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Regularized Estimation of Mixed Spectra
using a Circular Gibbs-Markov Model

Philippe Ciuciu, Jérome IDIER, and Jean—Francgois GIOVANNELLI

Abstract— Formulated as a linear inverse prob-
lem, spectral estimation is particularly under-
determined when only short data sets are avail-
able. Regularization by penalization is an ap-
pealing nonparametric approach to solve such
ill-posed problems. Following Sacchi et al. [1],
we first address line spectra recovering in this
framework. Then, we extend the methodology
to situations of increasing difficulty: the case of
smooth spectra, and the case of mixred spectra,
i.e., peaks embedded in smooth spectral contri-
butions. The practical stake of the latter case is
very high since it encompasses many problems
of target detection and localization from remote
sensing.

The stress is put on adequate choices of
penalty functions: following [1], separable func-
tions are retained to retrieve peaks, whereas
Gibbs-Markov potential functions are intro-
duced to encode spectral smoothness. Finally,
mixed spectra are obtained from the conjunc-
tion of contributions, each one bringing its own
penalty function.

Spectral estimates are defined as minimiz-
ers of strictly convex criteria. In the cases of
smooth and mixed spectra, we obtain nondiffer-
entiable criteria. We adopt a graduated nondif-
ferentiability approach to compute an estimate.
The performance of the proposed techniques is
tested on the well-known Kay and Marple ex-
ample [2].
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I. INTRODUCTION

HE PROBLEM of spectral estimation has
been receiving considerable attention in the
signal processing community since it arises in vari-
ous fields of engineering and applied physics, such
as spectrometry, geophysics [1], biomedical Doppler
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echography [3], radar, etc. In particular, our pri-
mary field of interest is short-time estimation of
atmospheric sounding or wind profiling, possibly
superimposed on a small set of targets, from radar
Doppler data [4].

A survey of classical methods for spectral esti-
mation can be found in [2]. When the problem at
hand is the restoration of smooth spectra (SS), basic
nonparametric methods based on discrete Fourier
transform (DFT) such as periodograms are often
taken up. Such techniques usually involve a win-
dowing or an averaging step which requires a suf-
ficiently large data set. By contrast, estimation of
line spectra (LS) is more often dealt with paramet-
ric methods, such as Pisarenko’s harmonic decom-
position [5], Prony’s approaches [6,7], or autore-
gressive (AR) methods [2,8,9]. These techniques
are known for their ability to separate close har-
monics. Consequently, they are usually considered
under the heading of high-resolution methods [2].

In the more difficult case of mized spectra (MS),
i.e., small sets of harmonics embedded in smooth
spectral components, no satisfying techniques ex-
ist according to [2,9,10]. The main aim of the
present paper is to contribute to fill the gap, within
a nonparametric framework related to a recent con-
tribution due to Sacchi et al. [1]. One important
conclusion drawn in the latter was that enhanced
nonparametric methods can reach high-resolution,
which somewhat contradicts the state of the art
sketched in [2].

Following [1], SectionII starts with modeling the
unknown spectral amplitudes as the DFT of the
available observations. In particular, the number
of Fourier coefficients to be estimated is larger than
the length of the data sequence. The current prob-
lem is therefore underdetermined. Then, we re-
sort to regularization by penalization to balance the
lack of information provided by data with an avail-
able prior knowledge, such as spikyness or spectral
regularity. Since the main part of our construction
is made in a deterministic framework, Section II is
also devoted to a natural question, whether it is
theoretically justified to resort to our approach to
estimate power spectral densities (PSDs).



Three penalty functions are designed for solving
the LS, SS and MS issues, respectively (see Sec-
tion ITT). Following [1], a separable function is re-
tained for line spectra (Subsection ITI-B). To deal
with smooth spectra estimation, our construction is
inspired by Gibbs-Markov edge-preserving models
for image restoration [11-13] (see Subsection ITI-C).
Finally, mixed spectra are obtained from the con-
junction of contributions, each one bringing its own
penalty function (Subsection ITI-D).

In all cases, the spectral estimate is defined as
the minimizer of a strictly convex criterion, which
is chosen nonquadratic to avoid oversmoothing ef-
fects [1,14]. Practical computation of spectral es-
timates is tackled in SectionIV. In the cases of
smooth and mixed spectra, we obtain a nondiffer-
entiable criterion, and we adopt a graduated non-
differentiability approach to compute an estimate.
The performances of our spectral estimates are
tested in SectionV on the well-known Kay and
Marple example [2]. Finally, concluding remarks
and perspectives are drawn in Section VI.

II. PROBLEM STATEMENT
A. Deterministic framework

Following contributions such as [1,15], we for-
mulate spectral estimation as a linear underdeter-
mined inverse problem in a deterministic frame-
work. Given discrete time observations y =
[Yo,Y1,--- ,yn—1]", the goal is to recover the en-
ergy distribution of data between frequencies 0 and
1. In the general setting of the paper, complex dis-
crete data are processed to estimate spectral coef-
ficients for normalized frequencies between 0 and 1
(the real data case is specifically examined in Ap-
pendix D).

The harmonic frequency model is usually consid-
ered for this task. In such a model, the distribution
of spectral amplitudes X (v) is continuous with re-
spect to (w.r.t.) frequencies v. Then, the inverse
discrete-time Fourier transform links the unknown
spectral function X (v) € L%][0,1] to a complex
time series (zn)nez (of finite energy) according to

1
Ty = / X(v) Y™™ dy, n € Z, (1)
0

The signal (z,,),ez is partially observed through
the data:
A
Tn=Yn, n€Ny={0,1,...,N—1}.

Within this setting, our approach consists in ex-
tracting a deterministic extension (z,)nez of the

data y. Since this extension is of finite energy, it
cannot be interpreted in general as a sample path
of a stationary random process (see Section II-B for
details).

Estimating X(v) from y is a discrete-time
continuous-frequency problem. Akin to [1], we pro-
pose to solve a discrete frequency approximation.
It corresponds to the juxtaposition of a large num-
ber of sinusoids, say P > N, at equally sampled
frequencies v, = p/P, p € Np. The accuracy of
the approximation depends strongly on P, since the
discrete counterpart of (1) reads

P-1

yn =Y X, eX™" n € Ny, 2)
p=0

where X, € C are unknown spectral amplitudes.
In the case of line spectrum estimation, choosing a
large P seems clear since the harmonic components
do not necessarily coincide with any sample of the
grid. In the case of a continuous background, P
is selected for suitably balancing the trade-off be-
tween an efficient computation of the estimate and
a more accurate result. If P = N could be satis-
factory for smooth spectra (e.g., Gaussian spectra
with variance ¢ > 0.1), it could be preferable to
consider higher values for piecewise smooth spec-
tra with sharp transitions, such as ARMA PSDs
with zeros of the MA part close to the poles of the
AR part [16].

Let wo = exp(2jm/P), so that Wy, =
wg?IPEN” is a N x P Fourier matrix, and an equiv-
alent formulation of (2) is

y =WyeX, (3)

where X = [Xy, Xy,...,Xp_41]'. Since N < P,
system (3) is underdetermined, and there exists an
infinite number of solutions. The problem is to
incorporate structural information to raise the un-
derdeterminacy in an appropriate manner.

B. Random processes

Following [1], our spectral estimation approach is
based on the ground of deterministic Fourier anal-
ysis. Hence, a natural question arises, whether it
is theoretically justified to resort to our construc-
tion to estimate PSDs. In the present subsection,
we put forward that our approach is not a natural
tool as far as PSD estimation is concerned.

Let (Sp)nez be a complex-valued random time
series defined by

1
Sn =/ 2™ 4S(v), (4)
0



where dS(v) stands for the random spectral mea-
sure of S. In a discrete-frequency framework, (4)
can be approximated by

P—-1

Sy =Y S(p/P,(p+1)/P[) /"

p=0

Our approach consists in estimating the variables
S([p/P,(p+1)/P]) and then in evaluating a spec-
trum of S through the vector of squared modulus
|S([p/P, (p+1)/P])|? (see Section III). In the case
of a regular random process, such quantities are
random. Thus, they do not identify with a dis-
cretized version of the PSD.

Nonetheless, as shown in [17], it is possible
to exhibit a family of singular random processes
for which our approach allows to characterize the
power spectral measure of such processes.

III. METHODOLOGY

A. General setting

Sacchi et al. [1] have proposed a penalized ap-
proach, where an estimator of spectral amplitudes
is defined as

X minimizes 7(X) in C7, (5)

with
J = Q+ R, (6)
AX) = |ly - Wwe X[, (7)

and the power spectrum estimator easily deduces
as the squared modulus of the components of X.

The hyperparameter A > 0 controls the trade-off
between the closeness to data and the confidence
in a structural prior embodied in R. In particular,
in the case of accurate data (A — 0 see [1, § 4.A]),
Sacchi et al. resort to Lagrange multipliers to prove
that X identifies with the constrained minimizer of
R(X) subject to (3).

In [1], the chosen penalty function reads

P-1

R(X) =) log(1+ |X,|” /2r),

(8)

3

where 7 > 0 is a tunable scaling parameter, that
controls the amount of sparseness in the solution.
In [18,19], the absolute norm R(X) = 25:_01 | X,
is rather used because of its convexity, even if it is
nonsmooth at zero. In both cases, let us remark

that R is

o separable, i.e., it is a sum of scalar functions, (9a)

o shift-invariant:

R(Xo, X1, -+, Xp_1) = R(X1, -+, Xp_1,X8h)

e symmetry-invariant:

,R’(XUJXla"' JXP_l) = R(Xp—la"' 7X17X(9q)

e circular:

R(Xo, -+, Xp-1) = R(IXol,---,|Xp-1[d)
The reference [1] adopts the classical Bayesian in-
terpretation of X as a maximum a Posteriori esti-
mate. As a random vector, X is given a prior neg-
log-density proportional to R(X), which amounts
to choosing a product of circular Cauchy density
functions as the a priori model. In such a proba-
bilistic framework, properties of R can be restated
as properties of the complex random vector X: it
is white according to (9a), stationary according to
(9b), reversible according to (9c), and phases are
uniformly distributed according to (9d).

Considering a circular model is rather natural,
since no phase information is available. Stationar-
ity and reversibility are also fair assumptions, un-
less some specific frequency domain shape infor-
mation is known a priori (see [15] and references
therein). Finally, choosing an independent prior
seems justified as far as line spectra estimation is
concerned. In the present paper, this framework is
generalized to other kinds of spectra. More specifi-
cally, a stationary Gibbs-Markov model in the fre-
quency domain will be introduced to incorporate
spectral smoothness (see Subsection III-C).

From the computational viewpoint, (8) may not
be the better choice, since log(1+z?) is not a convex
function on R : X is not necessarily unique, and
minimizing (6) using a local method such as the I¢-
erative Reweighted Least Squares (IRLS) algorithm
used in [1] may provide a local minimizer instead of
a global solution. The absolute norm is also a possi-
ble choice [18,19]. However, because it is nondiffer-
entiable at zero, its optimization requires more so-
phisticated numerical tools, such as quadratic pro-
gramming methods [20]. In the present paper, we
restrict the choice to strictly conver penalty func-
tions R, in order to ensure that 7 is also strictly
convex. As a consequence, J admits no local min-
ima. Moreover, the minimizer X is unique and
continuous w.r.t. the data [21]; this guarantees the
well-posedness of the regularized problem [22]. Fi-
nally, many deterministic descent methods (such
as gradient-based methods, but also the IRLS al-
gorithm [23, 24]) will be ensured to converge toward



X ifRis
« continuously differentiable (C'), (10a)
o strictly convex, (10b)
« “infinite at infinity”: lim R(X) = oo.(10c)

1X |00

The construction of penalty functions that fulfill
(10) forms the guideline of the next three subsec-
tions, in the LS, SS and MS cases, respectively.

B. Line Spectra

We are naturally led to penalty functions R, that
satisfy (9)-(10) (the subscript “L” stands for line).
It is not difficult to see that (9) imposes the follow-
ing form for Ry:

Ru(X) = 3 Roloy), (1)

with p, = |X,| and Ry : Ry — R. Then, the
following proposition characterizes those functions
Ry that ensure the convexity of Ry.

Proposition 1: Let f : C — R be a circular func-
tion. Then, f is (resp. strictly) convex if and only
if its restriction on Ry is a (resp. strictly) convex,
nondecreasing (resp. increasing) function.

Proof: This property corresponds to the
scalar case (m = 1) of Theorem 2 (Subsection III-
C), which is proved in Appendix B. [ |

From Proposition 1, it is apparent that Ry (X)
is not convex if Ro(p) = log(1l + p?/27%). More-
over, it can be then proved that J is not convex
either. Thus, we prefer an alternate conver func-
tion Ry that would enhance spectral peaks like the
Cauchy prior does. We have borrowed such penalty
functions from the field of edge-preserving image
restoration [11-13, 25-27]. More precisely, we pro-
pose to resort to the following set of functions:

S= {f : Ry — R convex, increasing, C*,
!
f(0%) =0,0 < lim f@) < 00, lim f'(z) < oo}.
rz—0t+t T T—00
If Ry € S, the global criterion J clearly fulfills

(10). On the other hand, functions in S behave
quadratically around zero and linearly at infinite:

0< lim f(z)/2? < oo, 0< lim f(z)/z < oo.
z—0+ T—00

This is a relevant behavior for erasing small vari-
ations, and also for preserving large peaks and
discontinuities that would be oversmoothed by
quadratic penalization.

Some functions of S, such as the fair func-
tion Ro(p) = p/70 — In(1 + p/70) [12,28] or Hu-
ber’s function Ry(p) = p?/2m + 70/2 if p <
To, p otherwise [29], are also long since known
in the field of robust statistics [28,29]. They be-
have quadratically under the threshold 7y and lin-
early above. In practical simulations (see Sec-
tion V-B.2), we have selected the hyperbolic poten-

tial Ro(p) = /78 +p> in S.

C. Smooth spectra
C.1 Complex Gibbs-Markov regularization

In the field of signal and image restoration,
Gibbs-Markov potential functions are often used as
roughness penalty functions [11-13, 21, 26, 27, 30].
Adopting this approach in the case of spectral reg-
ularity, one might think of simply penalizing differ-
ences between complex coefficients, using

P-1
Ré(X) = Z Ry (| Xp1 — Xp)), (12)
p=0

where Xp = Xy because of the circularity con-
straint. In (12), the subscript “s” stands for
smooth. Then, provided that R; is convex and
nondecreasing on Ry, it is not difficult to deduce
that R! is convex from Proposition 1. When R is
quadratic, the estimated spectrum is a windowed
periodogram, 4.e., a low-resolution solution [14].
In Section V-B.3, we have performed simulations
using the hyperbolic function Ry(p) = /7% + p?
in order to obtain solutions of higher resolution.
The corresponding results are actually disappoint-
ing (e.g., Fig.3). Empirically, we observe that the
penalty term (12) corresponds to spectral smooth-
ness only roughly, while it produces hardly contro-
lable artefacts. In fact, (12) is not a circular func-
tion of X: R! does not satisfy (9d). The regular-
ization function Ry (| Xp+1 — X,|) also introduces a
smoothness constraint on the phases of the sinu-
soids, which does not coincide with some available
prior knowledge. For this reason, let us examine
the consequences of restricting to circular penalty
terms.

C.2 Circular Gibbs-Markov regularization

The simplest circular energy coding spectral con-
tinuity is clearly

P-1

Rg(X) = Z Ri(pp+1 — pp)s

p=0

(13)

since only two magnitudes p, and ppy1 are in-
volved. As an extension, one could consider higher



order smoothness terms such as Ri(pp+1 — 2pp +
pp—1), which would be better adapted to restore
piecewise linear unknown functions.

It is readily seen that (13) satisfies all conditions
(9), save separability. Unfortunately, R2 is not con-
vex if Ry is an even, convex function. This negative
result is a solidforward consequence of Corollary 1,
stated below. Therefore, we propose to retain a
slightly more general circular expression

Re(X) = 3 (uBs(ppss — pp) + Ralpy)), (14)

where parameter y > 0 tunes the amount of spec-
tral smoothness and Ry : Ry — R. Expression
(14) still satisfies conditions (9b)-(9d).

In the following, a necessary and sufficient condi-
tion for the convexity of Rs is given. For this pur-
pose, the definition of coordinatewise nondecreasing
function is a prerequisite. We also provide a useful
theorem regarding the composition of convex func-
tions.

Definition 1: A function f : R} — R is said
coordinatewise nondecreasing if and only if Vi €
{1,...,m}:

where 1; is the ith canonical vector. The function
f si said coordinatewise increasing if the latter in-
equalities are strict.

Theorem 1: Let f: RT' — IR be a convex, coor-
dinatewise nondecreasing (resp. increasing) func-
tion, and let g : R™ — RY a function such that
each component g : R"™ — Ry is (resp. strictly)
convex. Then, f o g is (resp. strictly) convex on
R™.

Proof: see Appendix A. [ |

Theorem 2: Let f : C™ — R be a circular func-
tion. Then, f is (resp. strictly) convex if and only
if its restriction on R is a (resp. strictly) con-
vex coordinatewise nondecreasing (resp. increas-
ing) function.

Proof: see Appendix B. |

Because Ri(pp+1 — pp) is not a coordinatewise
nondecreasing function of p = [po, ..., pp_1]", (13)
is not convex, according to Theorem 2. In the case
of (14), application of Theorem 2 yields the follow-
ing result.

Corollary 1: Let Ry :R+— R and Ry : Ry —» R
be C' functions that satisfy the following assump-
tions:

e R; is even and convex, (15a)
e Ry is (resp. strictly) convex and

nondecreasing (resp. increasing), (15b)
1< o = B5(0F)/2R} (00). (150)

Then, function R defined by (14) is (resp. strictly)
convex.

Proof: See Appendix C. |

Inequality (15¢) gives an upper bound on the
smoothness level that can be introduced while
maintaining convexity of Rs. It is important to
notice that psyp, > 0 imposes R5(0T) > 0. In
the rest of the paper, we have selected the sim-
plest potential R, that satisfies R,(07) > 0, i.e.,
R>(p) = p. Combined with the hyperbolic function
Ry (p) = /7% + p?, such a choice yields that Rs is
convex if p < 1/2.

The condition R,(07) > 0 means that Ra(]-|)
is not differentiable on C at zero, so Rg is non-
differentiable. Although conditions (15) are only
sufficient, we have the intuition that convexity and
differentiability are actually incompatible proper-
ties of Rg as defined by (14). In SectionIV, we
propose to minimize a close approximation of Rg
that conciliates convexity and differentiability, so
that a converging approximation of X can be eas-
ily computed.

D. Mixed spectra

A mized spectrum consists of both frequency
peaks and smooth spectral components, so we pro-
pose to split vector X into two sets of unknown
variables: X for the frequency peaks, and X5 for
the smoother components. The resulting fidelity to
data term @, reads:

Ou(X) = ||:‘/_VVNP()(L"‘)IS)”2

¢ 2
Jo-wrxn]

where X = [X, | X;] is a P x 2 complex matrix.
The subscript “m” stands for mized.

Then, it is only natural to introduce R, (de-
fined by (11)) and Rs (defined by (14)) as specific
penalty terms for X and Xg, respectively. The
resulting criterion J,; reads

jM(X) = QM(X) + /\LRL(-XL) + /\SRS(XS);
(16)



which is a nondifferentiable function w.r.t. van-
ishing components of X, if R5(0%) > 0. On the
other hand, 7, is (resp. strictly) convex w.r.t. X
if R, and Rg are (resp. strictly) convex. Then, the
global minimizer is uniquely defined by

X = [X,|Xs] = argmin J(X),
X

In the Bayesian framework adopted in [1], it is
not difficult to see that (X' L X S) corresponds to
the joint MAP solution obtained from a prior neg-
log-density proportional to AL Ry (Xy) + AsRs(X5s)-
Finally, the estimated frequency distribution is
taken as the squared modulus of the components
of X, + Xs.

Among possible refinements, a shorter vector Xg
could be introduced to encode the smooth compo-
nents of the spectrum, as far as they require less
accuracy. Then the fidelity to data term would be-
come

Ou(X) =y = Wyp X, — WQPXS||2 )

with @ < P. Such a modification could provide
a (probably slight) increase of overall convergence
speed, at roughly constant quality of estimation.

IV. OPTIMIZATION STAGE
A. Graduated nondifferentiability

Nondifferentiable (i.e., nonsmooth) convex cri-
teria can neither be straightforwardly minimized
by gradient-based algorithms, since the gradient
is not defined everywhere, nor by coordinate de-
scent methods [31, p.61]. Nonetheless, there ex-
ist several ways to efficiently minimize such crite-
ria [31-34]. Here, we resort to the so-called regu-
larization method [31,32,35,36]. In the following,
it is rather referred to as a graduated nondiffer-
entiability (GND) approach, in order to avoid the
possible confusion with the notion of regularization
for ill-posed problems. The principle is to succes-
sively minimize a discrete sequence of convex differ-
entiable approximations that converge toward the
original nonsmooth criterion.

We have adopted the GND approach because it
is flexible, easy to implement, and also mathemat-
ically convergent. Under suitable conditions, the
series of minimizers converges to the solution of
the initial nonsmmoth programming problem [31,
32, 35,36]. More specifically, we have the following
result, based on [31, pp. 21-22].

Proposition 2: Let J : CP — R fulfill (10b)-
(10c), but not (10a), and J. (¢ > 0) be a series of

approximations of 7 that fulfills the three condi-
tions (10). If J. converges toward .7 in the follow-
ing sense:

VX, lim J.(X) = J(X),

lim J.(X.) > J(X),
e—0
where

)7 XE = argmin\%(X)a
XecCr

X = argmin J (X
XeCF

then
lim X e = X.
e—0

Remark 1: In more general settings, convergence
results akin to Proposition 2 can be obtained using
the theory of I'-convergence, which is a powerful
mathematical tool to study the limiting behavior
of the minimizer of a series of functions [37].

The remaining part of the section is devoted to
the case of smooth spectra, i.e., to the minimiza-
tion of Js defined by (6), (7) and (14). Extension
to the minimization of 7, is straightforward.

B. Differentiable approzimation of convexr Gibbs-
Markov penalty function

Practically, it is a prerequisite to build a differ-
entiable convex approximation Rs . of the penalty
term Rg, such that the series

js = Q + )‘RS,E (18)
satisfies the conditions of Proposition 2. Qur con-
struction of R is based on the hyperbolic differ-
entiable approximation of the magnitude function

w: : C— Ry, (PE('Z')Z V 62""'77|27

where € > 0. Such an approximation is known to
satisfy conditions (17) [31, pp. 21-22], and has been
already used in the field of image restoration [26,
27]. It is also called the standard mollifier proce-
dure [26].

Let ¢ = ¢e(X,) = we(pp) denote the
above differentiable approximation of p, and q =
[q0,q1,--- ,qp_l]t. Then the resulting modi-
fied smoothness penalty term Rg. satisfies (10)
whereas Rs only satisfies (10b)-(10c), according
to the following consequence of Theorem 1 and of
Corollary 1.

(19)

Corollary 2: Let R; meet the weak form of con-
ditions (15) in Corollary 1, along with Ra(p) = p.



Then, the modified penalty term

P-1
Rs(X) = Z (uR1(gp+1 — gp) + ap)

p=0

(20)

is a strictly convex function of X.

Proof: Let us remark that Rs. = Rs o ¢,
where ¢ = (¢.,...,p:) and R is defined by (14)
with Ra(p) = p. Then, the proof is an application
of Theorem 1, with g = ¢ and f = R, given
that (i) each ¢y is strictly convex, (ii) according to
Corollary 1, the restriction of Rs on R’ is convex
and coordinatewise increasing’. [ |

C. Minimization of J:

According to the principle of GND, for a finite
sequence €1 > g3 > -+ > ek > 0, the minimizers
X, are recursively computed. At the kth itera-
tion, a standard iterative descent algorithm is used
to compute X, . At iteration k+1, X, is used as
the initial solution, and the process is repeated un-
til £ = K. Practical considerations regarding the
stopping criterion, the updating rule of €5 and the
number K of iterations are reported in Section V.

For any £ > 0, the computation of X, can be
obtained with many mathematically converging de-
scent algorithms, since J; fulfills (10). Practically,
several numerical strategies are studied and com-
pared in [38]:

o The Polak-Ribiere version of conjugate gradi-
ent (CG) algorithm is implemented with a one-
dimensional search [39].

e It is shown that the IRLS method proposed
in [1] does not extend beyond the case of sep-
arable penalty functions.

e An original Residual Steepest Descent
(RSD) [23] method is developed. It can
also be seen as a deterministic half-quadratic
algorithm based on Geman and Yang’s
construction [24, 30].

For a small value of e, GND coupled to CG is
more efficient than a single run of CG at € = k.
This point is illustrated in SectionV. In [38], the
same conclusion is drawn concerning GND coupled
to RSD.

V. EXPERIMENTS

We illustrate the performances of the proposed
spectral estimators in the context of short-time es-

IRigorous application of Corollary 1 only provides that
the restriction of Rs on R is nondecreasing. A careful
inspection of Appendix C is needed to check that the strict
result actually holds.

timation by processing the well-known Kay and
Marple example [2]. Such data have been extracted
from a realization of a second-order stationnary
random process. Since our approach is not theo-
retically well-suited for dealing with such processes,
the spectral estimates will not be consistent with
the true spectrum. Nonetheless, the results pre-
sented in the following prove that consistency is
not a crucial issue as short-time estimation is ad-
dressed. As a preliminary question, the next sub-
section addresses the problem of hyperparameters
selection.

A. Hyperparameters selection

In the first set of simulation results (Subsec-
tion V-B), hyperparameter values have been empir-
ically selected after several trials, as those that vi-
sually work “the best”. An alternative way for solv-
ing this step could be automatic hyperparameter
selection. More specifically, when the sample size of
the observations is large enough (several hundreds
of data), the maximum likelihood estimate (MLE)
can provide a valuable solution. In the last ten
years, efficient Monte Carlo Markov Chains meth-
ods have been proposed to compute the MLE, for
instance in the context of unsupervised line spec-
trum estimation [40].

In the case of small data sets, the MLE would
probably lack of reliability, and more realistic solu-
tions must be found, depending on the application.
Automatic or assisted calibration of hyperparame-
ter based on a training data set is sometimes pos-
sible. For instance, in the context of Doppler radar
imaging as addressed in [41, Chap. V], an initial
data set is recorded as the radar points at a ref-
erence direction that corresponds to an identified
scenario, such as atmospheric sounding and wind
profiling. This step allows to calibrate the radar
sensor, but it could also be used for choosing the
hyperparameters for the whole recording.

B. Kay and Marple example
B.1 Practical considerations

Following [1], the performances of the proposed
methods are tested using Kay and Marple reference
data set [2], which allows easy comparison with pre-
existent approaches. The data sequence is real, of
length N = 64, and consists of three sinusoids at
fractional frequencies 0.1, 0.2 and 0.21, superim-
posed on an additive colored noise sequence. The
SNR of each harmonic is 10, 30, and 30 dB, re-
spectively, where the SNR is defined as the ratio of
the sinusoid power to the total power in the pass-



band of the colored noise process. The passband
of the noise is centered at 0.35. The true spectrum
appears in Fig1.

[Figure 1 about here.]

Given the real nature of data and the symmetry
properties studied in Appendix D, the spectra are
only plotted on a half period [0,0.5]. The different
estimates have been computed using P = 512. In
practice, taking P > 512 does not markedly im-
prove the resolution.

As regards numerical implementation of CG, the
following conjunction has been selected as stopping
criterion:

7(X7) = J(XY)] [T (X) < ay
| X7 = X ]I X], < e,
|9, < s,

where X? denotes the solution at the ith iteration
of the minimization stage, and * is 1 or 2. Follow-
ing Vogel and Oman [26], we have rather chosen
the [; norm, and the thresholds have been set to
(061, as, 043) = (10_7, 10_5, 10_6).

The same stopping criterion has been adopted
for RSD, except that the third condition has not
been tested.

B.2 Estimation of LS

The spectrum estimates depicted in Fig.2 min-
imize penalized criteria with a separable penalty
function: Fig.2(a) corresponds to the quadratic
potential Ry(p) = p?, and Fig.2(b) corresponds
to the hyperbolic potential Ro(p) = /7¢ + p? for
(A, 10) = (0.06,0.002).

As shown in [1,14], quadratic regularization
yields the zero-padded periodogram of the data
sequence, up to a multiplicative constant. Since
the nominal resolution of a 64-point sequence is
0.015, close sinusoids at 0.2 and 0.21 are not re-
solved. Moreover, this estimate is dominated by
sidelobes that mask important features of the sig-
nal. In the following, the DFT of the zero-padded
data sequence has been used to initialize all itera-
tive minimization procedures.

The line spectra estimate depicted in Fig2(b) is
very similar to the spectral estimate computed with
the Cauchy-Gauss model [1, Fig. 6], and also to the
result given by the Hildebrand-Prony method [2,
Fig. 16(h)]: the sinusoids are retrieved at the ex-
act frequencies but with powers different from the
original ones. Nonetheless, the power ratio (20 dB)
is preserved between the three harmonics. On the
other hand, the broadband part of the spectrum

is not recovered. It is replaced by several spec-
tral lines. This problem is also encountered in [1,
15] and in high-resolution parametric methods dis-
cussed by Kay and Marple [2].

From a computational standpoint, the IRLS
method of [1] has been used as minimization tool.
It is known to be convergent in the present situa-
tion [23,24]. The solution is reached in about five
to ten seconds on a standard Pentium IT PC.

[Figure 2 about here.]

B.3 Estimation of SS

B.3.a Complex regularization.  Fig.3 shows the
spectrum estimate computed from a convex penal-
ized criterion with the noncircular penalty func-
tion R! defined by (12). It has been obtained
with 71 = 0.1 and A = 0.6. Although the lat-
ter value corresponds to a high level of regulariza-
tion, there remain some artefacts, the reversal of
the lowest sinusoid being the main defect. To our
opinion, such results definitely disqualify noncircu-
lar penalty functions.

[Figure 3 about here.]

B.3.b Regularization of the power spectrum. The
three spectrum estimates depicted in Fig. 4 are ob-
tained with a penalty function Rs . defined by (20).
Three hyperparameters (\, p,71) € IR3+ need to be
adjusted, let alone the target value ex for the clos-
est approximation J;, of J. The results of Fig. 4
have been computed with (A, 71) = (0.05,0.001).

First, let us begin with general comments on
Fig.4. Akin to Fig2(b), the three results nearly
produce no sidelobes, compared to the peri-
odogram. None of the three result allow to separate
the two close harmonics, although a narrow-band
component around frequency 0.2 is clearly distin-
guished. Similarly, the lowest sinusoid at frequency
0.1 is recovered under a broaden format. This is not
surprising, since smoothness has been incorporated
through the penalty function.

[Figure 4 about here.]

In Fig.4(a)-(b), the value of p has been cho-
sen to correspond to the bound of convexity of
Rs,et b = psup = 0.5, according to Subsection ITI-
C.2, and different values of £x have been com-
pared. A small parameter value ex = 0.001 yields
a rather inadequate blocky result, as shown in
Fig. 4(b). The discontinuities are due to the quasi-
nondifferentiability of Rs.. The rougher approx-
imation depicted in Fig.4(a) (ex = 0.9) provides
a smoother estimate. However, it is not smooth



enough compared to the broadband part of the
true spectrum. Increasing p beyond the bound
of convexity is necessary to get smoother results.
The spectrum of Fig. 4(c) has been computed with
p =5 and eg = 0.9. It provides a more regular
broadband response, quite close to the smooth part
of the true spectrum. Among the estimators tested
in [2], the maximum likelihood estimate (Capon
method) shown in [2, Fig. 16(1)] provides a some-
what similar result. We retain such a tuning as a
good candidate for the smooth part of the mixed
model.

As regards practical aspects of minimization, the
three results correspond to contrasted situations.

o In the case of Fig.4(a), ex = 0.9 yields a cri-
terion that is sufficiently far from nondifferen-
tiability to be efficiently minimized in a sin-
gle run of CG (i.e., K = 1), spending about
25 seconds of CPU time.

o Fig.4(b) has been obtained after three iter-
ations of GND based on CG: (g1,£2,e3) =
(0.1,0.01,0.001), which globally took about
35 seconds of CPU time. In comparison, a
single run at €3 takes about 60 seconds, as de-
picted in Fig. 5.

[Figure 5 about here.]

e The value p = 5 corresponding to Fig. 4(c)
does not ensure that the criterion is convex.
Hence, it is possibly multimodal. For this rea-
son, we gradually increase the value of u, fol-
lowing the graduated non convezity (GNC) ap-
proach [42,43]. The principle is very similar
to the GND technique described in Section IV.
The empirically chosen law of evolution for p
is simply ur = k X fsup, SO the initial crite-
rion J,, is convex, as prescribed by the GNC
approach.

B.4 Estimation of MS

The spectrum estimates depicted in Fig. 6(a)-(b)
are obtained from the minimization of a differen-
tiable approximation of the penalized criterion Jy
defined by (16):

jM,E(X) = QM(X) + )\LRL(XL) + )‘SRS,E(XS)'
(21)

The regularizing terms R, (11) and Rs. (20)
depend on 79 and on (u,71,ex), respectively.
Given the results presented in the two previous
subsections, we have retained 7 = 0.002,77 =
0.001,ex = 0.9, and we have tested the two set-
tings 4 = psyp = 0.5 and p = 5.

Two additional hyperparameters (A, \s) appear
n (21). It is a priori suited to choose the same or-
der of magnitude for the values of Ay and Ag, other-
wise the over-penalized term would yield a vanish-
ing component. The values A\, = 0.005 A = 0.0033
have been retained.

Fig.6(a) corresponds to p = psyp, S0 the mini-
mized criterion is strictly convex. The result has
been computed with CG. It clearly shows that the
mixed model is able to resolve close sinusoids, while
the broadband response is much closer from the SS
estimate of Fig.4(a) than from the LS estimate of
Fig.2(b). However, the broadband response is not
smooth enough, and the small sinusoidal compo-
nent is not as sharp as expected.

Fig.6(b) corresponds to p = 5, so the minimized
criterion is not convex and possibly multimodal.
The result has been computed with GNC based on
CG. The three spectral lines have sharp responses
at the sinusoid frequencies and the power ratio be-
tween the different harmonics is preserved. More-
over, its smooth part is very close to the broadband
component of the true spectrum. It is clearly the
most satisfactory result among all estimates pro-
posed in this paper. It also outperforms classical
solutions computed on the same data set in [2].

Fig.6(c) and (d) separately show |X.|?> and
| X 5|2, which are the components of the solution
depicted in Fig. 6(b). As expected, the former
is rather spiky while the latter is rather smooth.
However, perfect separation was not the goal, since
it would require that true decisions be taken regard-
ing the presence of a line at each frequency sample,
whereas our motivation was only to accurately es-
timate the whole spectrum. There is a somewhat
similar difference between image segmentation and
edge-preserving restoration.

[Figure 6 about here.]

VI. CONCLUDING REMARKS

In the context of short-time estimation, we have
proposed a new class of nonlinear spectral estima-
tors, defined as minimizers of strictly convex ener-
gies. Firstly, we have addressed separable penal-
ization introduced in [1,18] for enhancing spectral
lines.

Then, a substantial part of the paper has been
devoted to smooth spectra restoration. We have in-
troduced circular Gibbs-Markov penalty functions
inspired from common models for signal and im-
age restoration. However, the fact that penaliza-
tion applies to moduli of complex quantities intro-
duces specific difficulties. A rigourous mathemat-
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ical study has been conducted, in order to build
criteria gathering the expected properties such as
differentiability, strict convexity, and the ability to
discriminate spectra in favor of the smoothest.

Finally, since many practical spectral analysis
problems involve both spectral lines and smooth
components, we have proposed an original form of
mixed criterion to superimpose the two kinds of
components. We argue that this approach pro-
vides a very sharp tool for the detection of iso-
lated objects embedded in broadband events. One
possible application is the tracking of planes us-
ing a Dopler radar instrument, since the informa-
tive data is often embedded on meteorological clut-
ter at low SNR. The proposed spectral estimators
have then been extended to this framework to ad-
ditionnaly take spatial or temporal continuity into
account [41, Chap. V].

After the present study, some issues remain open.
On the one hand, we observed in Section V that
minimizing a convex criterion did not always yield
a sufficiently smooth estimate. In practice, we re-
sorted to graduated nonconvexity to overcome the
limitation found in the convex analysis framework.
By now, it is hard to tell whether the latter takes
root in fundamental reasons, or if we simply failed
in finding the “good” convex penalty function.

On the other hand, the proposed penalty func-
tions are quite sophisticated. In practice, several
hyperparameters have to be tuned, which is not
always a simple task. In some situations, hyperpa-
rameter values can be selected using training data.
Otherwise, depending on the size of the data set,
automatic selection using a maximum likelihood
approach may provide an alternative solution.

Finally, the question of asymptotic properties re-
mains open. For instance, given the well-known
properties of the averaged periodogram, it could
be interesting to study the properties of averaged
versions of our smooth spectra estimator.

APPENDIX
A. PROOF OF THEOREM 1

The stated sufficient condition is acknowledged
in the scalar case [44, Theorem 5.1].

Firstly, let us prove the implication in the large
sense. For any z,y € C™, ¢ # y, and any a €
(0,1), let t = ax + ay and @ = 1 — a. Each g;, is
convex:

g (t) < agr(x) + agr(y)- (22)

natewise nondecreasing function, we deduce

fgt)) < flag(z)+ag(y)),
< af(g(@) +af(g(y),

where the latter inequality holds because f is con-
Vex.

In order to prove the strict formulation, remark
that there is at least one k such that zp # yg,
so the corresponding inequality (22) becomes strict
because g is strictly convex. Then, the strict
counterpart of inequalities (23) and (24) also holds
since f is coordinatewise increasing (remark that
the strict convexity of f is unnecessary here).

(23)
(24)

B. PROOF OF THEOREM 2
B.1 Sufficient condition

Let f : R? — R be a (resp. strictly) con-
vex and coordinatewise nondecreasing (resp. in-
creasing) function, and let g : C™ — R} be
the mapping of the moduli: V& € C™, g(x) =
(|z1|, |Z2|,- -, |Zm]|). We have to prove that fog
is (resp. strictly) convex.

In the large sense, this result is an immediate
consequence of Theorem 1, for n = 2m. However,
the strict counterpart of Theorem 1 does not apply,
since |-| is not a strictly convex function. We need
a more specific derivation, which is actually gen-
eralizable to any function g with hemivariate [45]
convex components.

Let us consider the proof of Theorem 1. If
f is strictly convex, (24) readily becomes strict
provided that g(x) # g(y). Otherwise, assume
g(x) = g(y), so that (24) reads f(g(t)) < f(g()).
Since & # y, there exists at least one k such that
zy, # yr- Then, |zy| = |yg| implies |tx| < |z, since
tr, belongs to the cord (zg, yi) of the centered circle
of radius |zg|. Since f is coordinatewise increasing,
it follows that f(g(t)) < f(g(x)), which is the ex-
pected strict counterpart of inequality (24).

B.2 Necessary condition

Let f : C™ — IR be a strictly convex, circular

function. Its restriction on R is obviously strictly
convex. We have to prove that it is also coordi-
natewise increasing.
_Let 1; be the kth canonical vector in R™ and let
fao k() = f(x+(t—2k)1s) the restriction of f to the
line {u,u, = z,,Yn #k} for any t € R,z € R™.
Firstly, let us prove that all such restrictions fw,k
are even functions, i.e., that fm,k(—t) = fw,k(t).

jaal i n Ak,

Then, using repeatedly the fact that f is a coordi- Vn € Non, [z + (= 21) (1i)n| = { [t| if n=k.



Consequently, |z + (=t — z) (1 )n| =
|zn + (t — 21)(1k)nl, and hence f(z—(t—zx)1i) =
flx + (t — xp)1g) since f is circular. Therefore,
fm,k is even.

Since fm,k is even and strictly convex on R, it is
increasing on R, as shown below: Vs,t, 0 < s < t,
let o = (s+t)/2t, so that s = at+(1—a)(—t). Since
a € (0,1) and ﬁn,k is strictly convex, fw,k(s) <

afzk(t) + (1 — ) for(—t) = fz,rx(t) because fa i is
even. _

As a conclusion, all restrictions f5 j are increas-
ing on R4, i.e., f is coordinatewise increasing on
RT.

C. PROOF OF COROLLARY 1

First, let us decompose Rg according to
P—1 .
Rs(X) = %Ep:() S(Xp, Xp+1), with

S(X1,X2) = S(p1,p2) = Ra(p1) + Ra2(p2)

+2uR1(p1 — p2), (25)
and let us prove that conditions (15) imply the con-
vexity of S on C2, which is a sufficient condition
for the convexity of Rs on C¥. Apply Theorem 2
to S. On one hand, S is convex on ]Rz+ as a sum
of convex functions of (p1,p2). It is even strictly
convex if Ry is strictly convex.

On the other hand, let us prove that S is coor-
dinatewise nondecreasing or even increasing as a
function of (p1, p2) if conditions (15) hold. Since
R; is even, S(p1,p2) = S(p2, p1), so we need only
to study the behavior of S as a function of py, say.
Since R; is even and convex on IR, it is nondecreas-
ing on Ry (the strict counterpart of this result is
shown at the end of Appendix B). As a sum of non-
decreasing functions of pi, it is obvious that S is
nondecreasing if p; > p2. If p1 < p2, the condition
0S/0p1 > 0 reads

Vp1,p2 >0, pr < p2, Ry(p1) > 2uR;(p2 — p1),

which is equivalent to (15¢) since R} and R} are
nondecreasing. Finally, if R, is strictly convex, S
is shown to be coordinatewise increasing along the
same lines.

D. THE REAL DATA CASE

The purpose of this appendix is to show that
the proposed spectral estimation method (in either
versions, LS, SS and MS) automatically preserves
the Hermitian structure of the spectrum when real
data are processed, so that the estimated power
spectrum is symmetric.

11

Let us denote X = #(X) the expected Hermi-
tian property of X, with

A * * *
H(Xo, X1, , Xp1) = (X3, Xp_1,.-., X7).

Equivalently, X = #H(X) means that the inverse
DFT z = mrT }(X) is a real vector. Convex-
ity of the minimized criterion plays a basic role in
the fulfillment of the Hermitian property of X, as
stated in the following proposition.

Proposition 3: Consider a real data set y € RY,
and a penalty function R : RY — R that fulfills
(9b)-(9d) and (10b)-(10c). Firstly, the criterion J
defined by (6)-(7) possesses the Hermitian symme-
try J(H(X)) = J(X),¥X € CF. Secondly, the
unique minimizer of J satisfies X = H(X).

Proof: Let us consider a non-Hermitian com-

plex vector X € CF, i.e., X # H(X). Introduce
x = DFT~1(X), so that

N-1
2
o(X) = Zlyn_$n| )
n=0
N-1
* 12
QHX)) = D lyn—=il.
n=0
Obviously, Q(H(X)) = Q(X) since
ly—z| = ly—z*], Vy € R, z € C. On
the other hand, the modulus of the compo-
nents of H(X) reads (| X§|,| X5 _41,-.-,1X5]) =
(IXol,|Xp=1],---,]X1|), which proves that

R(H(X)) = R(X) since R is shift-invariant (9b),

symmetry-invariant (9c) and circular (9d). Finally,

the identity J(H (X)) = J(X) gathers the two

results. The first part of the proof is completed.
Now, consider the middle point

Z=(X+H1X))/2 (26)

which obviously satisfies H(Z) = Z. Since J is
strictly convex,

J(2) < (J(X) + T (H(X)))/2 = T(X).

As a consequence, X = H()A() [ |

Proposition 3 directly applies to the LS and
SS cases (including differentiable approximations
considered in Subsection IV-B), while a straight-
forward generalization is needed in the MS case:
along the same lines, it can be proved that
Ju( X, Xs) = jM(H(:\XL),H(Xi)) in CP x ¢?
and that (H(X.),H(Xs)) = (Xi,Xs), if both
penalty functions R, and R fulfill (9b)-(9d) and
(10b)-(10c).
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The remaining question concerns the situation

where the criterion is nonconvex, as encountered

in

[1] or in GNC experiments, reported in Sec-

tion V. Then, it does not seem possible to show
that all minimizers (global or local) are Hermitian.
However, the Hermitian symmetry of the criterion
itself still holds (the corresponding part of the proof

of

Proposition 3 remains valid). This property has

two favorable consequences:

(1]

2]

(3]

(4]
(5]

(6]

(7]

(8]
(9]

[10]

[11]

(12]

[13]

o If 7 is unimodal, i.e., it has one global mini-
mizer X and no local minimizer, then H(X)
X. Since strict convexity implies unimodality,
this is an alternate argument for the second
part of the proof of Proposition 3.

o The gradient of J is Hermitian: H(VJ (X)) =
VJ(X), so gradient-based algorithms can be
expected to propagate Hermitian symmetry
along iterations from a Hermitian initialization
point. We have also checked the same property
for the IRLS algorithm used in [1].

REFERENCES

M. D. Sacchi, T. J. Ulrych, and C. J. Walker, “In-
terpolation and extrapolation using a high-resolution
discrete Fourier transform”, IEEE Trans. Signal Pro-
cessing, vol. 46, pp. 31-38, January 1998.

S. M. Kay and S. L. Marple, “Spectrum analysis — a
modern perpective”, Proc. IEEE, vol. 69, pp. 1380-
1419, November 1981.

J.-F. Giovannelli, G. Demoment, and A. Herment, “A
Bayesian method for long AR spectral estimation: a
comparative study”, IEEE Trans. Ultrasonics Ferro-
electrics and Frequency Control, vol. 43, pp. 220-233,
March 1996.

H. Sauvageot, Radar météorologie. Télédetection active
de ’atmosphére, Eyrolles, Paris, France, 1982.

V. Pisarenko, “The retrieval of harmonics from a covari-
ance function”, J. of the Royal Astronomical Society,
vol. 33, pp. 347-360, 1973.

B. P. Hildebrand, Introduction to numerical analysis,
McGraw-Hill, New York, Ny, 1956.

R. N. McDonough and W. H. Huggins, “Best least-
squares representation of signals by exponentials”,
IEEE Trans. Automat. Contr., vol. AC-13, pp. 408—
412, August 1968.

T. J. Ulrych and R. W. Clayton, “Time series modelling
and maximum entropy”, vol. 12, pp. 188-200, 1976.

S. M. Kay, Modern Spectral Estimation, Prentice-Hall,
Englewood Cliffs, Ny, 1988.

S. L. Marple, Digital Spectral Analysis with Applica-
tions, Prentice-Hall, Englewood Cliffs, nJ, 1987.

H. R. Kiinsch, “Robust priors for smoothing and image
restoration”, Ann. Inst. Stat. Math., vol. 46, pp. 1-19,
1994.

S. Brette and J. Idier, “Optimized single site update
algorithms for image deblurring”, in Proc. IEEE ICIP,
Lausanne, Switzerland, September 1996, pp. 65—68.

P. Charbonnier, L. Blanc-Féraud, G. Aubert, and
M. Barlaud, “Deterministic edge-preserving regulariza-

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]
[29]

30]

[31]

[32]

[33]

tion in computed imaging”, IEEE Trans. Image Pro-
cessing, vol. 6, pp. 298-311, February 1997.

J.-F. Giovannelli and J. Idier, “Bayesian interpretation
of periodograms”, submitted to IEEE Trans. Signal
Processing, GP1—L2s, 1999.

S. D. Cabrera and T. W. Parks, “Extrapolation and
spectral estimation with iterative weighted norm mod-
ification”, IEEE Trans. Signal Processing, vol. 39, pp.
842-851, April 1991.

C. I. Byrnes, T. T. Georgiou, and L. Anders, “A
new approach to spectral estimation: a tunable high-
resolution spectral estimator”, submitted to IEEFE
Trans. Signal Processing, 2000.

P. Ciuciu and J. Idier, “Statistical interpretation of
short-time spectral estimators: valid case and funda-
mental limit !, Technical Report, api—L2s, 2001.

N. Moal and J.-J. Fuchs, “Sinusoids in white noise:
a quadratic programming approach”, in Proc. IEEE
ICASSP, Seattle, wa, May 1998, pp. 2221-2224, IEEE.
J.-J. Fuchs, “Multipath time-delay estimation”, IEEE
Trans. Signal Processing, vol. 47, pp. 237-243, June
1999.

D. P. Bertsekas, Nonlinear programming, Athena Sci-
entific, Belmont, ma, 1995.

C. A. Bouman and K. D. Sauer, “A generalized Gaus-
sian image model for edge-preserving maP estimation”,
IEEE Trans. Image Processing, vol. 2, pp. 296-310,
July 1993.

A. Tikhonov and V. Arsenin, Solutions of Ill-Posed
Problems, Winston, Washington, pc, 1977.

R. Yarlagadda, J. B. Bednar, and T. L. Watt, “Fast
algorithms for I, deconvolution”, IEEE Trans. Acoust.
Speech, Signal Processing, vol. ASSP-33, pp. 174-182,
February 1985.

J. Idier, “Convex half-quadratic criteria and interacting
auxiliary variables for image restoration”, to appear in
IEEE Trans. Image Processing, Gpi—L2s, 2001.

P. J. Green, “Bayesian reconstructions from emis-
sion tomography data using a modified Em algorithm”,
IEEE Trans. Medical Imaging, vol. 9, pp. 84-93, March
1990.

R. V. Vogel and M. E. Oman, “Iterative methods for
total variation denoising”, SIAM J. Sci. Comput., vol.
17, pp. 227-238, January 1996.

Y. Li and F. Santosa, “A computational algorithm for
minimizing total variation in image restoration”, IEEE
Trans. Image Processing, vol. 5, pp. 987-995, 1996.
W. J. Rey, Introduction to robust and quasi-robust sta-
tistical methods, Springer-Verlag, Berlin, 1983.

P. J. Huber, Robust Statistics, John Wiley, New York,
NY, 1981.

D. Geman and C. Yang, “Nonlinear image recovery
with half-quadratic regularization”, IEEE Trans. Im-
age Processing, vol. 4, pp. 932-946, July 1995.

R. Glowinski, J. L. Lions, and R. Trémoliéres,
Analyse numérique des inéquations wvariationnelles,
tome 1 : Théorie générale, Méthodes mathématiques
pour l'informatique, Dunod, Paris, France, 1976.

D. Bertsekas, “Nondifferentiable optimization approxi-
mation”; in Mathematical Programming Studies, vol. 3,
pp. 1-25. Balinski, M.L. and Wolfe, P., Amsterdam,
The Netherlands, 1975.

C. Lemaréchal, Nondifferentiable optimization, pp.
149-199, Dixon, L. C. W. and Spedicato, E. and Szeg:o,



34]

[35]

[36]

37]

(38]

39]

[40]

[41]

[42]

[43]

[44]

[45]

G. P., Boston, Ma, non linear optimization edition,
1980.

K. C. Kiwiel, Methods of descent for nondifferentiable
optimization, Lecture notes in Mathematics. Springer
Verlag, New York, Ny, 1986.

R. Acar and C. R. Vogel, “Analysis of bounded varia-
tion penalty methods for ill-posed problems”, Inverse
Problems, vol. 10, pp. 1217-1229, 1994.

M. Z. Nashed and O. Scherzer, “Stable approximation
of nondifferentiable optimization problems with varia-
tional inequalities”, American Mathematical Society,
vol. 204, pp. 155-170, 1997.

G. Alberti, Variational Models for Phase Transitions,
an Approach via Gamma-Convergence, in Differential
Equations and Calculus of Variations. Springer Verlag,
G. Buttazzo et al. edition, 1999.

P. Ciuciu and J. Idier, “A Half-Quadratic block-
coordinate descent method for spectral estimation”,
Technical Report, gpi—L2s, 2000.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical recipes, the art of scientific com-
puting, Cambridge Univ. Press, Cambridge, ma, 1986.
C. Andrieu and A. Doucet, “Joint Bayesian model se-
lection and estimation of noisy sinusoids via reversible
jump MCMC”, IEEE Trans. Image Processing, vol. 47,
pp. 456-463, October 1999.

P. Ciuciu, Méthodes markoviennes en estimation spec-
trale non paramétrique. Applications en imagerie radar
Doppler, Phd thesis, Université de Paris—Sud, Orsay,
France, October 2000.

A. Blake and A. Zisserman, Visual reconstruction, The
miT Press, Cambridge, ma, 1987.

M. Nikolova, J. Idier, and A. Mohammad-Djafari, “In-
version of large-support ill-posed linear operators using
a piecewise Gaussian MRF”, IEEE Trans. Image Pro-
cessing, vol. 7, pp. 571-585, April 1998.

R. T. Rockafellar, Convex Analysis, Princeton Univ.
Press, 1970.

J. Ortega and W. Rheinboldt, Iterative Solution of
Nonlinear Equations in Several Variables, Academic
Press, New York, Ny, 1970.

13



14

Philippe Ciuciu was born in France
in 1973. He graduated from the Ecole
Supérieure d’Informatique Electroni-
que Automatique, Paris, France, in
1996. He received also the DEA
and Ph.D. degrees in signal process-
ing from the Université de Paris-sud,
Orsay, France, in 1996 and 2000, re-
spectively.

Since November 2000, he has held
a postdoctoral position with the Ser-

vice Hospitalier Frédéric Joliot, Commissariat & I’Energie
Atomique. His research interests include spectral analysis,
optimization, and presently he focuses on statistical meth-
ods and regularized approaches in signal and image process-
ing for functional brain imaging.

entifique.

Jéréme Idier was born in France in
1966. He received the diploma de-
gree in electrical engineering from the
Ecole Supérieure d’Electricité, Gif-
sur-Yvette, France, in 1988 and the
Ph.D. degree in physics from the Uni-
versité de Paris-Sud, Orsay, France,
in 1991.

Since 1991, he has been with the
Laboratoire des Signaux et Systémes,
Centre National de la Recherche Sci-

His major scientific interest are in probabilistic

approaches to inverse problems for signal and image pro-

cessing.

Jean—Frangois Giovannelli was
born in Béziers, France, in 1966. He
graduated from the Ecole Nationale
Supérieure de 1’Electronique et de
ses Applications, Cergy, France, in
1990. He received the Doctorat de-
gree in physics at the Laboratoire des
Signaux et Systémes, Université de
Paris-Sud, Orsay, France, in 1995.
He is presently assistant professor
in the Département de Physique at

Université de Paris-Sud. He is interested in regularization
method for inverse problems in signal and image process-
ing, mainly in spectral characterization. Applications fields
essentially concern radars and medical imaging.



FIGURES

Fig. 1 True spectrum

Fig. 2 Spectra reconstructed with separable reg-
ularization. (a): zero-padded periodogram, (b)
line spectra reconstructed with the hyperbolic
potential, (A, 79) = (0.06,0.002).

Fig. 3 Smooth spectrum reconstructed with a
complex Gibbs-Markov penalty function. Pa-
rameters have been fixed to (A, 1) = (0.6,0.1).

Fig. 4 Smooth spectra reconstructed with a
circular Gibbs-Markov penalty function,
(A, 7m1) = (0.05,0.001); (a) convex case where
U= psup = 0.5, ek = 0.9, (b) convex case
where g = psyp = 0.5, ex = 0.001, (c)
nonconvex case where y =5, ex = 0.9.

Fig. 5 Performance of the GND algorithm cou-
pled with CG, in the SS case: the solid line
corresponds to the minimization of [Jgo1 in
a single run, dashed-dotted lines to the GND
process coupled to CG.

Fig. 6 Mixed spectra. (a): convex case yu = 0.5;
(b) nonconvex extension u = 5; (¢) and (d)
correspond respectively to the line (| X .|2) and
smooth (| X s|?) parts of | X |? depicted in (b).
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Fig. 2. Spectra reconstructed with separable regularization. (a): zero-padded periodogram, (b) line spectra
reconstructed with the hyperbolic potential, (A, 70) = (0.06, 0.002).
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Fig. 3. Smooth spectrum reconstructed with a complex Gibbs-Markov penalty function. Parameters have been
fixed to (A, 71) = (0.6,0.1).
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Fig. 4. Smooth spectra reconstructed with a circular Gibbs-Markov penalty function, (A, 71) = (0.05,0.001); (a)
convex case where y = psyp = 0.5, ex = 0.9, (b) convex case where y = psyp = 0.5, ex = 0.001, (c)
nonconvex case where p =5, ex = 0.9.
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Fig. 5. Performance of the GND algorithm coupled with CG, in the SS case: the solid line corresponds to the
minimization of Jo.001 in a single run, dashed-dotted lines to the GND process coupled to CG.
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convex case p = 0.5; (b) nonconvex extension g = 5; (c¢) and (d) correspond
respectively to the line (| Xr|?) and smooth (| X's|?) parts of | X|? depicted in (b).



