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Structural Analysis of fMRI Data Revisited:

Improving the Sensitivity and Reliability of

fMRI Group Studies

Abstract

Group studies of functional MRI datasets are usually based on the computation of the mean signal across subjects

at each voxel (Random Effects Analyses), assuming that all subjects have been set in the same anatomical space

(normalization). Although this approach allows for a correct specificity (rate of false detections), it is not very

efficient, for three reasons: i) its underlying hypotheses, perfect coregistration of the individual datasets and normality

of the measured signal at the group level, are frequently violated ; ii) the group size is small in general, so that

asymptotic approximations on the parameters distributions do not hold ; iii) the large size of the images requires

some conservative strategies to control the false detection rate, at the risk of increasing the number of false negatives.

Given that it is still very challenging to build generative or parametric models of inter-subject variability, we rely

on a rule based, bottom-up approach: we present a set of procedures that detect structures of interest from each

subject’s data, then search for correspondences across subjects and outline the most reproducible activation regions

in the group studied. This framework enables a strict control on the number of false detections. It is shown here

that this analysis demonstrates increased validity and improves both the sensitivity and reliability of group analyses

compared with standard methods. Moreover, it directly provides information on the spatial position correspondence

or variability of the activated regions across subjects, which is difficult to obtain in standard voxel-based analyses.

Index Terms

functional MRI, Group analysis, spatial normalization, structural methods, watershed, belief propagation, replicator

dynamics, group comparison.
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Structural Analysis of fMRI Data Revisited:

Improving the Sensitivity and Reliability of

fMRI Group Studies

I. INTRODUCTION

Functional neuroimaging aims at finding brain regions

specifically involved in the performance of cognitive

tasks. In particular, functional MRI (fMRI) is based

on the detection of task-related Blood Oxygen-Level

Dependent (BOLD) effect in the brain. The measurement

of this effect is performed by regression analysis of

four-dimensional datasets (three spatial dimensions plus

time) against pre-defined regressors that represent the

expected BOLD response to the stimulations across time;

this analysis framework is known as the General Linear

Model (GLM) [1]. Inference about putative regions of

activity is generally based on several subjects (∼10-

15 subjects typically), and the current standard proce-

dure consists in detecting voxels for which the average

task-related BOLD signal increase is significant across

subjects (random/mixed effects analyses, R/MFX) [1],

[2]. Such voxel-based inference schemes require the

images to be warped to a common space, which is

usually performed by coregistration of the anatomical,

then functional data with a template image [3]. In most

data analysis software packages, the reference image is

the average T1 image provided by the Montreal Neu-

rological Institute (MNI), which matches approximately

the Talairach coordinate system [4].

Voxel-based inference schemes are explicitly based

on the assumptions that i) the functional images are

properly co-registered, so that a location in the common

space corresponds to the same region in the brain of

each subject; ii) at a given spatial location in the ref-

erence space, the signal is normally distributed across

subjects, so that the RFX and MFX statistics are Student-

distributed under the null hypothesis that no activation

occurs. Both hypotheses might be wrong: the signal can

be inhomogeneous across subjects [5], so that normal-

ity assumptions are not met [6], and mis-registrations

remain after spatial normalization of the datasets. The

magnitude of such local shifts is probably 1cm in many

brain regions (this can be observed for functional regions

like the the motor cortex or the visual areas [7], [8]

or the position of anatomical landmarks [9]–[11]). In

addition, the number of subjects included in the analysis

is generally small, so that RFX analyses are known to

have a weak sensitivity.

In order to deal with the spatial mis-registration issues,

most neuroscientists are thus accustomed to smoothing

their datasets (8-12mm FWHM typically in group stud-

ies) to increase signal spatial overlap across subjects.

This leads to biased and less precise localization of acti-

vated regions and may in some cases reduce sensitivity.

The interpretation of the boundaries of supra-threshold
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regions in group studies is not clear. Another approach

consists in computing local or global anatomical warps

that improve inter-subject co-registration [12]–[14]. But

such warps may require the additional use of anatomical

landmarks, and it is not clear that different brains can

be correctly warped onto each other. In particular, the

variability in the large scale sulco-gyral anatomy [15],

[16] might imply that no such correspondences exist.

Note also that Talairach atlas was designed for sub-

cortical structures.

In order to cope with non-normality of the signal

across subjects, robust inference schemes, based e.g. on

the sign test or Wilcoxon signed rank’s statistic [17] have

been designed. Moreover, permutation-based assessment

of the group signal statistics [18], [19] yields an unbiased

significance for the statistical maps across subjects, and

thus bypasses some approximations implied by the use

of random field theory [1].

However, performing a test on each and every voxel

has a statistical cost (multiple comparison correction of

the p-values), while many of these voxels are probably

of little relevance to the cognitive function under study.

An interesting alternative is thus to perform inference

at a higher level than the voxel level. In other words,

one can consider functional regions, or structures, that

are found active across subjects rather than active vox-

els. This point of view has been advocated by many

groups that would use functional localizer paradigms

to define brain regions before testing the activity of

these regions in other conditions [20]. In particular,

regions of interest are frequently defined anatomically in

order to ease functional studies [21]–[25]. However, such

regions are defined within a reference space (e.g. MNI

space), which raises the aforementioned issue of mis-

registrations; moreover, such approaches define regions

very coarsely [21], [25] (less than hundred regions for

the entire brain). It is thus necessary to propose data-

driven approaches.

In the literature, there is no generally accepted gen-

erative model of brain activity that could drive group

inference procedures. Although few attempts have been

proposed recently [26]–[28], such approaches are likely

to be confounded by the complexity of the data, the

unknown extent and nature of the activations networks

and the global cross-subjects variability. Therefore, a

more pragmatic solution consists in modelling some

structures of interest observed in the groups of subjects,

and then to compare them in order to infer a group-

level template of the observed data. Such approach

are rule-based rather than based on a generative model

of the data. Hereafter, such approaches will be called

structural.

Structural approaches have to address several impor-

tant questions:

• What are the structures of interest in each subject?

In the case of fMRI data, it is clear that the informa-

tion of interest is coded in the maxima of activity

maps, e.g. large supra-threshold clusters [18], [29],

scale-space blobs [30] or activity peaks [31]. Al-

ternatively, some alternative approaches start with

the prior definition of regions (parcels), based on

clustering of anatomical and/or functional datasets

[7]. Some of these approaches might be somewhat

coarse for a fine description of activated areas [7],

[29], [31]. In this work, we rely on watersheds

of supra-threshold areas, which is an intuitive and

classical technique in pattern recognition [32].

• How to associate such regions across subjects ? This

point may be more difficult, in particular because

there exists clearly no isomorphism between indi-

vidual active regions. While the position in a com-

mon space is an important information [29], [31],
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there might be local variations that induce some

ambiguities. In such cases, the relative position of

neighboring regions might be of great importance

[7], [30]. In this work, we propose a relatively

simple scheme to take this information into account.

• How to validate the sets of regions that have been

associated across subjects ? In [30] a procedure that

takes into account the individual feature quality,

structural similarity between features and associ-

ation strength, has been proposed. However, its

complexity may be quite problematic for interpreta-

tion purposes. Here, we prefer to perform a spatial

density test on the candidate regions, which allows

a strict control on the specificity (type I error rate)

of the method.

Finally, another important point is that structural meth-

ods involve many parameters in the modelling steps, and

it is thus quite important to control the robustness of the

results with respect to mild variations in the parameter

setting.

In the present paper, we propose a framework that

solves the aforementioned issues sequentially; in brief

1) it extracts regions of interest (ROIs) in each subject’s

dataset, 2) tests which of these regions are reason-

ably close to other activated regions in other subject’s

datasets, 3) searches for probabilistic correspondences of

the regions across subjects so that the relative positions

of ROIs coincide, 4) builds clusters of inter-subject

corresponding regions. Such clusters will be termed

cliques in this paper. Group inference proceeds through

the definition of spatial confidence regions associated

with each clique, while each subject may or may not

have a region associated with a clique defined at the

group level. Thus, the method results consist in a group-

level model and individual instances of this model. This

gives some means to account for and characterize inter-

subject differences, a key issue in group studies [6], [33].

We describe the method in Section II, and some

artificial and real benchmark datasets in Section III.

Importantly, our approach allows for an explicit control

on specificity, which is shown in Section IV; in Section

V we illustrate the improvement in terms of sensitivity

and reliability of fMRI group analyses. Reliability is

assessed by jackknife subsampling in a population of 102

subjects, and we show that the results of the proposed

method are less dependent on the particular subgroup

of subjects under study than standard voxel-based tests.

Finally, we describe the results of the method when

applied to the whole group of 102 subjects. Technical

issues and implications for neuroimaging studies are

discussed in Section VI.

II. METHODS

A. Notations

Let us assume that a group of S subjects take part

in an fMRI acquisition protocol while they undergo a

certain cognitive experiment. After some standard pre-

processing (distortion correction, correction of differ-

ences in slice timing, motion correction, normalization),

the dataset of each subject is analysed in the General

Linear Model (GLM) framework: for a given subject

s ∈ {1, .., S}, let Y s be the dataset written as matrix

(scans×voxel), and let X be the design matrix that

describes effects of interest and confounds; the GLM

proceeds by estimating the effect vectors βs such that

Y s = Xβs + ǫs, ∀s ∈ {1, .., S}, (1)

where ǫs represents the residual matrix. The estimation

is based on a maximum likelihood approach performed

in each voxel, where the noise is assumed to be an AR(1)

process [1], [2], [34]. Let c be the linear combination of
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the experimental conditions that is of particular interest;

c is also called a functional contrast. A certain statistic φs

can be computed in each subject s to assess the presence

of a positive effect cT βs > 0 in each voxel of the dataset,

e.g.

φs(v) =
E(cT βs(v)|Y s)

√

var(cT βs(v)|Y s)
(2)

at each voxel v.

Our method takes as input the activations maps φs of

each subject s ∈ {1, .., S}, which can be thresholded

at a certain significance level, using either voxel-level

or cluster-level assessment. In what follows, we assume

that, given the significance level P , there exists a known

threshold θ0 such that P (φs(v) > θ0|H0) < P at any

voxel v, where H0 represents the null hypothesis that no

activation is present. Our analysis procedure is illustrated

in Fig. 1 and consists of four steps, which are detailed

in the next parts.

[Figure 1 about here.]

B. Intra-subject Structural analysis

In the absence of a sound prior on the nature or the

position of activated foci, our approach first extracts

regions of interest in each dataset. It seems particu-

larly meaningful to segment the main peaks of activity

within the supra-threshold components of the statisti-

cal maps (φs)s∈{1,..,S}: the connected supra-threshold

components in each subject s are thus segmented into

I(s) regions using a watershed method, so that each

segmented region is associated with a local maximum

of the map φs. Let (as
i )i=1..I(s) be the corresponding

maxima for subject s, and (tsi ) their MNI coordinates

(which approximate Talairach coordinates). It is useful

to have a graphical representation of the spatial rela-

tionships between the segmented regions in each subject

(see Sec. II-D). Several models may be used to build

such a graph, for instance the neighboring relationships

between adjacent regions. The resulting graphs (Gs), s ∈

{1, .., S} are undirected, and they may contain cycles.

We propose an alternative, that produces acyclic graphs:

The list of maxima of any connected regions can be

organized according to the order relation O: as
iOas

j if

and only if the corresponding regions are neighboring

and if as
j is the highest maximum in the vicinity of

as
i . The set of these structures across regions defines

a directed acyclic, possibly disconnected graph in each

subject. We consider the undirected graphs with the

same edges; these will be denoted Gs, s ∈ {1, .., S}.

Assuming that the activated regions are aligned along

some sulci, hence in one-dimensional structures, the tree-

like representation given by Gs may code quite well their

spatial organization.

Note that the normalization procedure can, and in

principle should, take place after the intra-subject anal-

ysis part. We have implemented both solutions on a real

dataset, and have not noticed any significant difference

in the global outcome of the method.

C. Spatial statistics

Given that the initial threshold P should preferably

be kept low to avoid false negatives, the first step

necessarily results in several false positives. A statistical

test on the spatial distribution of the maxima is thus

performed to control the false positive rate. Only regions

with across-subject reproducible activity are of interest.

Thus we build a spatial statistic to remove the local

maxima of each subject that are far from local maxima

of other subjects. This spatial statistic is the density of

presence of supra-threshold local maxima in the other

subjects. Let τ = (x, y, z) be a position in the common
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space. For each subject s ∈ {1, .., S}, we define

Ds(τ) =
∑

σ∈{1,..,S}−{s}

I(σ)
∑

i=1

exp

(

−
‖τ − tσi ‖

2

2δ2
τ

)

(3)

The parameter δτ represents an inter-subject spatial

variability and is set to 10mm.

The distribution of the quantity Ds(τ) can then be

compared, in every location, to its distribution under the

null hypothesis H0. The null hypothesis that we consider

here is global, i.e. it means that there is no specifically

task-related region in the brain. Under this assumption,

the spatial density of local maxima is uniform in the

brain volume. We estimate the distribution of Ds(τ)

under H0 by random resampling of the position of

the activation maxima (aσ
i )i=1..I(σ),σ 6=s within the brain

volume. Let D̃s be the surrogate distribution obtained

after k resamplings (k = 10 typically).

Then, let α be a significance level, and let uα be a

threshold on the values of Ds such that

P (Ds(τ) > uα|H0) < α; an estimator of uα is given

by the α-quantile of the density D̃s

uα = arginfu

[

1

Ω

∫

ID̃s>u(τ)dτ < α

]

(4)

where Ω =
∫

dτ is the brain volume.

Importantly, the test is performed for a small number

of spatial locations (tsi )i=1..I(s). Hence its significance

can be corrected using a Bonferroni procedure, i.e., by

replacing α by α
I(s) in Eq. (4). An example is provided

in Fig. 2.

One might be concerned with the behaviour of the

method, assuming that the null hypothesis has been

rejected in some regions of the brain: Does the test

remain valid in the other regions, given that the global

null hypothesis of a uniform density of maxima has been

rejected ? In fact, in such case, the resampled distribution

D̃s is an overestimation of the true null distribution under

the null hypothesis P (Ds|H0), which means that the

ensuing test is conservative, hence valid. This fact is

evident in Fig. 2, where the (null) mode of the resampled

distribution is shifted to the right, with respect to the

mode of the non-resampled distribution.

[Figure 2 about here.]

The test is iterated in all the subjects, then non-

significant maxima at the desired significance level are

rejected. The process can be iterated in order to refine

the spatial model. Let I(s) ≤ I(s), s ∈ {1, .., S} be

the number of remaining regions in each subject. Since

we control the probability that one false positive region

might show up in a given subject at level α, given

ν ∈ {1..S}, the probability of one false positive region

in ν subjects over S is controlled by the binomial law

B(ν, S, α).

D. Finding correspondences using Belief Propagation

networks

The statistical procedure leaves us with a set of

candidate regions which are spatially clustered across

subjects. Then the core part of the procedure consists in

finding which regions correspond across subjects. This

problem is probably the most difficult one, since one

would like to obtain explicit correspondences between

individually segmented regions, although there cannot

be a one-to-one correspondence across subjects. For in-

stance, a couple of neighboring active foci in one subject

might not be distinguishable in some other subject. Our

solution consists in estimating, for each pair (s1, s2) of

subjects, the probability that the region as1

j in subject s1

is the analogue of region as2

i in subject s2. Then, given

these probabilities, cliques of cross-subjects regions will

be constructed; this will be detailed in section II-E.

We search for inter-subject correspondences in the

relative positions of activated areas. While this does
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not rely on a physical model, it builds on the heuristic

that across subjects, positions of activated regions should

be locally similar, though not identical in the common

space. For instance, it is logical to favor configurations

in which couples of neighboring regions with similar

relative positions in two subjects will be grouped in two

different cliques according to their relative position.

We base our search on a graphical model of the

position of the maxima in each subject. This model is

provided either by the undirected acyclic graph Gs or

the undirected and possibly cyclic graph Gs defined in

section II-B, from which non-significant nodes have been

removed. Probabilistic associations are then searched for

each pair of subjects, using a belief propagation (BP)

algorithm [35]. Given a reference subject s1 and a target

subject s2, the associations are initialized as

P (as2

i ← as1

j ) ∝ exp

(

−
‖ts2

i − ts1

j ‖
2

2δ2
τ

)

(5)

with appropriate normalization, where P (as2

i ← as1

j )

stands for the probability that the maximum as2

i in

subject s2 is the homologue of maximum as1

j in subject

s1. These probabilities are refined by belief propagation;

for each edge (jk) of the graph Gs1 or Gs1 , messages

are sent from as1

j to as1

k to quantify the probability of

association between as1

k and (as2

i )i=1..I(s2):

mjk(i) ∝

I(s2)
∑

l=1

P (as2

l ← as1

j )

exp

(

−
‖(ts2

i − ts2

l )− (ts1

k − ts1

j )‖2

2δ2
τ

)

(6)

with appropriate normalization (
∑I(s2)

i=1 mjk(i) = 1).

Eq. (6) simply means that whenever the positions of

local maxima ts2

l and ts2

i in subject s2 and ts1

j and ts1

k

in subject s1 form a parallelogram, the configurations

are favored in which as2

l and as1

j on the one hand, as2

i

and as1

k on the other hand, are associated. As shown

in Fig. 3, taking into account the relative positions of

the maxima improves cross-subjects correspondences by

compensating global translation effects.

[Figure 3 about here.]

The beliefs P (as2

i ← as1

j ) and messages are then

updated and normalized according to the formal laws of

BP [35], [36]. Note that the graphs Gs have no loops, so

that convergence is straightforward. We have also used

loopy belief propagation, based on the graphs Gs, which

did not raise any issue concerning the convergence of the

correspondence probabilities. Furthermore, the choice of

Gs or Gs was not found to be crucial in the method. In

our experiments, we use Gs by default.

The estimation of the probabilities is performed on

each pair of subjects in the group. As an important note,

all the quantities used here are asymmetric. In particular,

the graphs Gs1 and Gs2 have a priori different structures,

so that the probabilities P (as2

i ← as1

j ) and P (as1

j ←

as2

i ) might be quite different after convergence. This is

particularly obvious in the case of many-to-one corre-

spondences, given that the number of maxima in a given

region may vary a lot across subjects. The next step

essentially chooses which of these correspondence are

meaningful at the population level.

E. Extracting homologous regions

All the probabilities of all pairwise associations be-

tween subjects are then arranged in a common belief

matrix B. A row of B contains all the probabilities that a

maximum as
i of a subject is associated with all maxima

(aσ
j )j=1..I(σ),σ∈{1,..,S} of the other subjects; note that

the associations with the other maxima (as
j)j = 1..I(s)

within the subject s itself are null. We can also interpret

B as the adjacency matrix of a probabilistic association

graph between regions that are pooled across subjects.
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Some of these associations may not be realistic, but

in that case the two maxima should not have strong

common associations with other maxima. To deal with

such cases, we proceed with the extraction of the

maximal cliques of the belief matrix, i.e. groups of

maxima that have mutually strong associations. In our

case, the association probabilities are asymmetric, thus

the maximal clique approach requires that association

probabilities are relatively high bidirectionally, in a sense

detailed thereafter.

Many clustering procedures are possible, e.g. hierar-

chical clustering techniques, using average or maximal

linkage heuristics or replicator dynamics (RD). Since the

latter procedure is more data-driven (it does not require a

prior definition of the number q of clusters to be found),

we describe it in more details, but we also suggest

to use average-link agglomerative clustering, where the

number of desired clusters is q = meansI(s) the average

number of regions per subject. Note that in that case, the

association probabilities are symmetrized.

A formal definition of graph-theoretical cliques is

given in [37], in the case where the matrix B is sym-

metric. They are termed the dominant sets of the graph,

and their definition relies on two conditions: i) that the

similarity value of each element of the clique should be

high enough with respect to the average similarity of the

other elements ii) that any element outside the clique

should have a weaker similarity with the clique than

the elements of the clique, where the similarity values

are computed from the affinity values between graph

neighbors. Finally, it is shown in [37] that it amounts

to define a membership vector x on the graph vertices,

and then to solve the program

maximize x′Bx subject to x ≥ 0 and x′u = 1 (7)

where u is the vector of ones with the same size of

x. Finally, still in the case where B is symmetric,

this problem can be solved using replicator dynamics

equations to B (see e.g. [38], [39]). Replicator dynamics

consist in initializing, randomly or not, a positive vector

x(0) whose length is equal to the total number of vertices,

and then in iterating the update rule

x(i+1) =
(Bx(i)).x(i)

x(i)′Bx(i)
(8)

where ∗.∗ stands for the element-wise product. After a

few iterations, almost all the components of x vanish,

and the other ones correspond to a maximal clique of

the belief graph. The clique is removed, and the process

is repeated until no non-trivial clique is found. Other

rules than the replicator dynamics can be used instead

[40], but we experienced that Eq. (8) works efficiently.

We noticed that this procedure tends to over-segment the

graph B, which is natural due to the restrictive definition

of the maximal cliques (or dominant sets, see above),

but this is not a problematic issue, since further merging

of cliques remains possible. For instance, the procedure

can be iterated based on cliques instead of regions, thus

yielding larger cliques.

Finally, all the cliques that contain maxima from at

least ν (e.g. S
2 ) subjects over S are retained.

F. Derivation of a group template

This procedure provides us with clusters of activated

regions defined across subjects. It does not require that

all subjects are represented for a given activated region,

and therefore is able to account for some inter-individual

differences. A large cluster means that subjects typically

have an activated region that corresponds to this cluster.

In order to make group maps, we assume that the

positions tis of the maxima within each clique are nor-

mally distributed, and thus represent the cliques through

their 95% confidence regions (CR) in the common (MNI)
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space. Note that the normality hypothesis used here

is about inter-subject ROI positions in the reference

space, and not about inter-subject signals, which is a key

difference with standard techniques; this assumption is

used only to define the inter-subject activated regions in

the common space.

As a matter of interpretation, these CR regions are

quite close to reproducibility maps [41], i.e. maps that

count the number of times a voxel is declared active

across subjects in some group, because each CR is

associated with zero or one particular region in each

subject. The interpretation is thus that a local peak of

activity for the proposed task is expected to be observed

within the area defined by the CR in a proportion ν
S

of the population. This is quite different from fixed-

effects analyses, which disregard inter-subject variability,

and random or mixed-effects analyses, which yield the

probability that the effect observed in any subject of the

population will be positive.

G. Parameters and implementation issues

The method requires few prior parameters: the initial

threshold of activity maps P and especially the spatial p-

value α are chosen in order to control the number of false

positives. We take typically P = 0.001, uncorrected for

multiple comparisons, and α = 0.2, but α can be tuned

to obtain explicit confidence levels depending on ν (see

below). The other parameters are the spatial relaxation

distance δτ , which we set as a typical inter-subject

variability magnitude δτ = 10mm, and the number ν of

subjects required for the final selection of cliques. ν is

important since it explicitly controls the reproducibility

of a region across subjects. For instance ν = S
2 yields

regions that can be expected to be found in half of

the subjects. Note that all these parameters (P, α, δτ , ν)

might be changed reasonably without creating inconsis-

tencies.

The control of false positive regions is based on

the control performed in each subject in section II-C.

For instance, if one were controlling the rate of false

detections, Eq. (4) provides us with the probability of

one false alarm on any subject, so that an upper bound

of the probability of forming a clique with regions from

ν subjects over S under the null hypothesis is given by

the binomial law B(ν, S, α): hence, the probability of

getting at least one clique of ν subjects, among S is

given by

p <
∑

n≥ν

B(n, S, α) (9)

The computation time of the method, implemented

with a C/Python code based on numpy and nipy envi-

ronments (http://projects.scipy.org/neuroimaging/ni/), is

about one minute for a dataset of 10 subjects. The

complexity of the method is roughly quadratic, given

that all pairs of subjects are submitted to the algorithm

described in Section II-D. However, the main bottleneck

with large datasets is the clique extraction procedure

(section II-E), and the computation time is largely data-

dependent. For a dataset of 100 subjects, the proposed

method take approximately 1h on 3GHz Pentium IV PC

running Linux.

III. EVALUATION DATA

A. Synthetic Noise

The algorithm was tested on synthetic datasets with

no simulated activations, in order to ensure that the

false alarm rate was controlled using equation (9). The

noise only datasets are meant to simulate multi-subject

activation maps in which no specific region is activated.

Masks of the brain volume were extracted from S = 10

subjects in the true dataset; the maps were filled with ran-

dom normally distributed values and slightly smoothed
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(FWHM = 1.17 voxels, i.e. 3.5mm at 3 mm resolution)

in order to mimic the intrinsic spatial correlation of fMRI

data. The signal magnitude was then corrected to have

variance 1 in each dataset. The whole procedure was

applied to these maps for values of the parameter α

ranging from 0.1 to 0.8 in 0.05 steps, with δτ = 10mm,

ν = 5 and P = 10−3. We also tried with different values

of P , ranging from 0.05 to 10−4. Finally, the number of

detected regions in the group of subjects, over n = 100

simulations is reported, and compared to the theoretical

bound provided by Eq. (9).

B. Artificial Activations in Synthetic Noise

We also applied the procedure on synthetic data with

activation added to the correlated noise. Four distant

regions are added with some signal in order to model

spatially coherent activity in the group of subjects. The

size of the activated regions varied from 20 to 50 voxels.

According to the simulation, their mean position (center

of mass) was jittered with a magnitude of 0, 1.7 or 3.4

voxels standard deviation, which represents 0 to 10.4mm

at 3mm resolution, and is a good representation of group

variability in true fMRI datasets. The activation magni-

tudes were chosen to correspond to a mean SNR of either

−10dB or −6dB in each dataset, which corresponds to

a realistic SNR in fMRI datasets. In order to model inter-

subject differences in the SNR, we let this value fluctuate

across subjects in the ranges [-18dB -6dB] and [-11 -

3dB] respectively. Once again, this kind of fluctuation is

a reasonable model of standard inter-subject variability.

The CR maps, as well as the RFX maps computed

on these datasets, are submitted to Receiver Operating

Characteristic (ROC) Analysis. False positive and nega-

tive rates were computed while the α parameter (CR) or

the threshold (RFX) is varied, resulting in a (sensitivity,

specificity) plot. Results were averaged over n = 100

repetitions of the simulation.

C. Real fMRI data

We used an event-related fMRI paradigm that com-

prised ten experimental conditions. Subjects were pre-

sented with a series of stimuli or were engaged in

tasks such as passive viewing of horizontal or vertical

checkerboards, left or right click after audio or video

instruction, computation (subtraction) after video or au-

dio instruction, sentence listening and reading. Events

occurred randomly in time (mean inter stimulus interval:

3s), with ten occurrences per event type.

102 right-handed subjects participated in the study.

The subjects gave informed consent and the protocol

was approved by the local ethics committee. Functional

images were acquired on a 3T Bruker scanner using

an EPI sequence (TR = 2400ms, TE = 60ms, matrix

size=64 × 64, FOV = 24cm × 24cm). Each volume

consisted of 34 4mm-thick axial contiguous slices. A

session comprised 130 scans. Anatomical T1 images

were acquired on the same scanner, with a spatial

resolution of 1 × 1 × 1.2 mm3. Finally, the cognitive

performance of the subjects was controlled using a

battery of syntactic and computation tasks.

fMRI data pre-processing consisted of 1) temporal

Fourier interpolation to correct for between-slice timing,

2) motion estimation; for all subjects, motion estimates

were smaller than 1mm and 1 degree, 3) anatomo-

functional image coregistration and spatial normalization

of the functional images in the MNI/Talairach space.

This pre-processing was performed using the SPM2

software (www.fil.ucl.ac.uk, [1]). In particular, spatial

normalization was performed using default parameters

(non-rigid, low frequency deformation with 8*8*7 basis

functions [3]); the normalized images were checked in

all the subjects to prevent any gross mistake in the image
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co-registration. A slight smoothing was performed (5mm

FWHM). Standard statistical analysis were also carried

out with SPM2, using the usual high-pass filtering and

AR(1) whitening.

In the study of the group data, we concentrated

on a specific cognitive contrast that shows the acti-

vation elicited by the computation task, after video

or audio instruction, from which the mere sentence

reading/listening effect is subtracted. Such a cognitive

contrast is assumed to yield areas specifically activated

in the computation task.

In parallel, the grey/white matter interface was seg-

mented in each subject using the Brainvisa software

(http://brainvisa.info/), and is used for rendering.

D. Assessment of the reproducibility

Controlling the specificity of the analysis is not suf-

ficient to have reliable brain maps; another concern is

to control the risk of overfit in small populations that

could result in poor generalization of the regions found

to other groups of subjects.

We dealt with this concern by performing the above

analysis in ten disjoint groups of 10 subjects sampled

from a set of 102 subjects present in the database. We

computed an inter-group reliability index by analyzing

how often a voxel is declared jointly active across

groups, using the procedures described in [6], [41],

[42]: The reproducibility map that gives the number of

times each voxel is declared active is computed, and

its histogram is derived; this histogram is modelled by

a mixture of two binomial distributions, and the index

κ ∈ [0, 1] measures the accordance of the bimodal model

with the data, which in turns reflects the coherence of

the binary maps given as input to the model. If κ is close

to 0, there is a very little agreement on which voxels are

active, while there is a very good agreement if κ is close

to 1.

The reliability was estimated from 100 different ran-

dom splits of the group. This was computed for Random

effects analysis (RFX), the same RFX analysis after

12mm FWHM smoothing of the data (SRFX), a Mixed

Effects (MFX) analysis [2], an RFX analysis thresholded

at the cluster level (CRFX), a Parcel-based RFX (PRFX),

and our estimate of confidence regions (CR). More

precisely, RFX, SRFX, PRFX and MFX maps were

thresholded at the uncorrected p < 0.001 level; the

CRFX map was built by taking the voxels with a signal

significant at p < 0.01 uncorrected level, then clusters

of connected supra-threshold voxels were formed, and

further selected if their size was significant, at p < 0.05

corrected level [18]. Lastly, the CR maps contain the

95% confidence regions for the presence of maxima in

ν = 4 over 10 subjects, with α = 0.2. Note that the

PRFX procedure is performed as in [7], and parcels

are recomputed for each randomization and sample. The

parameters were chosen in order to guarantee that the

specificity of the different methods is roughly equivalent,

and that the parameters correspond to standard choices.

Additionally, we compared the results of the CR

extraction procedure with different graphical models,

Gs, Gs, or the trivial graph with no link (i.e. without

the belief propagation algorithm). For this purpose, we

used a functional contrast that showed region involved

in the processing of auditory instructions, because this

functional contrast elicits many neighboring activation

foci (as
i ) (about ten in average) in each temporal lobe

and each subject.

E. Analysis of the group data

We computed the RFX map and extracted Confidence

Regions of the areas activated by the computation task

across subjects. Then, we computed the average signal
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and position of the regions in each subject, whenever

they are defined. We performed some data-driven clus-

tering of these profiles, which yields an assessment of

the population homogeneity. Then we regressed this data

against side information that was obtained form the sub-

jects: in this case, we used the age of the subjects, their

sex, and their ability to perform the mental rotation in

3D of an object, measured by the rate of correct response

in a psychological test. The regression procedure reads

simply:

Yg = Xgβg + ε (10)

where Yg is a (subjects, voxel/ROIs) data matrix that

represents the average ROI-based or the voxel-based

activation signal, Xg a group-level design matrix of size

(subjects, regressors) that represents the covariates of

interest across subjects, βg the second-level regression

parameters of size (regressors, voxels/ROIs) and ε the

residual. Then the voxel- or ROI-based significance of

β can be assessed using a standard t-test.

Finally, in the case of the ROI analysis, not only the

voxel-based average signal, but also the cross-subject

ROI position in the common space can be given as input

to model (10). In this case, a chi square test can be used

to assess the correlation of the regressors in Xg with the

ROI positions.

IV. SIMULATION RESULTS

A. Controlling the False Positive Rate in Synthetic Noise

We have applied the procedure to n=100 synthetic

datasets generated as detailed in section III-A, with

different values of the parameter α. The detection rate

is compared with the theoretical bound given in Eq. (9).

The results are reported in Fig. 4, which shows that the

control of false positives is conservative, since the rate of

detected regions obtained is below the predicted value.

In fact, the control is probably too conservative. The

only case where the control may be problematic is that

for very low values of α, the correct definition of uα

(see Eq. (4)) requires a very accurate estimate of the

right tail of Ds under the null hypothesis, hence many

resamplings. In practical cases, we found 10 resamplings

to be sufficient.

We have repeated the procedure with different val-

ues of the first-level threshold P , from 0.05 to 10−4.

Although the number of false positive depended on the

particular value of P that was chosen, it always remained

under the theoretical bound (which does not depend on

P).

[Figure 4 about here.]

B. ROC Analysis in Synthetic Activation and Noise

We computed the ROC curve on synthetic dataset

with embedded activation in four regions. The exact

position of each activated region may vary from 0

to 3.5 voxels, while the amplitude of the response is

allowed to vary around a mean of -6dB or -10dB. ROC

curves, that represent specificity/sensitivity compromise

when detection parameters vary, are presented in Figure

5 for RFX analysis in the proposed CR method, in

the different situations. Note that we consider only the

part of the curve with a specificity control below 0.01,

since weaker controls are of no practical interest. The

simulations are repeated 100 times.

[Figure 5 about here.]

Except for the situation with no jitter, the CR method

clearly outperforms the RFX method. In addition, the

CR method is clearly less sensitive to the SNR level than

the RFX statistic. In the no jitter case, the CR method

performs better at high specificity levels, but reaches a
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plateau at a lower level when the specificity control is

weaker. The reason is that the CR is not meant to achieve

100% sensitivity at the voxel level, since the extent of

the CR corresponds to the inter-subject variability of the

areas. By contrast, the RFX statistic actually tests the

presence of activation in each voxel, and thus can detect

100% of the activated voxels in the absence of jitter.

V. RESULTS ON REAL DATA

A. Gain of sensitivity in a small group of subjects

First, we performed a group analysis in a small group

of 10 randomly chosen subjects within the whole group.

A CR map, obtained at a p < 0.05 significance level

for the computation-specific contrast is presented in Fig.

6, together with an RFX map, thresholded at a p <

10−3, uncorrected, or at the cluster level at p < 0.05,

corrected. When the RFX map is thresholded at the

same significance level (p < 0.05, corrected for multiple

comparisons) at the voxel level, no voxel survives the

thresholding procedure.

[Figure 6 about here.]

In spite of the strong type 1 error control, the CR map

contains 19 significantly active regions. In particular,

it clearly shows symmetric parietal regions involved

in the computation task, while these regions are not

detected with the RFX procedure (voxel- or cluster-level

statistics). This is in agreement with the literature [43]

(see also Fig. 9).

In order to test the robustness of the method, we have

repeated the experiment with unsmoothed/smoothed data

(FWHM=10mm), with higher or lower first-level thresh-

olds P = 10−2, 10−3, 10−4, with the spatial normal-

ization before or after the watershed, or with a small

spatial jitter of activation images across subjects (one

voxel). All these changes had a very weak impact on the

resulting CR maps. For instance, to test the robustness

to small spatial shifts, we randomly shifted the datasets

from zero or one voxel in one direction (x,y or z) with

equal probability (1/7). We performed the RFX and CR

analysis of the resulting group data and derived the

reproducibility index κ (see Sec. III-D) from ten such

group maps. Over 100 repetitions, we obtained a mean

value of κ = 0.61 (range 0.58 − 0.64), which has

to be compared with a mean value κ = 0.42 (range

0.37− 0.47) in the case of the RFX map.

Importantly, the CR procedure not only provides a

group-level activity map, but-also explicit correspon-

dences between active regions at the subject-level and

the group data. This is illustrated in Fig 7.

[Figure 7 about here.]

B. Between-Group Reproducibility

The reliability of the group analysis method, assessed

by reproducibility index estimated across voxels for

different splits of the populations into groups of 10

subjects is shown in Fig. 8. This shows that the proposed

CR method outperforms RFX, MFX and SRFX, and

to a lesser extent, PRFX and CRFX. It is important

to note that this procedure is based on the active or

inactive status of each voxel, and should not be favorable

to non voxel-based analyses a priori. Moreover, the

present results are not related to the particular choice of

thresholds or p-values, and other reproducibility indexes

also yield similar effects (not shown).

[Figure 8 about here.]

Moreover, for a contrast that shows regions involved

in the processing of auditory instructions, we found that

the CR regions were more reproducible when obtained

using either the acyclic graph Gs (κ = 0.589 ± 0.01)
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or the spatial connectivity graph Gs (κ = 0.597± 0.01)

than a trivial graph without edges (i.e. without the belief

propagation algorithm, see Eq. (6), κ = 0.539± 0.01).

C. Analysis of a large population

The application of the CR methods to the whole group

of 102 subjects yielded q = 45 regions, with a corrected

p-value of 0.05 of making one false detection. The CR

map is presented with the RFX map on these same

subjects in Fig. 9. As is usual with large sample sizes,

the RFX map shows very wide activated areas. This is is

the result of blurring process inherent to the inter-subject

variability.

[Figure 9 about here.]

We describe the properties of the 45 resulting clusters

in Table I. In particular the anatomical labels of the

regions are found in [21].

[Table 1 about here.]

Such a result, formulated in terms of regions, readily

indicates possible asymmetries in the spatial repartition

of activations across subjects: activation in the Inferior

Frontal cortex are found in the right hemisphere only, ac-

tivations in the Supramarginal cortex, the Angular cortex

are found in the right hemisphere only and activations in

the Precentral regions are more systematic in the right

hemisphere (4 regions) than in the left hemisphere (1

region).

Next, we computed the average signal per region

per subject, and tried to characterize the population

by unsupervised classification techniques. We call the

average signal per region for each subject the profile.

Based on simple Euclidean distance between profiles,

we have performed some agglomerative clustering of

the population, using an average linkage procedure. The

results are shown as a dendrogram of the subject’s

profiles in Fig. 10. In this case, it clearly shows that

the population is mainly divided into one group of 97

subjects, and 5 isolated subjects. One can conclude that

the population is rather unimodal, with a few outliers. A

closer inspection of the outlier datasets reveals that four

of them had no significant activations, and the last one

had an odd pattern of activity, probably confounded by

motion or another low-level artifact.

[Figure 10 about here.]

Finally, we regressed the voxel-based activity maps

as well as the profiles against three regressors of interest

defined in each subject: age, sex, and ability to perform

a 3D mental rotation (see Eq. 10). We found no effect

of age in either case1.

Concerning sex, we found in the voxel-based analysis

a region where the magnitude of the activity is larger for

males than for females [z = 5.35, p < 0.05, corrected

at (18,−68, 60)mm]. As this place is on the posterior

edge of the parietal lobe, and not in a significantly

activated region, the interpretation of this result is quite

unclear. The ROI-based analysis revealed that there was

indeed a positive effect on one ROI [z = 2.73, p <

0.01, uncorrected at (15,−68, 52)mm], but moreover

that there was a significant effect of the sex on the

ROI coordinates in MNI space across subjects [χ2
3 =

13.95, p < 0.01, uncorrected at (15,−68, 52)mm], indi-

cating that there might be some systematic shift effect

between males and females. Importantly, no such effect

can be observed using the voxel-based analysis.

Finally, we found an almost significant (p <

0.06, after correction for multiple comparisons) ef-

1Note that the population is quite homogeneous, mean age=23.9

years and std=3.8 years. In this condition, the absence of an age effect

at the group level is not surprising.
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fect for the 3D rotation score in the activity in a

sub-region the left occipito-parietal boundary [z =

4.03, p < 3.10−5, uncorrected at (−33,−65, 45)mm].

Using the ROI-based analysis, the result was also

present, and significant [z = 3.10, p < 0.05, corrected

at (−27,−73, 36)mm], while this -and only this- ROI

had a significant effect of the score on its position

across subjects [χ2
3 = 34.5, p < 0.05, corrected at

(−27,−73, 36)mm]. The regions that exhibit significant

correlation of their signal or their position with the

subject’s sex and score in the 3D task are shown in Fig.

11 (a) and (b) respectively.

[Figure 11 about here.]

In summary, while voxel-based and ROI-based anal-

yses show similar effect (in the statistical sense) of

the age, sex or 3D task performance on the fMRI

signal, the ROI-based analysis clearly indicates that these

differences could be spatial, thus possibly anatomical,

rather than merely quantitative.

VI. DISCUSSION

Incrementing our knowledge on human brain function

requires the common analysis of datasets from different

subjects. While standard analyses assess the significance

of effects at the voxel level, we show here that this proce-

dure is not optimal since it suffers from the heterogeneity

of the signal measured in different subjects, and from

mis-registrations. To deal with these issues, taking into

account the absence of a satisfactory generative model

of brain activity in groups of subjects, we presented a

rule-based, structural approach that extracts structures

of interest in each subject’s dataset and builds a group

model from the structures of each subject.

Our solution is in the same spirit as a previous

structural approach [30] based on the detection of scale-

space blobs and the discovery of correspondences with

a Markov Random Field (MRF). Our definition of acti-

vated regions by watershed analysis of supra-threshold

regions is simpler and spatially better defined than the

scale-space blobs. Our Belief Propagation scheme is

quite comparable while simpler (see Fig. 3) than the

MRF model [30], since the latter had to take into account

some idiosyncrasies of the scale-space blob model. Fur-

thermore our procedure inherits the good convergence

properties of BP algorithms [36]. For the representation

of the spatial structure of activated regions, we noticed

that a loopy BP algorithm performed as well, or even

slightly better than a tree-based BP algorithm; in any

case, introducing the BP scheme markedly improved

the reliability of the correspondences across groups with

respect to a standard approach based only on the position

in the common space (i.e. on Eq. (5)).

Other alternatives to our procedure are the cluster-

based inference (CRFX, [18]) and parcel-based inference

(PRFX, [7]). In particular, it is shown in Fig. 8 that

these two are almost as reliable as the described ap-

proach. They suffer, however, from important drawbacks:

cluster-based inference assumes that only wide supra-

threshold clusters are worth reporting, which is not

always true (see Fig. 6). Parcel-based inference that

consists in making R/MFX tests on parcels instead of

voxels, builds parcels of arbitrary size, and thus does

not always correctly model the fine-scale activation

pattern in each subject. The present approach based on

watershed analysis of activity maps might reveal finer

scale details (see Fig. 7). This might become especially

important with the advent of high-resolution fMRI acqui-

sition techniques [44]. Compared with the parcel-based

approach for which the inter-subject correspondence is

assumed a priori, the described solution relies on an a

posteriori scheme that yields more information on the
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reproducibility of a spatial pattern.

The specificity control of our procedure is correct on

surrogate data (see Fig. 4), though much too conservative

in many instances. This is due to simplifying (and

conservative) assumptions used for the derivation of the

test (see Sec. II-G). Finding a tighter upper bound of

the error rate might be an important topic for future

studies. Although first level statistics are used to define

the regions of interest across subjects, an important point

is that the control of false positive regions at the group

level (see Eq. (9)) does not explicitly take the first-level

statistics into account. In fact, the whole procedure, and

in particular the statistical test described in section II-C is

a region selection and association procedure that is blind

to the first-level definition procedure (here, a p-value

thresholding and watershed separation), and remains

valid as along the first-level procedure is performed

independently in each subject. In particular, it adapts

quite automatically to the variability and the noise level

in the dataset. Moreover, it should be stressed that first

level statistics are usually not very reliable, because

unmodeled effects (physiology/motion) can have a great

impact on the effect significance estimation.

Our solution is well adapted to the characteristics of

fMRI data, in the sense that it optimizes the compromise

between sensitivity and specificity, as shown by the ROC

curves in Fig. 5. The CR method outperforms the RFX

thresholding procedure in most instances, especially

when the homogeneity between subjects is low in terms

of spatial or quantitative functional information. The

only case where RFX outperforms the proposed method

is in the absence of jitter, and for a weak control of

specificity: in practice, both assumptions are unrealistic.

For the analysis of a standard group (10-15 subjects),

see Fig. 6, this procedure is much more sensitive, and

yields a much richer network than a more conven-

tional approach (RFX, cluster-based RFX). The crucial

point is that statistical tests (see Eq. 4) are performed

on a reduced number of regions, allowing for a mild

correction for multiple comparisons. It should also be

noticed that the test is about the spatial density of

local maxima of supra-threshold activity, and not the

signal level or area of supra-threshold clusters: the spatial

density of activated regions measures the reproducibility

of an activation pattern across subjects, and seems to

be a much more important feature than the average

signal level across subjects. Moreover, such procedures

that extract high-level features from the individual data

and compare them across subjects are more robust to

different pre-processing strategies, and/or to parameter

tuning than traditional voxel-based methods.

The reliability of the detected areas in terms of

reproducibility is higher than the reliability of voxel-

based tests, as shown in Fig. 8. We obtained the same

type of results for several other contrasts that involved

motor, auditory or reading tasks and different numbers of

subjects (not shown). An important feature of the region

inference is thus that analyses performed in a group of

S = 10 subjects should generalize to larger populations,

while standard analyses show less reproducibility. This is

crucial for the neuroimaging applications in both patients

and normal subjects.

When used with a larger cohort of subjects, the CR

method somewhat loses its advantage in sensitivity with

respect to RFX methods, for two reasons: i) The test

about activated regions is designed to select a certain

proportion (α) of regions with high density of activ-

ity in the group, which limits the sensitivity of the

method, while the regions selected by the RFX test

will systematically increase with the number of subjects

and asymptotically converge to all regions that have a

possibly small, but positive effect (“half of the entire
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brain”) when the number of subjects increases; ii) finding

stable configurations across the entire group of subjects

is a much harder job, given the variety of the individ-

ual topographies; in particular, the replicator dynamics

clique extraction procedure (see Sec. II-E) tends to over-

segment the active regions, but this effect can be solved

using hierarchical clustering instead. This problem might

also be by-passed in the future e.g. by using multi-scale

methods [30], [45]. It is important to note however that

this effect is not significant for small sample sizes.

Our aim was also to refine the conventional point of

view on the localization problem in fMRI data analysis

[15]. In particular, an activity map of one subject in its

native anatomical space is not comparable to a group

map presented on an average anatomy: in the latter case,

we present the locations where individual subjects drawn

from the group typically activate, while in the former we

present for a specific subject the regions with significant

activity (see Fig. 7). This should help to better interpret

fMRI group studies results. In standard analyses, it is

impossible to distinguish between regions for which all

subjects show a small increase of activity from regions

for which only some subjects demonstrate increased

activity.

Moreover, finding correspondences across subjects al-

lows us to make statements on the dissimilarity between

subjects [33], which is another blind spot of traditional

M/RFX studies. Characterizing inter-subject differences

in an interpretable way is essential if neuroimaging data

is to be compared with genetic or behavioral information.

An example is given in Sec. V-C, where one can make

some inference on the between-subject variability by

trying to explain differences in size/and or position of

regions across subjects by some information that is

available on these subjects. This kind of inference is

possible, but quite cumbersome in the traditional voxel-

based domain, due to a curse of dimensionality (the

number of voxels is too high), and because it is not clear

whether the variability can be attributed to differences

in the signal level across subjects or to the position of

the regions. Our procedure, for instance, indicated that

the positions of the active regions, thus the functional

anatomy, plays a non-negligible role in group discrim-

ination. This point will be further studied in the future

using e.g. multivariate classification/regression analysis

techniques.

Another important question is whether this kind of

analysis can be generalized to group comparison, which

is important e.g. for the characterization of brain dis-

eases. Although the answer is probably case-dependent,

one possibility consists in pooling the subjects to define

the ROIs, then derive subject or group profiles as in

Sec. V-C, and to study possible group differences at the

ROI level. However, we acknowledge that some cases

may be problematic, e.g. if the inter-group differences

reduce the sensitivity of the spatial test to discover some

of the ROIs. On the other hand, the proposed method

provides the opportunity to compare the regions position

or shape across groups, which is not afforded by voxel-

based models.

The present work is also an attempt to automatically

find correspondences across subjects by associating acti-

vated areas with close relative positions across subjects.

In particular, watershed analysis of the individual maps is

used to define target regions. In order to enhance the un-

derstanding and interpretation of inter-subject variability,

future developments might consider the use of generative

models in the spatial and/or signal domain, based e.g.

on Dirichlet Process Mixture Models of the fMRI data

[27], [28]. Alternatively, a more anatomical point of view

may be introduced, e.g. by defining the position of ROIs

with respect to macro-anatomical features (sulco-gyral
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anatomy [16]). This opens the way to an object-oriented

representation of the functional anatomy [11]. It is also

worthwhile to note that MNI/Talairach space does not

play any particular role in the present method, so that

any valid - and non-Euclidean - normalized space such

as the one on the cortical surface [12], [46] can play the

same role.

VII. CONCLUSION

In this work, we have shown that describing and

comparing datasets with high level information instead

of the usual voxel-based activity may benefit both the

sensitivity and the reliability of fMRI group analyses.

Moreover, this approach does not lose the spatial infor-

mation through an averaging process, but enables neuro-

scientists to make explicit comparisons between subjects

or groups of subjects in a more rigorous conceptual

setting.
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FIGURES 20

Fig. 1. Flowchart of our method for structural analysis of group data. This is a pipeline, or set of procedures, that produces a group-level
representation of individual activation patterns based on reproducibility analysis; we illustrate it for a motor activation study. The input to the
method consists of activation images, one for each subject. An intra-subject structural analysis is first performed, resulting in a set of activated
regions. The cross-subject spatial density of activated regions is derived, and only the maxima that fall in the highest density regions are further
considered. Probabilistic correspondences are then found between the regions of each pair of subjects, using a belief propagation algorithm.
Finally, associated regions are segregated into inter-subjects cliques, so that each region of reproducible activity is labeled consistently across
subjects, and confidence regions for the position of these ROIs are derived at the group level.
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FIGURES 21

p<0.2, uncorrected

p<0.05, corrected

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

true histogram

surrogate histogram

Fig. 2. Modeling the density of Ds in the volume. Randomly reshuffling the position of the maxima of activity in subjects σ ∈ {1, .., S}−{s}
yields an empirical histogram of Ds under the null hypothesis (green), which can be used to define critical values uα, which can be corrected
for multiple comparisons or not, to threshold the density D.
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FIGURES 22
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Fig. 3. Illustration of the use of the Belief Propagation algorithm to find correspondences between maxima within a pair of subjects. This is a
toy dataset, in a one-dimensional space. The activity maps of subjects s1 and s2 are shown on the top of the figure, together with a watershed
segmentation. In that case, t

s1

i = 0, t
s1

j = 1 and t
s1

k
= 2, while t

s2

l
= 0.7, t

s2
m = 1.7 and t

s2
n = 2.7; δτ = 1.4. The related graphs Gs1 and

Gs2 are shown below; in this case they are isomorphic. The associations are initialized using Eq. (5), and then refined using Eq. (6): Clearly
the message passing algorithm enhances the probabilities P (as2

l
← a

s1

i ), P (as2
m ← a

s1

j ), and P (as2
n ← a

s1

l
), thus compensates the effect

of the global translation between the two datasets. This effect is also present with the converse probabilities P (as1
. ← as2

. ).
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FIGURES 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Simulation

0.0

0.2

0.4

0.6

0.8

1.0

R
a
te

 o
f 

fa
ls

e
 p

o
s
it

iv
e
s
 r

e
g
io

n
s

Fig. 4. Number of false detections obtained with our method in noise only environments (box and whisker plot), compared with its expected
value (continuous line), for values of α ranging from 0.1 to 0.8 in 0.05 steps. This is based on 20 runs of 100 simulations under the null
hypothesis. The fact that the box plots lie beneath the line shows that the threshold is rather conservative, especially for large values (p > 0.2).
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FIGURES 24
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Fig. 5. ROC curves for the RFX and CR maps for different SNR levels and across-subject jitter magnitudes. (a) with no jitter of the activation
position, ROC curves are presented for the RFX (blue) and CR method (red), for a mean SNR of -6dB (continuous line) or -10dB (dashed
line). (b) and (c): the same curves, with a jitter of magnitude of 1 voxel in each direction (b), or 2 voxels in each direction (c). Except for the
situation with no jitter, the CR method outperforms the RFX method. In the case of no jitter, the CR method performs better at high specificity
levels, but plateaus at a lower level when the specificity control is weaker.
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FIGURES 25

(a) (b) (c)

Fig. 6. Comparison of the a CR map and RFX maps obtained for a functional contrast that shows regions involved in computation task. This is
based on 10 subjects, with one session per subject. (a) The CR map, significant at p < 0.05, corrected level, shows q = 19 active regions; (b)
the RFX map is thresholded at the voxel level at p < 10−3 level, uncorrected ( at p < 0.05 corrected, the map is empty); (c) the RFX map is
thresholded at the cluster level at p < 0.05 level, corrected. The CR map clearly shows symmetric parietal regions involved in the computation
task, while these regions are not detected with the RFX procedure.
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FIGURES 26

(a) (b) (c)

(d) (e) (f)

Fig. 7. Active regions found at the group level and in five subjects of the dataset. (a) At the group level, 19 regions are spatially defined by
their confidence ellipsoids. (b-e) This corresponds to regions that are present or not in each subject’s dataset. Corresponding regions have the
same color. Note that, besides differences in size and precise position, the relative positions are well preserved.
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FIGURES 27
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Fig. 8. Reproducibility indexes obtained by jackknife subsampling analysis of the population of 102 subjects in groups of 10 subjects, for
six different techniques: our new technique based on confidence regions (CR), Random Effects Analysis (RFX), RFX after 12mm smoothing
(SRFX), Mixed Effects Analysis (MFX), RFX analysis with cluster-level thresholding (CRFX) and Parcel-based RFX (PRFX).
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FIGURES 28

(a) (b)

Fig. 9. Results of the group analysis that shows regions activated for a computation task across 102 subjects. (a) Confidence regions obtained
with our approach, at p < 0.05 ; (b) Supra-threshold regions of the RFX map for this group of subjects, thresholded at the p < 0.05, corrected,
voxel-level. The images are superimposed on a typical grey-white matter interface.
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FIGURES 29

Fig. 10. Unsupervised classification of the group of subjects, based on their profile. The dendrogram shows the organization of the population
in terms of hierarchical clustering, based on an average linkage approach. The dendrogram shows that there is one main group, plus a few
scattered subjects (on the right side).
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FIGURES 30

(a) (b)

Fig. 11. ROI whose activity and position is significantly modulated by the sex of the subjects (a) or their ability to perform a 3D task (b).
Voxel-based analyses yield similar regions, but ROI-based increases the significance in case (b) and enables us to study the effect of regressors
of interest on the position of the ROIs.
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TABLES 31

MNI coordinates Anatomical location hemisphere number of subjects (/102)

(-54, -55, -10) Temporal Inf R 40

( 52, 9,15) Frontal Inf Oper L 51

(-42, 35, 16)
Frontal Inf Tri

R 78
(-41, 27, 30) R 71

(-29, -4, 54)
Frontal Mid

R 74
(-28, 10, 53) R 51
( 30, 4, 52) L 64

( 20, 3, 62)
Frontal Sup

L 39
(-21, 0, 63) R 57

(-55, 2, 20)

Precentral

R 71
(-51, -4, 38) R 70
(-51, 7, 34) R 44
(-41, 6, 28) R 49
( 46, 7,31) L 69

( 42, -50, 51)

Parietal Inf

L 54
( 51, -37, 48) L 74
( 31, -67, 41) L 51
( 42, -40, 40) L 68
( 34, -61, 51) L 48
(-49, -42, 49) R 59
(-42, -50, 50) R 55
(-35, -47, 40) R 72

(-35, -57, 55)

Parietal Sup

R 63
(-26, -63, 53) R 40
(-23, -72, 48) R 51
( 15, -68, 52) L 56

( 33, 21, 1)
Insula

L 66
(-33, 19, 3) R 70

( 17, 14, 0)
Putamen

L 61
(-22, 5, -3) R 45

( -5, -70, 45)
Precuneus

R 46
(-10, -66, 56) R 63

(-16, 13, 0)
Caudate

R 48
(-13, 1, 8) R 44
( 12, 3, 9) L 46

(-27, -73, 36) Occipital Sup R 77

( 0, 1, 32)

Cingulum Mid

L 42
( 6, 22, 38) L 48
( -5, 21,40) R 42
( -3, 28, 28) R 45

(-55, -34, 43) SupraMarginal R 71

(4, 12, 50)
Supp Motor
Area

L 60
( -5, 1, 53) R 42
(-2, -1, 62) R 51

(-23, -58, 45) Angular R 42

TABLE I

SUMMARY OF THE CONFIDENCE REGIONS FOUND FOR THE COMPUTATION TASK IN THE POPULATION OF n = 102 SUBJECTS. FOR EACH

REGIONS, WE GIVE AN ANATOMICAL DESIGNATION, THE AVERAGE POSITION IN THE MNI COORDINATE SYSTEM, AND THE NUMBER OF

SUBJECTS IN WHICH THIS REGION CAN B FOUND. R STANDS FOR RIGHT, L STANDS FOR LEFT, INF. FOR INFERIOR, MID. FOR MIDDLE, SUP.

FOR SUPERIOR, SUPP. FOR SUPPLEMENTARY, OPER FOR OPERCULUM, TRI FOR TRIANGULAR.
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