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Abstract

In short-time spectral estimation, Sacchi et al. (1998) and Ciuciu et al. (2001) de-
rived new nonlinear spectral estimators defined as minimizers of penalized criteria.
The first contributors have introduced separable penalizations for line spectra (LS)
recovering, whereas the latter have proposed circular Gibbs-Markov functions for
smooth spectra (SS) restoration, and combined both contributions for estimation of
“mized” spectra (MS) i.e., frequency peaks superimposed on a homogeneous back-
ground (Ciuciu et al., 2001).

Sacchi et al. resorted to the Iteratively Reweighted Least Squares (IRLS) algo-
rithm for the minimization stage. Here, we show that IRLS is a block-coordinate
descent (BCD) method performing the minimization of a half-quadratic (HQ) en-
ergy. The latter, derived from Geman and Reynolds’s construction, has the same
minimizer as the initial criterion but depends on more variables. After proving that
such a construction is not available for Gibbs-Markov penalizations, we extend the
pioneering work of Geman and Yang (1995) that leads to a suitable HQ energy for
any kind of penalization encountered in (Ciuciu et al., 2001). The BCD algorithm
used for minimizing such HQ criteria is actually an original Residual Steepest De-
scent (RSD) procedure (Yarlagadda et al., 1985) and thus converges in any convex
case. A comparison between RSD, IRLS when available, and a pseudo-conjugate
gradient algorithm is addressed in any case.
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1 Introduction

1.1 Penalized criteria

Nonparametric short-time spectral estimation consists in retrieving an esti-
mate of the power spectrum from a short set of observations using the discrete
Fourier transform (DFT) (Sacchi et al., 1998; Ciuciu et al., 2001). The goal
is to estimate a large number of Fourier coefficients £ € CF of a time series,
partially observed through the data y € CV:

y=Wyrz, (1)

where Wy, = [wy?] stands for the N x P inverse Fourier matrix, with wq =
exp (2j7/P), n € Ny, p € Np and N, = {0,1,...,k—1}. Since N < P,
system (1) is underdetermined, and there exists an infinite number of solutions
for (1), i.e., of minimizers of Q(x) = ||y — Wyp||>. To cope with the ill-
posedness of this problem, penalized approaches have been proposed (Ciuciu
et al., 2001; Giovannelli and Idier, 2001; Sacchi et al., 1998; Cabrera and Parks,
1991). In particular, Ciuciu et al. (2001); Sacchi et al. (1998) have defined a

nonlinear estimator of the spectral amplitudes as

T = aigeginj (x), (2)
where,  J(x) = Q(z) + \R(x). (3)

The hyperparameter A > 0 controls the trade-off between the closeness to
data, measured by Q, and the confidence in structural prior modeled by R.
The power spectrum estimator easily deduces as the vector of the squared
modulus of the components of Z.

The reference (Sacchi et al., 1998) adopts the classical Bayesian interpretation
of £ as a maximum a posteriori estimate, derived from an independent and
circular Cauchy prior model. The Cauchy density function is a heavy-tailed
probability distribution. For this reason, it is well-suited for restoration of
parcimonious frequency peaks. It is also suggested to choose A \, 0, (at least
in the accurate data case), in which case & is the constrained minimizer of R
subject to (1).

In (Ciuciu et al., 2001), the methodology is generalized in order to encompass
the smooth and “mixed” spectra (resp. SS and MS) problems. In any case, R
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e circular: R(z) = R(p) with p, = |z,,| and p € RY. (4a)
e strictly convex, (4b)
e continuously differentiable (C*), (4c)
e “infinite at infinity”, i.e., ”w1|i|r_130073(:n) = 00. (4d)

As a consequence, J is strictly convex as a sum of convex and strictly convex
terms. Then, the minimizer & is unique and continuous w.r.t. the data (Bouman
and Sauer, 1993); this guarantees the well-posedness of the regularized prob-
lem (Tikhonov and Arsenin, 1977). Constraints (4b)-(4d) make the computa-
tion of & feasible by many deterministic descent method (such as gradient-
based methods, IRLS, etc).

The main contribution of this paper is to propose a special class of block-
coordinate descent (BCD) methods and to show that it is competitive with
a pseudo-conjugate gradient (PCG) algorithm in SS and MS cases, which is
even more efficient for LS recovering.

1.2 Half-quadratic BCD methods

A BCD optimization algorithm is a multivariate extension of a coordinate
descent method, i.e., it minimizes a criterion w.r.t. blocks of variables (Bert-
sekas, 1995). BCD methods have recently become popular (Charbonnier et al.,
1994; Vogel and Oman, 1996; Charbonnier et al., 1997; Vogel and Oman, 1998;
Delaney and Bresler, 1998) in image restoration or reconstruction, in conjonc-
tion with the half-quadratic (HQ) formulation of regularized criteria (Geman
and Reynolds, 1992; Geman and Yang, 1995).

On the one hand, to make the paper self-contained, we first recall the ba-
sic principles of HQ regularization. Then, we provide useful details that refer
to convex duality (Rockafellar, 1970) (see Section 2). Starting from a non-
quadratic criterion J = Q + AR with @ quadratic in x, HQ regularization
amounts to deriving a new objective function K, depending on additional
variables b, such that

K(z,b) = Q(x) + A\S(x, b), (5a)
with iréfS(:c,b) = R(x). (5b)

Hereafter, half-quadratic means that S, and then K, are quadratic in & when
b is fixed and not jointly quadratic in (x,b). Since K is quadratic in x, its
minimization w.r.t. £ only requires to solve a linear system. Moreover, ex-
plicit duality relations and separability of S in b (Rockafellar, 1970) allow to



straightforwardly perform the optimization step w.r.t. b. Technical conditions
have been proposed by (Charbonnier et al., 1997; Aubert and Vese, 1997;
Idier, 2001) for proving that K and J have the same global minimizer. Then,
a HQ) BCD algorithm i.e., a BCD method applied to K, can be more attractive
than a coordinate descent algorithm working on 7.

On the other hand, IRLS is a Reweighted Least Squares technique that has
been recently applied to LS recovering (Sacchi et al., 1998). Following Idier
(2001), it is shown in Section 2.1 that IRLS identifies with the so-called AR-
TUR algorithm (Charbonnier et al., 1997). The latter is a HQ BCD method
derived from Geman and Reynolds’s construction. This interpretation pro-

vides simple convergence criteria of IRLS given the existing results for AR-
TUR (Charbonnier et al., 1997; Idier, 2001).

In Section 3, it is established that IRLS/ARTUR has no natural extension
to cope with SS and MS cases, in the sense that mathematical conditions for
deriving S* are not fulfilled!. Consequently, the main contribution of this
paper is devoted to propose another HQ development, adapted to these situ-
ations. More precisely, our contribution is a multivariate extension of Geman
and Yang’s work. The resulting HQ BCD method is nothing but a modi-
fied RSD algorithm, already used in seismic deconvolution (Yarlagadda et al.,
1985), and also referred to as LEGEND in computed imaging (Charbonnier
et al., 1994). For the LS case, the presentation of the HQ regularizing term
S is reported to Section 2.2. For SS and MS restoration, the augmented cost
functions S of the penalizations R encountered in (Ciuciu et al., 2001) are
exhibited in Section 3 and Section 4, respectively. Then, the minimization of
the augmented criterion K is performed with an original RSD algorithm.
Following Idier (2001), sufficient properties of K¢ are derived to guaranty
convergence towards & of the RSD procedure.

Finally, the last concern addressed in Section 5 is to increase the speed of
convergence of the proposed RSD method according to an over-relaxation
scheme on & and b. Then, RSD is compared to ARTUR/IRLS in the LS
case, and to a PCG algorithm in all cases. Concluding remarks are drawn in
Section 6.

1 In the following, the superscripts “cr” and “cy” stand for Geman and Reynolds
and Geman and Yang, respectively.



2 HAQ solutions to LS restoration
2.1 HQ interpretation of IRLS

In (Sacchi et al., 1998; Ciuciu et al., 2001), a shift-invariant circular separable
penalization is considered for line spectra estimation:

R, (z) = 2 R (py). (6)

where Ry : R, — R, , and the subscript “1” stands for Line. Different potential
functions have been investigated for choosing R,. Sacchi et al. have selected
a log-Cauchy function, Ry(p) = In(1 + p?/27¢), whereas Ciuciu et al. (2001)
have retained a component of the following set:

D= {f : R, — R convex, increasing, C',

['(@) .
o+ !
f(07)=10,0 <$li,%1+ " < o0, lim f (x) <oo}.

With Ry € D, the global criterion J clearly fulfills (4b). On the other hand,
functions in S behave quadratically around zero and linearly at infinite:

. 2 .
0< xlir(%f(x)/x < oo, 0< lim f(z)/z < oo.
This is a relevant behavior for erasing small variations, and also for preserving
large peaks that would be oversmoothed by quadratic penalization.

In (Sacchi et al., 1998), IRLS is implemented to minimize J(x). Firstly, a
rewetghting diagonal matrix @ of size P x P is introduced. Its diagonal entries
are defined by

Vp€Np,  Qpp = 2py/Ro(pp)- (7)
Such a definition is extended by continuity for the case p, = 0. Taking deriva-

tives of J and equating to zero gives the implicit solution (see (Sacchi et al.,
1998) for details):

~ — _1 —
2= (WLWe+2Q7") Wiy,=QWl,(\y+WwQWi,)y, (8)
where Iy stands for the N x N identity matrix. Since @ depends on x, (8)

is a nonlinear system, which can be solved iteratively using IRLS. The latter
consists in repeating threefold iterations until convergence, after choosing ©:

e IRLS;: Compute matrix Q® from =,



e [RLS,: Solve the N x N Toeplitz system :
(My + W QOW}E,) 29 =y, (9)

e I[RLSs: Compute the DFT z(+) = QOW] 20,

where I RLS5 can be implemented with a fast solver like Levinson’s recursion.
As it appears in (Yarlagadda et al., 1985), Byrd and Payne showed that the
IRLS algorithm is globally convergent for convex functions R, that satisfy
fairly weak conditions, i.e., Rj(p)/p must be nonincreasing and bounded on
R, . Since the log-Cauchy potential involved in (Sacchi et al., 1998) is not
convex, IRLS is not ensured to converge to the global minimizer .

The purpose of the following is to identify the IRLS algorithm with a HQ BCD
method. To this end, the HQ extension SF* of the penalization R, is intro-
duced.

Under the theoretical setting of (Idier, 2001), the stress is put on functions Ry
that satisfy the following hypotheses:
e R is even, C%n R and C'on R* = R\ {0},
e Ry(,/) is strictly concave on Ry, (10)
. 2
o lim Ry (p)/p” = 0.

Remark that the log-Cauchy potential as well as the functions in S fulfill (10).
Then, it can be shown from convex duality that Ry reads

Ro(p) = jinf (b” + (b)), (11)
where,  (8) = sup (Ro(p) — bp%)

is convex and C' on R*.. Such a derivation of HQ energy was first introduced
by Geman and Reynolds, without explicit reference to convex duality.

Let

P-1

S (@, b) = X (b |z, + (b)) , (12)

p=0
be the augmented regularizing term of (6) with b € RE. Then, (11) implies

(5b) for & = S°*, and the new objective function KZ*, defined by (5a) and
S = S§P®, also reads

K% (x,b) = ' A(b)x — 2R(x'W] y) + ¥ (b), (13)



where R is the real part operator and

A(b) = Wi, Wy, + Adiag [b]
() = Zzl:;ol (bp)-

The HQ BCD algorithm devoted to the minimization of CF® is referenced to
as BCD-GR in the following. Each iteration is composed of two steps. On
the one hand, the auxiliary variables b are noninteracting, allowing then a
parallelized calculation of the minimizer b(z) of KF®. According to (12), the
updated value for each component b, is given by

Blay) = ()7 (=) = o) _ o (149)

2pp — wpp-

The last but one equality in (14) is obtained from convex duality (Rockafellar,
1970).

On the other hand, computing the minimizer &(b) of X¢* amounts to solving
the P x P Toeplitz system

R —1
&(b) = A(b) Wiy,
which can be rewritten as (8) since Q = diag[b] - according to (14).

After setting (¥, BCD-GR repeats the following iterative scheme until con-
vergence:

e BCD-GR;: Minimization of KF* w.r.t. b:

b = (@) = [, bl ™), ] keNp,  (see (14)).
e BCD-GR,: Minimization of K* w.r.t. x:

z® = 2(bY), (see (8)).

Given the definition of Q, BCD-GR; clearly corresponds to IRLS;, whereas
BCD-GRs may be implemented by IRLS;—I RLS5. Finally, both algorithms,
IRLS and BCD-GR (known as ARTUR in (Charbonnier et al., 1997)), com-
pute the same solution (2).

This result yields simple convergence criteria for IRLS using well-known results
on convergence of BCD methods (Bertsekas, 1995; Ortega and Rheinboldt,
1970); indeed, provided that Ry is strictly convex, Charbonnier et al. (1997);
Idier (2001) have proved the convergence of ARTUR to the global minimizer



Z of J. Such a result is slightly less restrictive than convergence conditions of
IRLS derived by Byrd and Payne.

Hereafter, another HQ development is shown off for a major reason. Ge-
man and Reynolds’s construction fails to provide an augmented HQ criterion
S$™ coupled to a Gibbs-Markov energy R for which (5b).

2.2 Generalization of Geman and Yang’s construction

2.2.1 Principle

First, the scalar construction of HQ criteria introduced by Geman and Yang is
reviewed (see also LEGEND in (Charbonnier et al., 1994)). For the restoration
of a real-valued image @, observed through y = Hx + noise, the following
nonquadratic cost function is considered

J(@)=|y— Hz|*+ 1) ¢(dix), =zeRX,

ceC

where d, € RX are known vectors, such as finite differences, and C is a finite
set (|C| = M). Geman and Yang resort to the scalar convex conjugate (Rock-
afellar, 1970) of the function 2%/2 — ¢(z) in order to get:

(z) = inf (%(g,- —b) 4 C(b)) , (15)

beR

where .
C(8) = sup (=5 (@ = ) + 6(@))
T€R
From (15), it is straightforward to derive a new objective function ¥ (z, b)
with b = (b.) € RM, defined by:

€ (@, b) = lly — Hall* + 3 3 (5 (di — b +¢0)).

ceC

K is HQ since the argument dix of each contribution ¢(.) is a linear function
of . Then, Geman and Yang proposed to minimize %Y rather than J, since
infbeRM ’CGY(., b) = j()

In the spectral estimation framework, the penalization function R nonlinearly
depends on the sought spectral amplitudes @ since it is circular (see (4a)).
In the particular case of LS restoration, the penalization R, is defined by
¢(z) = Ry(p) (and d. canonical). Then, (15) gives

Ro(p) = nf (5 (0= 1) +¢0)). (16)

beER



Clearly, (16) shows that the quantity to be minimized is quadratic in p = |z|,
but not in x, and the resulting criterion K is not HQ.

Since |z| = h(R(z), I(x)), it is sufficient to couple the real and imaginary
parts of each spectral amplitude « with a real-valued auxiliary variable, in
order to get a satisfactory HQ extension of R.. This amounts to linking x
with a complex auxiliary variable b, provided that a multivariate extension
of (15) is available. In the following, we turn to this mutivariate Geman and
Yang’s construction that will be also necssary for deriving the HQ criteria in
the SS and MS cases.

2.2.2 Multivariate extension

For a complete overview on multivariate convex duality, (Rockafellar, 1970) is
an essential reference. Only the necessary tools are reported hereafter.

Definition 1 Let f : CM — R be a conver function. The multivariate convex
conjugate of f is defined by

VoeCY, f*(v)= sup (R(v'u) - f(u)), (17)

ueCM

and it is a convex function on CM .

Definition 2 Let (f,g) be a couple of positive real-valued functions on CM.

If

(a) f is strictly conver,

(b) [ is continuous?® and differentiable throughout CM

(¢c) f and g are the multivariate convex conjugate to each other, i.e., g = f*
and f = g*,

then (f,g) is said a Legendre pair.

From basic results on convex duality (Rockafellar, 1970, § 26), the following
proposition can be derived.

Proposition 3 Let (f,g) be a Legendre pair on CM | then g is differentiable
on CM and its gradient mapping is given by Vg = (Vf)_l, or equivalently:
Vu,v e CY, such that v = Vg(u), then u = Vf(v).

2 Here, Rockafellar’s closed-proper assumption (Rockafellar, 1970, pp. 52,253-254)
is replaced by a stronger but simpler continuity condition on CM.



In the rest of the paper, the following function f, will be considered for deriving
HQ criteria:

VuecC”,  fo(u) =ulu/2 — ¢.(u), (18)
where  ¢y(u) = ag(u), o >0,
and R(x)= > o(up). (19)

Here, u, € CM is a subvector of € C”. In the following, ¢ is assumed to be
twice countinuously differentiable (C?).

Let fZ be the multivariate convex conjugate of f, and (,(v) = f*(v) —viv/2,
then, (17) yields

ueCM 2

Colw) = sup {—M + «zsa(u)}. (20)

Since R is circular, so are ¢ and f,, i.e., fo(u) = fo(Ju|), where |u| € RY
stands for the vector of the magnitudes of u. Then, the following proposition
states that (, is also circular.

Proposition 4 Let ¢ : CM — R be a circular function involved in (18). Then,
function (,, defined by (20), is circular.

Proof See Appendix A.

Given Proposition 4, if ¢ is circular and (f,, f) is a Legendre pair, then ¢,
reads (using Definition 2(c))

2
lu — o]

oullul) = g, (15700 + ). (21)

veCM 2

where |v| € RY stands for the vector of moduli of v. Without strict convexity
of f., expression (21) does not hold, i.e., ¢, is not the infimum of an HQ local
energy.

Following Definition 2, the circular function f, has to fulfill hypotheses (a)-(b).
The latter holds given that ¢ is C2. For proving (a) i.e., strict convexity of fq,
we resort to a result stated in (Ciuciu et al., 2001) that characterizes convex
circular functions. For this purpose, coordinatewise nondecreasing functions
have to be defined.

10



Definition 5 A function f : Rf{f — R is said coordinatewise nondecreasing
if and only ifVie {1,...,M}:

VmeRY, Vi >0, f(m)<f(m+11),

where 1; is the ith canonical vector of RM . The function f si said coordinate-
wise increasing if the latter inequalities are strict.

Proposition 6 Let f : C¥ — R be a circular function. Then f is (resp.
strictly) convez if and only if its restriction on RY is

(i) (resp. strictly) convex
(i) and coordinatewise (resp. increasing) nondecreasing.

Proposition 6 is proved in (Ciuciu et al., 2001, Appendix A). Let us apply it
to f, defined by (18). The resulting convexity conditions of f, are summa-
rized in the following corollary, where (22) and (23) respectively correspond
to conditions (i) and (ii) of Proposition 6.

Corollary 7 Let f, be defined by (18). Suppose that ¢ is circular, C* and
convex on CM. Then, f, is strictly convez if and only if

VmeRY, VieNy, a<m;[d¢/0m;(m)] *, (22)
VmeRY, Iy —aHg(m)>0, (23)

where Hy(m) stands for the Hessian matriz of ¢ at point m.

Let b = [vg, ..., vp_4]". If (22)-(23) are ensured, the HQ extension of R
follows from (19) and (21):

P-1

5% (@, b) = i > (llup = vpl” + 2Callv, ) - (24)

p=0

To complete this part, there remains to formulate two propositions pertaining
to global convergence of the proposed RSD method minimizing K¢ = Q +
AS®Y. They constitute straightforward multivariate extensions of (Idier, 2001,
Theorem 1) and (Idier, 2001, Corollary 1), respectively.

Proposition 8 Let ¢ : CM — R be C' and convex. Then, (, given by (20),
is convez if conditions (22)-(23) hold and

o< lim l]” /26/(). (25)

|| >0

11



Strict convexity of (, requires that ¢ is strictly convex and that inequality
(25) is strict.

Proposition 9 Assume that ¢ meets the conditions of Proposition 8. Then,

¢ strictly convex = S strictly convex,

fa strictly conver = S°Y CL

Proposition 9 shows that K¢ possesses properties (4b)-(4c) if strictly con-
vex functions are considered for ¢ and f,. The resulting HQ BCD algorithm
converges towards the unique global minimizer (&, b) (Idier, 2001; Bertsekas,
1995).

2.2.8 Application to the separable case

Here, our aim is to show that a bivariate application (M = 1) of the pro-
posed multivariate construction provides a HQ extension of R, the circular
separable penalization encountered for LS recovering. In such a situation, ¢ is
defined on C (M =1,u, = z,) by

¢(up) = Ro(py), (26)
so that (19) holds.

For Ry € D, the global criterion J satisfies constraints (4b)-(4c). Apply Propo-
sition 6 with M = 1, then ¢ = Ry is (resp. strictly) convex on C if and only if
it is (resp. increasing) nondecreasing on R, and (resp. strictly) convex on R.
Since Ry € D, it is a nondecreasing convex function so that ¢ is convex on C.
Since ¢ is defined on C, the present convex conjugacy operation is bivariate
and involves a single complex auxiliary variable v, = b,. In order that (21)
holds, f, has to be strictly convex that can be shown as follows. From (26), ¢
and then f, are circular. Thus, Corollary 7 is applicable and (22)-(23) take
the following form:

. /
a < min{p/Fy ()],

(27)
a < 1/maxRq(p) = 1/Rg(0),
p=

where the last equality deduces from the definition of D.

Example 10 For LS restoration, the hyperbolic potential Ry(p) = \/7¢ + p?
has been used in (Ciuciu et al., 2001). Then, from (27) we obtain that f, is
strictly convex if and only if o < 7.

12



Since ¢ is circular, so is (, according to Proposition 4. Then, given |v,| =
byl = B, € Ry, (21)-(24) read

) 1
Galpy) = int, (512 = b+ Gal))) (28)
oy 1 ) P-1
55(@.6) = o ~([le — blf” +2 zoca(ﬂp)), (29)
p:
with b = [bg, ..., bp,l]t € CP. Since a complex auxiliary variable b, is cou-

pled to any spectral amplitude z,, ¢ depends on twice more real auxiliary
variables than SP*.

When Ry € D and (27) are satisfied, ¢ is linear at infinity, then (25) is au-
tomatically ensured. Therefore, Propositions 8-9 apply and both energies S&¥
and K = Q+ N8, with X' = \/q, are strictly convex and C'. In particular,
for the hyperbolic potential of Example 10, if o < 79, K& fulfills (4b)-(4c).
By contrast, with the log-Cauchy potential used in (Sacchi et al., 1998), no
convexity result of XY is available, even if the function f, is circular, C? and
strictly convex for o < 7, according to (27).

2.2.4 The RSD algorithm for LS restoration

The different steps of the RSD (or BCD-GY) algorithm for computing line
spectra are now detailed.

From (29), K¢ admits the following expression
K (x,b) = & Ay — 2R (276, (b)) + T (b), (30)
where

Ay = Wi Wyp + N /2Ip, (31)
&.(b) = Wi,y +Xb/2,

w(6) = X (0l /24 3 ).

On the one hand, the auxiliary variables are updated jointly, since they do
not interact. Thanks to Proposition 3, no closed form of (, is necessary to
calculate the minimizer B(m) of Kt¥. From the current expression of f,, each
component Bp, for p € Np, is given by:

B(xp) = folTp) = 7p — ad'(zp) = 7, — @ Ry(pp) Tp/ pp- (32)

13



On the other hand, it is shown that the minimizer Z(b) of K&¥ can be com-
puted in the Fourier domain thanks to circularity of A.. To this end, remark
that A, is independent of b. Moreover, W ,W is circulant as shown in (Gio-
vannelli and Idier, 2001), which allows to decompose it in the Fourier basis
Wi, WepW}, = Wi, Wep = PIp). More precisely, we have W} Wy, =
Wi, XW,p, where the diagonal matrix ¥ is only composed of two different
eigenvalues, 1 and 0, of respective order N and P — N. Therefore, A; is circu-
lant, and we get A, = W], A Wpp/P, with

(P+X/2) In| Owp

L= (33)
Op—nv | N/2 I
Hence, A, is invertible and A[! reads
1
A= WA Wep, (34)
so that Z(b) is given by:
. , 1 _
w(b) = AL lé-L(b) = ﬁW}IPALlePé-L(b)
TN AN
= SWLAT (Php+ S Werb) (35)

since W,y corresponds to the canonical projection from CV onto CF:

In

W;Py = WJIP Yy= W;PgP'

Op_nN

The computation of Z(b) by IRLS (or BCD-GR) required to solve a N X
N Toeplitz system, and the associated normal matrix A(b)) was modified
during the iterations. By contrast, in the present HQ construction, Z(b) is
obtained after solving a P X P circulant system in the Fourier domain, whose
normal matrix is constant in the course of the run. Consequently, the BCD-GY
algorithm allow savings of numerical cost at each iteration.

After setting an initial value «(?), the present iterative RSD method works as
follows.

e BCD-GY7: Minimization of &Y w.r.t. b:
b9 = b(a() = [, bl ™),.. ] keNp, (see (32)).
e BCD-GY5: Minimization of K& w.r.t. :

2@ =2(bD), (see (35)). (36)

14



The main motivation of this part was to introduce multivariate HQ regular-
ization based on Geman and Yang’s construction, from which we propose a
HQ BCD algorithm different from IRLS. Indeed, for SS restoration, IRLS can-
not be implemented whereas this multivariate process gives access to convex
HQ criteria, and thus to a BCD-GY convergent method.

3 HQ solution to SS restoration

3.1 Regularizing energy

Denote d,, the pth first-order difference vector: d, = 1,1 — 1, for any p > 0
and dp_1 = 1y — 1p_;, where 1, is the pth canonical vector. To retrieve SS es-
timates, the following circular Gibbs-Markov penalization has been proposed
in (Ciuciu et al., 2001)

1 P-1

Raw) = 5 3 ey ap01), (37)
p=0

l(mp’ xp+1) ={qp+ gpt1 T 2NR1(dZQ) (38)

where the subscript “s” stands for smooth and parameter p > 0 tunes the

amount of spectral smoothness. Vector ¢ = [qo, q1, - - -, qp_l]t € Rf is a dif-
ferentiable approximation of p, ¢, = ¢.(z,), and ¢, is the strictly convex

potential defined by
0 :Co Ry, () = a2+ |af’, (39)

As stated in (Ciuciu et al., 2001, Corol. 2), | and then Ry satisfy (4b)-(4c)
provided that

Ry is even and convex,

1< psup = 1/2R;(00).

(40)

Example 11 In (Ciuciu et al., 2001), simulations for SS restoration have

been performed with the hyperbolic funtion Ry (p) = \/7¢ + p?, such the amount
of smoothness must not exceed sy, = 1/2 for ensuring strict convezity of Rs.

In the following, R; is even and meets the properties of potentials belonging to
D. Then, we first show that Geman and Reynolds’s construction is unable to
provide a HQ development of the penalization Rg, before exposing a solution
based on a multivariate extension of Geman and Yang’s H(Q regularization.
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3.2 IRLS is inadequate for SS restoration

From the HQ viewpoint, inadequacy of IRLS can be studied as follows. To
obtain a HQ extension of Rs, the potential R;(d}q) involved in (38) should
read as the infimum of an augmented HQ function. Unfortunately, following
the process exposed in Subsection 2.1, we find

Ra(dyq) = jmf (b (dya)” + (b)), (41)

since R; meets conditions (10). Clearly, the augmented energy involved in (41)
is quadratic in g, but not in x. Actually, we have found no modified version
of (41) to compute SS estimates with the IRLS algorithm. On the contrary,
proper adaptation of RSD is possible as shown now.

3.8  Quadrivariate extension of Geman and Yang’s process

Following Section 2.2.3, function ¢ has to be defined. As outlined by Propo-
sition 9, strictly convex functions ¢ provide simple convergence criteria for
HQ BCD methods. Assuming that (40) holds, [ defined by (38), is convex and
hereafter, we set ¢ = [ since the latter meets the conditions of Corollary 7.

Then, the present function f, is defined on C?, which implies that the conju-
gacy operation at hand is quadrivariate (M = 2). Hence, two complex auxil-
iary variables v = [b,b,,,]" are coupled to u = [z, 2,1]". This amounts to
involving twice more real auxiliary variables in g than in &Y.

The second step for deriving an HQ extension of ¢ is to guaranty strict con-
vexity of f, (Remember that this key property allows ¢, to be expressed as
n (21)). According to Proposition 6, the restriction of f, on R% has to be
strictly convex and coordinatewise increasing. The latter result is shown in
the following proposition.

Proposition 12 Let us denote |[uy| = [pp, ppt1]', M, = [Gp, @p41]" and intro-
duce
mi, m,,
) =y, and tolma,) = T ag(m,),

then, given (18) the restriction of fo on R2 reads

t —mi m
U u m
|up|" |y > up Up = taop(|u,) —c*, (42)

fa(up) = falluy|) = ta(may,)+
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and finally f, is strictly convex on C? if

€ €
< =
1+ 2pmaxRi(p) 1+2uRi(cc)’
p=0
1 (43)
dpmaxR, (p)  4pRI(0)
p=0

«

a <

Proof see Appendix B.

Note 1 For the hyperbolic potential R, of Example 11, f, is strictly conver
ifa<e/(142u) and a < 71 /4p.

Since ¢ is circular (¢(u,) = @(|u,|)), so is (, according to Proposition 4. Let
us denote [v,| = B¢, [byya I = |65 Byaal', (21) and (24) are given by

: |2y — b * + [zt — by _
Pty 1) = (bé“,bgf)ec2< . 2 + Gl ;’ Bpia) |- (44)
Gy 1 +|? —|I? = + -
5 (@,b) = o (e — o[ + e — b7 +2 > GalB ) (45)
p:

with b= [b™ | b*] the P x 2 complex matrix of auxiliary variables, and b* =

[boi, b, blj_%_l]t € CP (by = bp_, because of the circularity constraint zp =
,’130).

In order to prove convergence of the RSD (or BCD-GY) algorithm working on
K = Q+ NSFY, we resort to Proposition 9 with M = 2. Since ¢ and f, are
strictly convex if (40) and (43) hold, respectively, IS is strictly convex and
C'. Therefore, we conclude that any BCD method minimizing Kg™ converges
to the global minimizer (Z, b). The main steps of the RSD algorithm devoted
to SS restoration are now highlighten.

3.4 The RSD algorithm for SS restoration

The criterion $Y is written in the form (30) for the following set (Ag, &g, ¥s):

As =W Wyp + NIp =W} AWy, /P, (46)
&) =Wy + N(b"+b7)/2,

) =X (Jor[ 12 o] 24 a5 )

17



Whereas KT and KT are separable functions of auxiliary variables, b,,; and
b; locally interact within IJY. As a consequence, searching for the minimizer
b(z) of KSY requires to jointly update by+1 and b} in the core algorithm, in
order to preserve a fully parallel scheme. From successively (18) and (42), and
given Proposition 3, b,,; and b read

¢ ~ a¢
b (T, Tp1) = Tp1 — oz
P (ap,ap41)
= Tpr1 = @ Pe(ppia) X (1= 2uR1(gp — Gp11)) /20p11, (47)
. 86
b (Tp, Tpt1) = 7p — oz
Pl(zp,ept1)

=z, —a@l(pp) X (1+2uR} (g — Gps1)) /22,

Matrix Ag is circulant and its diagonal representation Ag in the Fourier basis
identifies with (33), where )\’ is replaced by its double. Hence, Ag is invertible,
and Ag' is given by (34) where A ! is deduced from Ag. It follows that the

minimizer Z(b) of I$Y is given by

Z(b) = %W;PAgl (Pgp+ X (b" +b7)/2). (48)

After setting «(?), the iterative RSD algorithm works as follows.

e BCD-GY7: Minimization of K$¥ w.r.t. b:

pli) — [bf @) | pt <i>] , with
b0 = [0 (i) aliiye) o] k=1 P2,

» ¢
L S I e

where [.] stands for the modulo operator and b(-),b*(-) are provided by
(47).

e BCD-GY3$: x is still computable in the Fourier domain according to
(48): =) = z(bt~Y).

Note 2 For solving (48), only the sum bt + b~ is needed. Consequently, the
storage of bT may be saved.

Given both HQ developments of separable and Gibbs-Markov penalty func-

tions, the purpose of the next part is to show that extension to the MS case
is straightforward.
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4 HQ solution to MS restoration
4.1  The “mired” model

To retrieve “mixed” spectral distributions, i.e., a small set of frequency peaks
embedded in a homogeneous background, Ciuciu et al. (2001) introduces a
specific model relating data to unknowns, called the “mixed” model. It sup-
poses that the unknowns vector & = [z}, :Izg]t € C?F consists of a line portion
x, and a smooth portion x5. The resulting fidelity to data term Q,,® reads:

Qu(z) = [ly = Wap(as + z)[I” = lly — WarCa|*,

where C' = [Ip|Ip] is a P x 2P circulant matrix. Then, the global regular-
ization function R, derived in (Ciuciu et al., 2001) penalizes x, as for LS
estimation and xg as for SS restoration:

Ru(x) = AL Re(zr) + As Rs(xs), (A, As > 0), (49)

where R, is given by (6) and R by (37). Choosing A, < Ag nullifies g since
Rs is made up by a separable penalty term, such as R, and a Gibbs-Markov
one. Choosing A\, > As induces the reverse effect. As shown in (Ciuciu et al.,
2001), A, and Ag vary on the same range.

As expected, Ry, is circular i.e., Ry () = Ry(p), where p = [p!, pt]' € R2F.
In addition, R, fulfills (4b)-(4c) as a sum of two strictly convex and C' penalty
functions, R, and Rs. The global criterion 7y, given by

Ju(z) = Qu(z) + Ru(z),
also satisfies these properties, and its global minimizer is defined by

x= [:i"tL, :Eg] = arg min Jy(x),
ZL,T3

Finally, the estimated power spectrum is taken as the vector of the squared
moduli of the components of Z; + Zs. Hereafter, we examine the HQ extension
of Ry

4.2  HQ mized criterion

As shown by (49), «; and xs do not interact within the penalization R,
so that deriving its HQ extension is a direct application of Section 2.2.3 and

3 The subscript “M” stands for mized.
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Section 3.3. Provided that Ry € D and (40) holds, functions ¢, = Ry and
¢s = | are strictly convex. If in addition conditions (27)-(43) are fulfilled by
parameters o and as, then ¢, and ¢ reread as infima of HQ energies, given
by (28) and (44), respectively. As a consequence, expressions (29) and (45) of
HQ criteria S¢¥ and &5 are available, so that S5 is defined by

1 1
S&Y(z,b) = —S8°¥ (1, by) + — S (s, bT)

(633 Qg

Let b = [by, | b | by] denote the P x 3 matrix of complex auxiliary variables.
The HQ objective function K, reads
KSY(2,b) = Q) + N L ST (2, by) + M.SEY (xg, bY) (50)

where A = A/ and N, = Ag/as. From results stated on S and S§Y in
Section 2.2.3 and Section 3.3, it is obvious to conclude that S5 and then KFY
are strictly convex and C'. As a consequence, the proposed RSD algorithm
converges to the global minimizer (&, b).

4.8 The RSD algorithm for MS restoration

KCSY rereads as (30) for the following set (A, &y, Yu):

A, ‘WJI,PWNP
Ay = , (51)
W]-i\.prNP AS
[ &.(b) Yp + Apbr/2,
gM(b) = = - P’ 9
[&(bs) ] LFp+ (BT +85)/2
Tyu(b) = A ||bL||2/2+XS/2< o[ + o 2)

P-1
LD CHMEIN R ANE- S}
p=0

Matrices A;, and Ag are given by (31) and (46), respectively.

On the one hand, the variables b, () and bZ(xs) can be updated according
to (32) and (47), respectively, since they do not interact together.

On the other hand, computing the minimizer Z(b) of £$¥ w.r.t. « is not as eas-
ier as in the previous cases since A, is not circulant. Nonetheless, A,, is block
symmetric and its diagonal blocks are circulant matrices. As a consequence,
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AyZ = &u(b) can be solved in a efficient way, provided that A, is well-
defined. Following Golub and Van Loan (1989), A, is invertible if and only if
Ag and
T =A,— W Wy AW Wy, (52)
are both invertible. First, according to (34) and (46), A, and Ag are invertible
and we get A7t = W] ,AZIW,, and A;' = W], AJ'W,,, respectively. Second,
given the circulant structure of Ay, A;! and Wi Wy, = Wi, SW,,, T is
circulant as a sum of product of circulant matrices:
T = Lwi prlw ith Dyl2A, - 1xAlls
= periiWer, wi L1 = ST p s &
Matrix T is of full rank equal to P, provided that A\, # 2((P+ L) ' —P). The
latter condition is always satisfied since A, > 0 whereas (P + \,)' — P < 0.
Hence, T' and A, are invertible. Then, a straight application of the inversion
lemma for block matrices (Golub and Van Loan, 1989) provides By, 2 AN
applying the inversion lemma for block matrices (Golub and Van Loan, 1989)
to Ay, its inverse, say B, is given by

1

Bl,l =T = PWJIP Dl,l Wep
1 . A 1 1 -1
Buo= 5Wor DoaWoe with Dy 2 (A= 55AI'S)

1
B, =B, = —ﬁW;p AT'S Do Whpp.

Finally, the structure of B,, suggest thqt £ = B,&y(b) is still computable in
the Fourier basis.

The next part starts with algorithmic adaptations devoted to accelerate con-
vergence of BCD methods, and continues with an experimental comparison
between IRLS, RSD and PCG.

5 Experimental comparisons
5.1 Quver-relaxzation of x and b

As previously seen, IRLS or RSD minimize HQ criteria firstly w.r.t. b and
secondly w.r.t. . The second step finds the solution of a linear system. Given
the special structure of the normal matrix, either Toeplitz for LS estimation
with IRLS, or circulant for LS and SS restoration with RSD, the solution
Z(b) of this linear system is efficiently computed without resorting to an iter-
ative scheme such as Gauss Seidel (GS) algorithm. Normally, to accelerate the
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numerical convergence of GS methods over-relaxation is proceeded. Here, we
propose to introduce the same process in the following way. After computing
Z(b), over-relaxation consists in defining the new estimate as

) = wa(b) + @Y,

where @ = 1 — w and w € (1,2). From our practical experience, w ~ 1.9
is a relevant choice for reducing the iterations number required for conver-
gence. Practically, we have checked that efficiency of RSD is improved if over-
relaxation is performed, not only on &, but also on b. By contrast, we have
observed that overrelaxation on b does not speed up the IRLS algorithm.

In case of LS estimation, over-relaxation on b consists in appending to the
updating equation (36) the following calculation in the core RSD algorithm,
summarized in Appendix C:

~

i) _ i—1 — (i) p(i-1
b = Wl b(zf=Y) + @ b, (53)
where b(-) is defined by (32).

For the SS counterpart, the above construction is generalized to

—(4 i) p— (01 i— — (1) p—(i—

by = ) b (w0, 2 0) 4 a0 54
i ) i i—1 - (i) p+(i—

b;’() :wl())b+(xl(1 1),:51()_'_1))_{_ I(J)b;—( 1),

where b~ (-) and b™(-) are given by (47). The original part of MATLAB code for
computing SS is also available for consultation in Appendix C. It is obtained
by replacing equations (32)-(35) by (47)-(48).

Implementation of over-relaxation in the MS case mixes (53) and (54).

On the other hand, devising a theoretically converging over-relaxed scheme
is not obvious in the nonquadratic case. In particular, wl(f) € (1,2) does not
ensure that the iterate (53)—(54) decrease K, and Ks, respectively. At stage i,
it is possible to find a bound &) for each w(?, p € Np such that K, and Ks
are decreased. This can be done analytically if ¢, is not too complicated (as
when the Huber potential is chosen for Ry (Idier, 2001) for LS recovering), or
numerically otherwise. In practice, the resulting schemes provide significantly
less iterations to converge, compared to the basic scheme (wz(f) = 1). Unfortu-
nately, the gain in CPU time is only marginal, because computing LT)Z(,i) for each
(p, i) is too demanding. Finally, maintaining all w{" at the same value empiri-
cally chosen in (1, 2) reveals much more efficient. From a practical ground, an
even more efficient scheme is as follows:

Vpe Np, wz(f) = wp + w1 (1 —log(2)/ log(1 + 7)).
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At the beginning, the relaxation parameter wz(f) is close to wy, and it progres-
sively converges to w;. On one hand, we recommend to choose wy ~ 1 in order
to avoid slow convergence. Indeed, if the new estimate, for instance bl(f), is too

far from b(-), the global HQ criterion K, may increase rather than decrease.
On the other hand, w; can be chosen close to 2.

The numerical descents reported in the following for IRLS and RSD correspond
to over-relaxed versions since they are the most efficient.

5.2  Simulations results

We present the numerical performances of our RSD algorithms by process-
ing the well-known Kay and Marple (1981) example. These 64-points data
sequence constitute an important benchmark for evaluating most spectral
estimators. The spectral estimates, computed in (Ciuciu et al., 2001) with
P = 512 are not reported here.

As regards numerical implementation of PCG, the following conjunction has
been selected as stopping criterion:

T (@)~ T (D) /T (2') < e
2@ — 2L, /[l2V]]. < as,
IV, < as,

where 2 denotes the solution at the 7th iteration of the minimization stage,
and * is 1 or 2. Following Vogel and Oman (1996), we have rather chosen the
l; norm, and the thresholds have been set to (a1, as, a3) = (1077,107¢,107°).

The same stopping criteria have been adopted for RSD, except that the third
condition has not been tested. In all cases, () has been defined by the DFT
of the zero-padded data sequence yp.

5.8  Convergence speed of RSD, IRLS and PCG for LS restoration

Following Ciuciu et al. (2001), the hyperbolic potential Ry(p) = 1/7¢ + p? has
been used to define the circular penalty function R, (see (6)). From practical
experience, setting « to the upper bound of convexity of f,, i.e., & = 7y (see
Example 10), allows to speed up numerical convergence of RSD.

Convergence of IRLS, RSD and PCG is illustrated through two different
situations. The first one corresponds to (A, 79) = (0.06,0.2) and provides
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an intermediate spectrum estimate, between the usual peridogram shown in
Fig. C.1(a) and the LS estimate depicted in Fig. C.1(b). In such a case, the
potential Ry has two clearly separated areas, a quadratic one between zero
and 7y and a linear one beyond 7. Fig. C.2(a) illustrates the efficiency of RSD
since it takes about 4 seconds to compute Z on a Pentium III 450 Mhz. The
IRLS and PCG algorithms provide the solution after 7 seconds and so RSD
is slightly faster on this example. Other simulations, not reported here, have
confirmed this standpoint provided that 7y is not too small.

|[Fig. 1 about here.|

The second situation corresponds to the LS estimate depicted in Fig. C.1(b).
In this case, hyperparameters (), 7y) are fixed to (0.06,0.002), so that Ry is
close to |-|, which is nondifferentiable at zero. Clearly, as shown in Fig. C.2(b),
a quasi nondifferentiability does not prevent IRLS to converge very quickly, in
11 seconds about. Such a result is not surprising given the well-known ability
of IRLS for minimization of mixed L, (or L,) and L, norms (Yarlagadda et al.,
1985; Ruzinsky and Olsen, 1989), and can also be analyzed through properties
of the HQ criteria: even for Ry = || the HQ objective function K°* (see (10))
is differentiable. Then, ARTUR/IRLS is not penalized for minimizing *.

By contrast, for minimizing the same energy, RSD and PCG require more
than 200 seconds. On one hand, it is well-known that gradient-based algo-
rithms require that J is C! to be convergent. On the other hand, as stated in
Section II, handling HQ criteria XY requires that R is C'. In practice, the
latter condition is almost unsatisfied, so that RSD and PCG converge to &
very slowly. To speed up RSD and PCG, we have eventually resorted to the
so-called “regularization method” (Bertsekas, 1975; Glowinski et al., 1976),
also referenced to as GND (for Graduated Non Differentiability) in (Ciuciu
et al., 2001). The basic principle of GND is to successively minimize a dis-
crete sequence of convex differentiable approximations that converge toward
the original nonsmooth criterion (see (Glowinski et al., 1976, p. 21-22)). In the
present context, the original criterion is only nearly nonsmooth, and GND is a
twofold iterative process. First, it consists in choosing an initial value of 7 not
too small (e.g., 70 = 0.2). Second, J-o is minimized and the computed solution
@Tg serves as initialization for the next minimization of a closer approximation
jT&:OIOQ. This scheme is repeated until J;,—0.002 is attained.

Simulations on GND are not reported since they do not allow to supplant
IRLS. However, they show that coupled schemes GND-RSD and GND-PCG

converge faster (60 seconds) than single runs of RSD and PCG (200 seconds).

[Fig. 2 about here.|
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5.4 Convergence speed of RSD and PCG for SS and MS restoration

The hyperbolic potential R;(p) = /72 + p? has also been chosen to define the
smooth part of the penalization Rs. Once again, setting « to the upper bound
of convexity of f,, i.e., @« = min(e/(1 + 2u), 71 /41) (see Note 1), reveals much
more efficient for accelerating numerical convergence.

Fig. C.3 illustrates the numerical descent of RSD and PCG for minimizing
criteria Jg = Q + AR5 and Jy, versus the CPU time. The optimized criterion
Js in Fig. C.3(a) corresponds to the spectrum illustrated by Fig. C.4(a) for
which the hyperparameters have been set to (A, 7, s, €) = (0.05, 0.001, pigup =
0.5,0.9), where fig,, indicates the upper bound of convexity of Rs (see (40)).
Keeping unchanged (7,71, €, 1) and setting (A., As) = (0.005,0.004) leads to
the mixed criterion J, plotted in Fig. C.3(b), whose global minimizer yields
the mixed spectrum shown in Fig. C.5(a). From a comptational point of view,
it appears in both cases that RSD is competitive with the PCG algorithm,
and thus more efficient than a standard steepest descent algorithm where the
descent direction is only defined by the gradient. This is not surprising since,
as pointed out in (Vogel and Oman, 1998), RSD (as well as IRLS) can be
formulated as a (constant step-size) quasi-Newton descent algorithm.

|[Fig. 3 about here.|
|Fig. 4 about here.|

Let us remark on Fig. C.3 that the computation of the MS estimate is more
time demanding (70 seconds) than that of the SS estimate (20 seconds), since
there are more unknown spectral amplitudes and also more auxiliary variables
to update for MS restoration. Furthermore, each normal equation requires
more multiplications and additions, as shown in Section 4.3.

Finally, the better SS and MS estimates, depicted in Fig. C.4(b) and Fig. C.5(b)
have been obtained for 4 = 10ug,p and the other parameters unchanged. For
such a value of p, convexity of J5 and J,, is not ensured. Then, the computed
spectra does not necessarily correspond to a global minimizer. Nonetheless,
in terms of numerical cost, the same conclusion as before can be drawn i.e.,
RSD is an appealing alternative to the well-known PCG algorithm, even if
non convexity implies slower numerical convergence.

|[Fig. 5 about here.]
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6 Conclusion

In the context of LS recovering, we showed that IRLS is in turn a BCD method
minimizing a HQ criteria, derived from Geman and Reynolds contruction.
Then, we proved that IRLS is the method of choice, i.e., it converges faster
than gradient based methods. As a BCD method, simpler convergence results
of IRLS than existing ones (Byrd and Payne, 1979) have been stated. Unfor-
tunately, we outlined that IRLS cannot be implemented in SS and MS cases.

Since IRLS failed in such situations, we developed another algorithm to fill this
gap. The proposed numerical tool is actually an original RSD method (Yarla-
gadda et al., 1985), even if it seems to be closer to LEGEND (Charbonnier
et al., 1994), since it is a BCD method minimizing a HQ criteria derived from
Geman and Yang’s construction. Whatever the form of the penalty function,
provided that it is convex, convergence of RSD was proved. Then, the per-
formances of RSD were compared to IRLS and PCG. In case of separable
regularization, two different conclusions were drawn regarding differentiabil-
ity of the penalization function. If the latter was smooth enough, RSD behaves
as IRLS, whereas in the opposite case, RSD behaves as PCG. For SS and MS
estimation, we demonstrated that RSD is competitive with PCG. We also
highlighted that the computational burden is heavier for MS restoration since
there are more variables than in case of SS estimation.

The last concern of our study was devoted to propose over-relaxed schemes of
BCD methods, since over-relaxation is normally able to accelerate numerical
convergence. Such a procedure was successfully implemented on IRLS and
RSD. From our practical experience, it gave the expected effect but IRLS was
not sensible to over-relaxation of auxiliary variables, contrary to RSD.

A Proof of Proposition 4

Let u € CM with u; = |u;| €% and (Ju;l, 0;) € Ry x [0, 27), for i € Ny;. Let us
also define the vector of phases @ = [0y, 84, ...,0_1]" € [0,27)M. Given that
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¢ is circular, we have Vv € CM:

ug| e7% — v

)= sup(ga(ful) - 2‘ )

(Ju],0)€RA x[0,2m)M

M—1 il €% — o,
- el int ) Al
Iusllelﬂgf<¢ (Jue] geiel[%,zn) 9 (A1)
& (Jua| = [ui])?
= (duliu) — 3 S = GuloD,
u|eRY! i=0

where the infima in (A.1) are reached for 6; = arg(v;).

B Proof of Proposition 12

First, apply a basic theorem regarding the composition of convex functions (Ciu-
ciu et al., 2001, Th. 1) in order to state strict convexity of fo(m.,,) : since
¢ is defined from (., each of its components is strictly convex. On the other
hand, following Corollary 7, t, is a strictly convex and coordinatewise increas-
ing function, if conditions (43) are fulfilled. It follows that ¢, o ¢ and then
fa(Ju,|) are strictly convex on R2 .

Second, since ¢, is increasing on Ry, so is f,(|u,|). Finally, from Proposition 6
fo is strictly convex on C? when conditions (43) hold.

C Optimization algorithm under its Matlab Code form

The following MATLAB-code summarizes both algorithms for computing line
and smooth spectra. The respective hyperparameters, (A, 75) and (A, 71, i, €),
are supposed to be set to the values given in Section 5.3 and Section 5.4. The
latter parameter « has been chosen close to the value given by (27) (see also
Example 10) and by (43) (see also Note 1) according to the adressed case.

0. Define stopping rules
NBITER=5e2;alphal=1e-7;alpha2=1e-6;% Thresholds on J and x
1. Initialization:e.q., zero padded periodogram.:
Ypad=[y;zeros(P-N,1)];x0=fft (Ypad) /N;
omb1=1;omb2=1.95;0mx=1.9;
2. Choose what kind of spectrum you wish to estimate
opt=’1s’; % Line Spectra
hopt=’ss’;’ Smooth Spectra
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3. Save in memory:
coef1=2*N/P;ybis=coef1*y;x=x0;
if strcmp(opt,’ls’)
Hpar=[lambda,tau0] ;alpha=.99%tau0;
lb=lambda/alpha;coef2=1b;
elseif strcmp(opt,’ss’)
Hpar=[lambda,taul,mu,epsilon];
alpha=.99*min(epsilon/ (1+2*mu) ,taul/(4*mu)) ;
1lb=1lambda/alpha;coef2=2%1b;
else
error (’Unrecognized string opt!’);
end
coef3=sqrt (N) ;i=0;DF=1;Dx=1;
4. Compute J with subroutine fun.
JO= feval(’fun’,y,x0,Hpar,opt);
5. Core algorithm
while (i<NBITER) & ((DF>alphal) |(Dx>alpha2))
a. Parallelized update of b or of (b®+ + b®-):
g=feval(’grad’,x,Hpar,opt);
bl=coef2/1b*x-alphaxg;
%over-relaxation of b
omb=omb1+omb2* (1-log(2) /log(i+1));
b=omb*b1+(1-omb)*b; %1<=omb<=2
b.Compute £(b™)):
xi=1b*b;Fxi=ifft(xi,P)*coef3;
Fxi(1:N)=Fxi(1:N)+ybis;
DMFxi=[coef1*Fxi(1:N),coef2*xFxi(N+1:P)];
c. Global update of ¥ :
x1=fft (DMFx1i,P)/coef3;
%0ver relaxation of z®:
x=omx*x1+(1-omx)*x; %1<=omx<=2
d. Compute stopping criteria:
Ji=feval (’fun’,y,x,Hpar,opt);
DF=(J0-J1)/J0;
Dx=sum(abs (x-x0)) /sum(abs(x)) ;
e. Updates:
J0=J1;x0=x;i=i+1;
end

Subroutine fun:computing the global criterion J
function J=fun(y,x,Hpar,opt)
if nargin™=4
error (’Bad number of arguments !’);
end
N=length(y);
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%Jfd:Fidelity to data term
xt=ifft (x)*sqrt(N); % xt:time series
xt0=xt (1:N); % W_{NP}x
Jfd=sum(abs (y-xt0)."2);
hJreg:Regularization term
z=abs (x) ;
if strcmp(opt,’ls’)
Jreg= Hpar(1)*sum(sqrt(z.~2+Hpar(2)~2)-Hpar(2));
elseif strcmp(opt,’ss’)
g=sqrt(z."2+Hpar(4)~2);
%hsymdif .m: [x1;...;xn]-->[x1-x2;...;xn-1-xn;xn-x1]
Jreg=sqrt (symdif (q) . ~2+Hpar(2)~2)-Hpar(2));
Jreg=Hpar (1) *sum(q+Hpar (3) *Jreg) ;
end
J=Jfd+Jreg;

Subroutine grad:computing the gradient of the penalization function R

function g=grad(x,Hpar,opt)

if nargin™=3
error (’Bad number of arguments !’);

end

z=abs (x) ;

if strcmp(opt,’ls’)

g=x./sqrt(z.~2+Hpar(2)~2);

elseif strcmp(opt,’ss’)
g=sqrt(z. 2+Hpar(4)~2);
grs=x./q; % gradient of the separable term in (38)
syz=symdif (z) ;
signl=sign(syz);
grml=signl.*abs(syz);
grml = grml./sqrt(abs(syz) . 2+Hpar(2)~2);
%hsymdif2.m:[x1;...;xn]-->[xn-x1;x1-x2;...;xn-1-xn]
syz2=symdif2(z) ;
sign2=sign(syz2);
grm2=sign2.*abs (syz2) ;
grm2 = grm2./sqrt(abs(syz2) . 2+Hpar(2)~2);
g=grs.*(1+Hpar (3) . *(grml-grm2)) ;

end

References

Aubert, G., Vese, L., October 1997. A variational method in image recovery. STAM
J. Num. Anal. 34 (5), 1948-1979.

29



Bertsekas, D., 1975. Nondifferentiable optimization approximation. In: Mathemati-
cal Programming Studies. Vol. 3. Balinski, M.L. and Wolfe, P., Amsterdam, The
Netherlands, pp. 1-25.

Bertsekas, D. P., 1995. Nonlinear programming. Athena Scientific, Belmont, MA.
Bouman, C. A., Sauer, K. D., July 1993. A generalized Gaussian image model for
edge-preserving MAP estimation. IEEE Trans. Image Processing 2 (3), 296-310.
Byrd, R. H., Payne, D. A., June 1979. Convergence of the iteratively reweighted
least squares algorithm for robust regression. Tech. Rep. Tech. Rep. 313, The

Johns Hopkins Univ., Baltimore, MD.

Cabrera, S. D., Parks, T. W., April 1991. Extrapolation and spectral estimation
with iterative weighted norm modification. IEEE Trans. Signal Processing 39 (4),
842-851.

Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M., November 1994. Two
deterministic half-quadratic regularization algorithms for computed imaging. In:
Proc. IEEE ICIP. Vol. 2. Austin, TX, pp. 168-172.

Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M., February 1997. Deter-
ministic edge-preserving regularization in computed imaging. IEEE Trans. Image
Processing 6 (2), 298-311.

Ciuciu, P., Idier, J., Giovannelli, J.-F., October 2001. Regularized estimation of
mixed spectra using a circular Gibbs-Markov model. IEEE Trans. Signal Process-
ing 49 (10), 2202-2213.

Delaney, A. H., Bresler, Y., February 1998. Globally convergent edge-preserving reg-
ularized reconstruction: an application to limited-angle tomography. IEEE Trans.
Image Processing 7 (2), 204-221.

Geman, D., Reynolds, G., March 1992. Constrained restoration and the recovery of
discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14 (3), 367-383.

Geman, D., Yang, C., July 1995. Nonlinear image recovery with half-quadratic reg-
ularization. IEEE Trans. Image Processing 4 (7), 932-946.

Giovannelli, J.-F., Idier, J., July 2001. Bayesian interpretation of periodograms.
IEEE Trans. Signal Processing 49 (7), 1988-1996.

Glowinski, R., Lions, J. L., Trémoliéres, R., 1976. Analyse numérique des inéqua-
tions variationnelles, tome 1 : Théorie générale, Méthodes mathématiques pour
I'informatique. Dunod, Paris, France.

Golub, G. H., Van Loan, C. F., 1989. Matrix computations (2nd Edition). The John
Hopkins University Press, Baltimore, Maryland.

Idier, J., July 2001. Convex half-quadratic criteria and interacting auxiliary variables
for image restoration. IEEE Trans. Image Processing 10 (7), 1001-1009.

Kay, S. M., Marple, S. L., November 1981. Spectrum analysis — a modern perpective.
Proc. IEEE 69 (11), 1380-1419.

Ortega, J., Rheinboldt, W., 1970. Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Academic Press, New York, NY.

Rockafellar, R. T., 1970. Convex Analysis. Princeton Univ. Press.

Ruzinsky, S. A., Olsen, E. T., February 1989. L; and L., minimization via a variant
of Karmarkar’s algorithm. IEEE Trans. Signal Processing 37 (2), 245-253.

Sacchi, M. D., Ulrych, T. J., Walker, C. J., January 1998. Interpolation and extrap-
olation using a high-resolution discrete Fourier transform. IEEE Trans. Signal
Processing 46 (1), 31-38.

30



Tikhonov, A., Arsenin, V., 1977. Solutions of Ill-Posed Problems. Winston, Wash-
ington, DC.

Vogel, R. V., Oman, M. E.,; January 1996. Iterative methods for total variation
denoising. STAM J. Sci. Comput. 17 (1), 227-238.

Vogel, R. V., Oman, M. E., June 1998. Fast, robust total variation-based reconstruc-
tion of noisy, blurred images. IEEE Trans. Image Processing 7 (6), 813-823.

Yarlagadda, R., Bednar, J. B., Watt, T. L., February 1985. Fast algorithms for
I, deconvolution. IEEE Trans. Acoust. Speech, Signal Processing ASSP-33 (1),
174-182.

31



List of Figures

C.1

C.2

C.3

C4

C.5

Spectra reconstructed with separable regularization.

Performance of the IRLS, RSD and PCG algorithms for
computing “separable” spectra.

Performance of RSD and PCG algorithms for computing SS
and MS estimates.

Smooth spectra reconstructed with a circular Gibbs-Markov
penalty function.

Mixed spectra reconstructed.

32

33

34

35

36

37



= N
o o

o

Relative spectrum (dB)
5 5

|
w
o

4 01 02 03 04 05

Fraction of sampling frequency

20

10t

-40

(b)

L

0 01 02 03 04 05

Fraction of sampling frequency

Fig. C.1. Spectra reconstructed with separable regularization. (a): zero-padded
periodogram, (b) line spectra reconstructed with the hyperbolic potential,

(A, 70) = (0.06,0.002).
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Fig. C.2. Performance of the IRLS, RSD and PCG algorithms for computing “sep-
arable” spectra. In (a), 79 = 0.2 whereas in (b) 790 = 0.002. Solid lines are for
RSD, dash-dotted lines encode minimization with IRLS and dashed lines indicate
that minimization is performed with PCG. Circles (0), squares (0) and stars ()
depict the stopping points of IRLS, RSD and PCG.
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Fig. C.3. Performance of RSD and PCG algorithms for computing SS estimate on (a)
and MS estimate on (b). The vertical axis represents the criterion values.

Solid
and dash-dotted lines are for minimization with RSD and PCG, respectively. The
stopping points are depicted by a square (O) for RSD and by a star (%) for PCG.
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Fig. C.4. Smooth spectra reconstructed with a circular Gibbs-Markov penalty func-
tion, (X, 71) = (0.05,0.001); (a) convex case where p = pigyp = 0.5, ex = 0.9, (b)
nonconvex case where u =5, exg = 0.9.
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Fig. C.5. Mixed spectra. (a): convex case g = 0.5; (b) nonconvex extension y = 5;
(c) and (d) correspond respectively to the line (|Z.|?) and smooth (|Zs|?) parts of
|Z£|? depicted in (b).
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