of an upwind finite volume method on layer-adapted meshes[END_REF], a finite volume scheme for convection-reaction-diffusion equations is recast into a finite difference form and bounds on the associated Green functions are derived to prove first-order pointwise error estimates. As far as the cell-centered FVM is concerned, the only reference to discrete Green functions we are aware of, is a Master Lecture by R. Eymard [15], where this tool is used on regular grids with the point x i being the midpoint of K i . On more general grids, this tool will allow us to discuss the convergence order of the FVM with respect to the regularity of f and with respect to the choice of the points

x i in K i . It turns out of our investigations that if f ∈ H 1 (Ω) and if either x i lies within O(h 2 ) of the midpoint of K i for all i ∈ [1, N ] or x i+1/2 lies within O(h 2 ) of the midpoint of K i+1/2 for all i ∈ [1, N -1],
then second-order convergence is obtained by the FVM in the L ∞ norm (and thus in the L 2 norm). On the other hand, it is shown by counterexamples that if f is not in H 1 (Ω) or if the points x i are not properly chosen, we may have a reduced order of convergence.

This paper is organized as follows: in section 2 we give some definitions and notations, while in section 3, we define and give the expressions of continuous and discrete Green functions associated to the equation (1) and to the scheme [START_REF] Bramble | Discrete analogues of the Dirichlet problem with isolated singularities[END_REF]. This enables us to deduce the exact expression of the error φ(x i ) -φ i . In section 4, we provide sufficient conditions for second-order convergence of the FVM and give in section 5 counterexamples in less favorable cases. We give our conclusions in section 6.

Definitions and notations

Definition 2.1 Like in [START_REF] Weiser | On convergence of block centered finite differences for elliptic problems[END_REF], we define an operator named "primal discrete derivative", denoted by ∇ P h , on the cells K i by the following formula:

R N +1 → R N u i+ 1 2 i∈[0,N ] N → ∇ P h u i = 1 h i u i+ 1 2 -u i-1 2 , ∀i ∈ [1, N ] N .
Definition 2.2 In the same way, we define an operator named "dual discrete derivative", denoted by ∇ D h on the cells K i+ 1 2 by the following formula:

R N +2 → R N +1 (ψ i ) i∈[0,N +1] N → ∇ D h ψ i+ 1 2 = 1 h i+1/2 (ψ i+1 -ψ i ) , ∀i ∈ [0, N ] N . (7) 
Proposition 2.3 These operators are linked by the discrete Green formula:

∀u = u i+ 1 2 i∈[0,N ] N ∈ R N +1 , ∀ψ = (ψ i ) i∈[0,N +1] N ∈ R N +2 , ∇ P h u, ψ P = -u, ∇ D h ψ D + u N + 1 2 ψ N +1 -u 1 2 ψ 0 , (8) 
where we defined the following primal and dual discrete scalar products

Definition 2.4 (φ, ψ) P = N i=1 h i φ i ψ i (u, v) D = N i=0 h i+1/2 u i+ 1 2 v i+ 1 2 .
With these definitions, the FVM (5) reads: find (φ i ) i∈[0,N +1] N such that:

-∇ P h ∇ D h φ i = f i , ∀i ∈ [1, N ] N , φ 0 = φ N +1 = 0 . ( 9 
)
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Continuous and discrete Green functions

The definition of continuous and discrete Green functions will be useful to obtain error estimates.

Definition 3.1 Let K i be a cell, with i ∈ [1, N ] N . Let us define the Green function g i associated with the point x i :

-

g i ′′ = δ x i in D ′ (Ω) , g i (0) = g i (1) = 0 .
Proposition 3.2 It is straightforward to check that the expression of g i is given by the following formula

g i (x) = (1 -x i )x if x ≤ x i x i (1 -x) if x ≥ x i . ( 10 
)
Since g i ∈ H 1 0 (Ω), we have by Eq. ( 2), (f,

g i ) Ω = φ′ , g i ′ Ω = (1 -x i ) x i 0 φ′ (x)dx -x i 1 x i φ′ (x)dx = φ (x i ) , (11) 
by direct integration and because φ vanishes in x = 0 and x = 1.

Definition 3.3 Let us also define the discrete Green function G i j j∈[0,N +1] N associated with K i in the following way, where δ i j is the standard Kronecker symbol:

-∇ P h ∇ D h G i j = δ i j h i , ∀j ∈ [1, N ] N , (12) 
G i 0 = G i N +1 = 0 .
Proposition 3.4 Let us check that the expression of G i is given by the following formula:

G i j = g i (x j ) , ∀j ∈ [0, N + 1] N , (13) 
where the function g i is defined by [START_REF] Ciarlet | Discrete variational Green's function I[END_REF].

Indeed, the application of (12) for j in [1, i -1] N on the one hand, and for j in [i + 1, N ] N on the other hand leads to

∇ D h G i j+ 1 2 = ∇ D h G i j-1 2 , ∀j ∈ [1, i -1] N and ∇ D h G i j+ 1 2 = ∇ D h G i j-1 2 , ∀j ∈ [i + 1, N ] N .
Let us denote by a L the common value of (see formula [START_REF] Chen | Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid[END_REF]) and since h i+1/2 = x i+1 -x i and G i 0 = 0, x 0 = 0, G i N +1 = 0 and x N +1 = 1, there holds

∇ D h G i j+ 1 2 for all j ∈ [0, i -1] N ,
G i j = a L x j , ∀j ∈ [0, i] N , (14) 
G i j = -a R (1 -x j ) , ∀j ∈ [i, N + 1] N . (15) 
Applying these two equalities for j = i, we get

a L x i = -a R (1 -x i ) . (16) 
On the other hand, the application of ( 12) for j = i leads to

-(a R -a L ) = 1 . (17) 
Equations ( 16) and ( 17) lead to a L = 1 -x i and a R = -x i , which, together with ( 14) and ( 15) and the definition of g i by [START_REF] Ciarlet | Discrete variational Green's function I[END_REF], leads to [START_REF] Esser | The Green's function of a compact discretization[END_REF].

Proposition 3.5 The following exact expression of the error φ

(x i ) -φ i holds φ (x i ) -φ i = f, g i -g i * Ω , (18) 
where the piecewise constant function g i * is defined by

g i * (x) = G i j = g i (x j ) , ∀x ∈ K j , ∀j ∈ [1, N ] N .
Since both G i and φ vanish on the boundary, we have, by double application of the discrete Green formula (8):

φ i = -∇ P h ∇ D h G i , φ P = ∇ D h G i , ∇ P h φ D = G i , -∇ P h ∇ D h φ P .
Next, by definition of the scheme, Eq. ( 5), and by definition of the mean values f j , Eq. ( 6), there holds

φ i = G i , f P = N j=1 h j f j G i j = g i * , f Ω .
The result follows from the previous equality and from [START_REF] Ciarlet | Discrete variational Green's function[END_REF].

4 Second order convergence Proposition 3.5 enables us to study the errors at the points x i and also the error in the discrete L 2 norm defined by

e i := φ(x i ) -φ i , e = N i=1 h i φ (x i ) -φ i 2 1 2
.

We can state the following results:

International Journal on Finite Volumes Proposition 4.1 Let x * j be the midpoint of K j . If f ∈ H 1 (Ω) and if there exists a constant C, independent of the grid, such that ∀j ∈ [1, N ] N , x j -x * j ≤ Ch 2 , then there is a constant K, depending only on f , such that

∀i ∈ [1, N ] N , e i ≤ Kh 2 , ( 19 
) e ≤ Kh 2 . ( 20 
)
Indeed, equation ( 18) may also be written

φ (x i ) -φ i = f, g i -g i * Ω = f -Πf, g i -g i * Ω + Πf, g i -g i * Ω , ( 21 
)
where Πf is the L 2 projection of f on the grid:

(Πf )(x) = f j , ∀x ∈ K j , ∀j ∈ [1, N ] N .
Since f ∈ H 1 (Ω), a standard result (see, e.g. [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]) states that there exists a constant K, which does not depend on the grid such that

f -Πf 0,K j ≤ K h j |f | 1,K j ≤ Kh 1 2 h 1 2 j |f | 1,K j , ∀j ∈ [1, N ] N . (22) 
In addition, for all x ∈ K j ,

g i -g i * (x) ≤ |x -x j | sup(x i , 1 -x i ) ≤ |x -x j | ≤ h . (23) 
This implies of course that

g i -g i * 0,K j ≤ h 3 2 . ( 24 
)
By the Cauchy-Schwarz formula there holds

f -Πf, g i -g i * Ω ≤ N j=1 f -Πf 0,K j g i -g i * 0,K j ≤ Kh 2 N j=1 h 1 2 j |f | 1,K j (25)
thanks to Eq. ( 22) and [START_REF] Manteuffel | The numerical solution of second-order boundary value problems on nonuniform meshes[END_REF]. Finally, since N j=1 h j = |Ω| = 1, the discrete Cauchy-Schwarz formula yields

f -Πf, g i -g i * Ω ≤ Kh 2 |f | 1,Ω . (26) 
In addition, the function g i -g i * being linear on each K j (for j = i), its integral can be evaluated by the midpoint rule, and we have Πf,

g i -g i * Ω ≤ j<i f j h j (1 -x i ) x * j -x j + j>i f j h j x i x j -x * j (27) + 1 2 f i x i -x i-1 2 2 (1 -x i ) + x i+ 1 2 -x i 2 x i .
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|f j | h j = K j f (x)dx ≤ h 1 2 j f 0,K j ,
the assumption

x j -x * j ≤ Ch 2 leads to j<i f j h j (1 -x i ) x * j -x j + j>i f j h j x i x j -x * j ≤ Ch 2 N j=1 h 1 2 j f 0,K j .
By the discrete Cauchy-Schwarz inequality, this implies that the first line in ( 27) is bounded by Ch 2 f 0,Ω . As far as the second line in ( 27) is concerned, it is bounded by Ch 2 |f i |. But since f is in H 1 (and since we are in dimension 1), this function is bounded on Ω by C f 1,Ω , where the constant C depends only on Ω. Finally, we can thus write Πf,

g i -g i * Ω ≤ Ch 2 f 1,Ω . (28) 
The result [START_REF] Jones | Analysis of the cell-centred finite volume method for the diffusion equation[END_REF] follows from ( 21), ( 26) and ( 28), and the result (20) immediately from [START_REF] Jones | Analysis of the cell-centred finite volume method for the diffusion equation[END_REF].

Proposition 4.2 If f ∈ H 1 (Ω) and if there exists a constant C, independent of the grid, such that ∀j ∈ [1, N -1] N , x j+ 1 2 - x j +x j+1 2 ≤ Ch 2 , then there is a constant K, depending only on f , such that ∀i ∈ [1, N ] N , e i ≤ Kh 2 , ( 29 
) e ≤ Kh 2 . ( 30 
)
The preceding calculations still hold if we consider the mean-values of f on the dual cells K j+ 1 2 instead of its mean-values on the primal cells K j . We define

(Pf )(x) = f j+ 1 2 := 1 h j+1/2 K j+ 1 2 f (y) dy ∀x ∈ K j+ 1 2 , ∀j ∈ [0, N ] N . Then, we have φ (x i ) -φ i = f, g i -g i * Ω = f -Pf, g i -g i * Ω + Pf, g i -g i * Ω . ( 31 
)
For f ∈ H 1 (Ω), there exists a constant K, which does not depend on the grid such that

f -Pf 0,K j+ 1 2 ≤ K diam(K j+ 1 2 ) |f | 1,K j+ 1 2 ≤ 2Kh |f | 1,K j+ 1 2 , ∀j ∈ [0, N ] N ,
thanks to (4). In addition, for all x ∈ K j+ 1 2 ,

g i -g i * (x) ≤ sup (|x -x j | , |x -x j+1 |) sup(x i , 1 -x i ) ≤ 2h .
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f -Pf, g i -g i * Ω ≤ Kh 2 |f | 1,Ω . (32) 
In addition,

Pf, g i -g i * Ω = -f 1 2 h 1/2 (1 -x i ) x 1 2 -f N + 1 2 h N +1/2 x i (1 -x N ) 2 (33) + N -1 j=1 f j+ 1 2 K j+ 1 2 g i -g i * (x) dx .
For 1 ≤ j ≤ i -1, we have

K j+ 1 2 g i -g i * (x) dx = (1 -x i ) (x j+1 -x j ) x j+1 + x j 2 -x j x j+ 1 2 -x j -x j+1 x j+1 -x j+ 1 2 = (1 -x i ) x j+ 1 2 - x j+1 + x j 2 h j+1/2 .
In the same way, for i ≤ j ≤ N -1, we have

K j+ 1 2 g i -g i * (x) dx = -x i x j+ 1 2 - x j+1 + x j 2 h j+1/2 .
Using the Cauchy-Schwarz inequality, and the assumption on x j+ 1 2 -

x j+1 +x j 2
, these equalities enable us to bound the second line of (33) by Kh 2 f 0,Ω . As for the first line of this expression, it can be bounded by taking into account the following inequalities

|x 1 | ≤ h , |1 -x N | ≤ h , K 1 2 ≤ h , K N + 1 2 ≤ h , f 1 2 ≤ C f 1,Ω , f N + 1 2 ≤ C f 1,Ω ,
where the constant C depends only on Ω for reasons evoked in the proof of proposition 4.1. Finally, we have

Pf, g i -g i * Ω ≤ Kh 2 f 1,Ω . (34) 
The result [START_REF] Vejchodsky | Discrete maximum principle for higher-order finite elements in 1[END_REF] follows from (31), (32) and (34), and the result (30) immediately from [START_REF] Vejchodsky | Discrete maximum principle for higher-order finite elements in 1[END_REF].
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We will now check that for less regular functions f , the error can be of an order lower than 2, even if the grid verifies the assumptions of proposition 4.1. Since in that case g i -g i * changes sign at the midpoint of K i , the idea is to choose a function f that will systematically be "much" greater on the first half of K j than on its second half, so that Eq. ( 18) will imply an accumulation of errors.

Proposition 5.1 Let the grid be made up of N identical segments of length h = 1 N and let the points x j be chosen as the midpoints of the segments

x j = (j -1/2) h , 1 ≤ j ≤ N . Let in addition α ∈]0; 1/2[ and let us choose f (x) = x -α . (Of course, f ∈ L 2 (Ω) but f / ∈ H 1 (Ω))
. Let in addition x * ∈]0; 1[, be fixed independently of the grid and let us denote by N * the integer such that N * h ≤ x * < (N * + 1)h. We will suppose h sufficiently small so that N * ≥ 2. Then, there exists K > 0 depending only on α and x * , such that for h sufficiently small

e i ≥ Kh 2-α , ∀i ∈ [2, N * ] N , (35) 
e ≥ Kh 2-α . (36) 
Let indeed i be fixed in [2, N * ] N . Formula (18) enables us to write

φ (x i ) -φ i ≤ (i-1)h 0 g i (x) -g i * (x) x -α dx + 1 ih g i (x) -g i * (x) x -α dx (37)
because the function g i -g i * is negative over [(i -1)h; ih] since on this interval g i * (x) = g i (x i ) ≥ g i (x). Then, let us set, for 1 ≤ j ≤ i -1,

A j = jh (j-1)h g i (x) -g i * (x) x -α dx = (1 -x i ) jh (j-1)h (x -x j )x -α dx .
By carrying out the change of variable x = x j -s on [(j -1)h; x j ] and x = x j + s on [x j ; jh], we obtain the following expression, since x j = (j -1/2)h

A j = (1 -x i ) h/2 0 (x j + s) -α -(x j -s) -α s ds .
We can write

(x j -s) -α = x -α j 1 - s x j -α ≥ x -α j 1 + α s x j , ∀s ∈ [0; h/2] .
In addition, (

x j + s) -α ≤ x -α j , ∀s ∈ [0; h/2] .
Thus,

A j ≤ -(1 -x i )αx -1-α j h/2 0 s 2 ds .
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By taking into account the equality x j = (j -1/2) h, we finally obtain

A j ≤ -(1 -x i ) α 24 h 2-α (j -1/2) 1+α .
Then, we can bound the first term of (37):

(i-1)h 0 g i (x) -g i * (x) x -α ≤ -(1 -x i ) α 24 h 2-α i-1 j=1 1 (j -1/2) 1+α . ( 38 
)
The sum in (38) comprises at least a term, since we consider i ≥ 2. Thus, we have

(i-1)h 0 g i (x) -g i * (x) x -α ≤ -(1 -x i ) 2 1+α α 24 h 2-α . ( 39 
)
Let us set in addition, for i + 1 ≤ j ≤ N ,

B j = jh (j-1)h g i (x) -g i * (x) x -α dx = x i jh (j-1)h (x j -x)x -α dx .
By carrying out the same changes of variable as previously, we obtain

B j = x i h/2 0 (x j -s) -α -(x j + s) -α s ds .
We can write

(x j -s) -α -(x j + s) -α ≤ (x j -h/2) -α -(x j + h/2) -α , ∀s ∈ [0, h/2] ,
and thus

B j ≤ x i h 2 8 [(j -1)h] -α -(jh) -α .
Then, we can bound the second term of (37):

1 ih g i (x) -g i * (x) x -α dx ≤ x i h 2 8 (ih) -α -(N h) -α ≤ x i x -α i -1 h 2 8 
because N h = 1 and x i ≤ ih. Since 1 > α > 0 and 0 ≤ x i ≤ 1, we have

x i x -α i -1 = x 1-α i (1 -x α i ) ≤ 1, which implies 1 ih g i (x) -g i * (x) x -α dx ≤ h 2 8 . (40) 
By gathering (37), (39) and (40), we obtain

φ (x i ) -φ i ≤ -(1 -x i ) 2 1+α α 24 h 2-α + h 2 8 .
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-x i ) ≥ (1 -x * ) since i ≤ N * , so that φ (x i ) -φ i ≤ -(1 -x * ) 2 1+α α 24 h 2-α + h 2 8 . (41) 
For h sufficiently small, (for example such that h 2 8 ≤ (1 -x * ) 2 1+α α 48 h 2-α ), the result (35) is obtained by taking the absolute value of the two sides of this inequality. The result (36) is obtained, starting from (35), by writing

e 2 ≥ N * i=2 h φ (x i ) -φ i 2 ≥ (N * -1)h K (1 -x * ) 2 h 4-2α ≥ (x * -2h) K (1 -x * ) 2 h 4-2α ≥ K h 4-2α ,
where the constant K, for h sufficiently small, does not depend on the grid. Figure 1 displays the observed discrete L 2 norm of the error, e(h), as a function of the meshstep size h for α = 1/4, as well as a reference curve with slope 2 -α = 7/4, which confirms that the order of convergence in the L 2 norm behaves like 2 -α.

We shall now take into consideration a case where the assumptions of propositions 4.1 and 4.2 concerning the grid are not verified. Keeping in mind formula [START_REF] Grigorieff | Convergence of discrete Green's functions for finite difference schemes[END_REF], the idea is to choose f as a constant function, and points (x i ) so that f (g i -g i * ) will be positive on a much greater part of Ω than the part of Ω on which it will be negative. We can state the following result Proposition 5.2 On general grids, and even if f is regular, we may not get a better estimate than

F (x i )h ≤ e i ≤ Kh , (42) 
C 1 h ≤ e ≤ C 2 h , (43) 
where the constants K, C 1 and C 2 and the function F are independent of the grid.
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First of all, formula (18) together with estimate (23), coupled with the Cauchy-Schwarz inequality, allow us to write that for all

i ∈ [1, N ] N , φ (x i ) -φ i ≤ f 0,Ω h ,
which immediately implies e ≤ f 0,Ω h .

These two inequalities lead to the inequalities in the right-hand sides of (42) and (43). To show the left-hand side inequalities, let us consider now the following example: the grid consists of N = 2P identical segments of length h = 1 2P and we choose the points x j defined by

x j = j -3 4 h if j ≤ P j -1 4 h if j > P .
In addition, the function f is chosen so that

f (x) = 1 ∀x ∈ Ω ,
and we thus have φ(x) = 1 2 (1 -x)x. Setting v j = φ j+1 -φ j and taking into account [START_REF] Bramble | Discrete analogues of the Dirichlet problem with isolated singularities[END_REF] and the size of the various dual cells, we obtain the following system

               v 1 -4v 0 = -h 2 v j -v j-1 = -h 2 ∀j s.t. 2 ≤ j ≤ P -1 2 3 v P -v P -1 = -h 2 v P +1 -2 3 v P = -h 2 v j -v j-1 = -h 2 ∀j s.t. P + 2 ≤ j ≤ 2P -1 4v 2P -v 2P -1 = -h 2 .
This allows us to get the following expressions

       v j = 4v 0 -jh 2 ∀j s.t. 1 ≤ j ≤ P -1 v P = 6v 0 -3P 2 h 2 v j = 4v 0 -jh 2 ∀j s.t. P + 1 ≤ j ≤ 2P -1 v 2P = v 0 -P 2 h 2 .
In addition, 2P j=0 v j = φ 2P +1 -φ 0 = 0, which implies v 0 = P 4 h 2 . We thus have

   v 0 = P 4 h 2 v j = (P -j)h 2 ∀j s.t. 1 ≤ j ≤ 2P -1 v 2P = -P 4 h 2 .
This allows us to write In addition, since 2P h = 1, we can write

   φ 0 = 0 φ i = P 4 h 2 + (i -1) P -i 2 h 2 , ∀i ∈ [1, 2P ] N φ 2P +1 = 0
φ i = h 8 + 1 2 1 - i 2P × (i -1) 2P , ∀i ∈ [1, 2P ] N .
But for 1 ≤ i ≤ P we have by definition

x i = i -3 4 2P = i 2P - 3 4 h = (i -1) 2P + 1 4 h .
Thus, we find the expression of φ i to be

φ i = 1 2 (1 -x i )x i - h 4 x i + 3 32 h 2 = φ(x i ) - h 4 x i + 3 32 h 2 , ∀i ∈ [1, P ] N .
That is to say

e i = x i h 1 4 - 3 8(4i -3) ≥ x i h 8 , ∀i ∈ [1, P ] N .
In the same way,

φ i = 1 2 (1 -x i )x i - h 4 (1 -x i ) + 3 32 h 2 = φ(x i ) - h 4 (1 -x i ) + 3 32 h 2 , ∀i ∈ [P + 1, 2P ] N , which implies φ(x i ) -φ i ≥ (1 -x i ) h 8 , ∀i ∈ [P + 1, 2P ] N .
This allows to obtain the left inequality in (42), and then easily the left inequality in (43). Figure 2 displays the observed discrete L 2 norm of the error, e(h), as a function of the meshstep size h, as well as a reference curve with slope 1, which confirms that the order of convergence in the L 2 norm is exactly one in this case.

Conclusions

Through the introduction of discrete Green functions, we have computed the exact error between the numerical solution of the one dimensional Laplace equation discretized by cell-centered finite volumes and its exact solution evaluated at the points associated to the control volumes. We have recovered the well-known second-order accuracy result under the conditions that these points are chosen as (or O(h 2 ) close to) the centers of the control volumes, and that the right-hand side of the Laplace equation belongs to H 1 (Ω). This result also holds if the endpoints of the control volumes are (O(h 2 ) close to) the centers of the dual cells. However, if either the points associated to the control volumes are not properly chosen, or if the right-hand side of the Laplace equation does not belong to H 1 (Ω), second-order accuracy may be lost. This gives us indications on what to expect in higher dimensions: not properly chosen families of admissible meshes may display a reduced order of convergence, and, like in the FVEM, H 1 regularity of the right-hand side seems to be necessary to get second-order convergence.
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 1 Figure 1: Discrete L 2 error for the counterexample f (x) = x -α with α = 1/4.
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 2 Figure 2: Discrete L 2 error for the counterexample in which the control points associated to the control volumes are badly chosen.
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