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Unsupervised robust non-parametric estimation of
the hemodynamic response function for any fMRI

experiment
Philippe Ciuciu, Member, IEEE,

Jean-Baptiste Poline, Guillaume Marrelec, Jérôme Idier, Christophe Pallier and Habib Benali

Abstract— This paper deals with the estimation of the
Blood Oxygen Level-Dependent (BOLD) response to a
stimulus, as measured in Functional Magnetic Resonance
Imaging (fMRI) data. A precise estimation is essential
for a better understanding of cerebral activations. The
most recent works have used a non-parametric framework
for this estimation, considering each brain region as a
system characterized by its impulse response, the so-called
Hemodynamic Response Function (HRF). However, the use
of these techniques has remained limited since they are
not well-adapted to real fMRI data. Here, we develop a
threefold extension to previous works. We consider asyn-
chronous event-related paradigms, account for different
trial types and integrate several fMRI sessions into the
estimation.

These generalizations are simultaneously addressed
through a badly-conditioned observation model. Bayesian
formalism is used to model temporal prior information of
the underlying physiological process of the brain hemo-
dynamic response. By this way, the HRF estimate results
from a tradeoff between information brought by the data
and by our prior knowledge. This tradeoff is modeled
with hyperparameters that are set to the maximum-
likelihood estimate using an Expectation Conditional Max-
imization (ECM) algorithm. The proposed unsupervised
approach is validated on both synthetic and real fMRI
data, the latter originating from a speech perception
experiment.

Index Terms— event-related fMRI paradigm; HRF mod-
eling; Bayesian estimation; ECM algorithm.

I. INTRODUCTION
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DYNAMIC brain functional imaging was born in
the last decade with fMRI [1]. For one subject,

an fMRI experiment consists of the acquisition of a
large number (100 to 1500) of 3D volumes (for instance
64x64x32 voxels i.e., volume element) measuring in each
voxel the BOLD contrast [2], which is related to the
total amount of deoxygenated hemoglobin present in
the voxel. The subject is submitted to an experimental
paradigm consisting of different conditions designed to
study a particular brain system (e.g. memory, language,
vision), while a continuous acquisition of brain volumes
is performed. This is called a run or session and lasts for
approximately 5 to 10 minutes. A session is generally
repeated several times — typically between three and
seven — for a given subject.

This technique has allowed to detect and localize
dynamic brain processes for various stimulations or
tasks [3] with a high spatial resolution (of the order of
a mm), but a poor time resolution and a low signal or
contrast-to-noise ratio (CNR) so far. This makes the use
of well-designed data acquisition protocols necessary.
Two classes of protocols can be distinguished : block-
designed and event-related experiments. The latter has
emerged as a means of observing the fMRI time course
in response to a single, very short stimulus (a trial) [1],
[4], while the former has better CNR and may require
averaging over many trials presented in close succession.
Despite their lower CNR, event-related paradigms are of-
ten inevitable, for instance to avoid habituation effects. In
such paradigms, random intermixing of trial types is used
to eliminate habituation, anticipation or other strategy
effects [1] that might occur in deterministic paradigms.
Actual experiments consist of either synchronous or
asynchronous paradigms, depending whether the onsets
of the conditions are synchronized with the data ac-
quisition rate or not. Paradigms are often asynchronous
because the onset of the response can be given by the
subject himself (response after a variable reaction time).

The end goal of activation detection in brain functional
imaging experiments is to retrieve as much as possible
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of the neuronal activity in response to cognitive or
behavioral tasks [3]. However, the relation between this
activity and the BOLD response [2] is not completely
understood and still under study [5]–[8]. The partially
known mechanisms of coupling neuronal (synaptic) ac-
tivity to the vascular system produces significant blurring
and delay to the original neuronal response over time,
indicating that the BOLD sequence is heavily low-pass
filtered [5], [8]. As a consequence, hemodynamic events
have time scales of a few seconds, whereas neuronal
events have time constants of milliseconds. An accurate
and robust estimate of the brain hemodynamic response
to a stimulus may be a first step towards a better quan-
tification of the brain neuronal activity. In each region,
the brain hemodynamic response can be characterized
in first instance by the response function to a very short
stimulus (the transfer function if the system is linear),
denoted as the Hemodynamic Response Function (HRF).

Modeling the HRF has become an intensive topic of
research for many reasons. First, a precise modeling
should lead to a better understanding of cerebral acti-
vations. Second, within a region, the signal variations
between conditions or stimuli (such as the magnitude of
the response, but also its delay or width) can only be
studied with an accurate estimate of the response and
of its variability. Third, estimation of the HRF can be
done at every position in the brain in order to investigate
its spatial variability. Lastly, some recent technological
progress gives access to simultaneous recordings of elec-
trical (Electroencephalography) and metabolic (fMRI)
activities. For these reasons, the HRF has been the
subject of many studies that usually assume that the
brain system is linear and time invariant (LTI) [9]–[16].
Although the question whether the brain response can
be considered linear is not yet fully answered, it has
been shown that this assumption is a tenable and useful
approximation [4], [10], [14], and thus holds in the
present work.

Parametric methods for estimating the HRF as a
transfer function of a LTI system appeared first in the
literature [9], [11]–[13]. These approaches impose the
shape of the HRF by choosing a particular function (e.g.,
Gamma or Gaussian density). The nonlinear parameters
of this function are fitted to the data to take variations of
the delay and blurring effects of the HRF into account.
Parametric models may introduce some bias on the HRF,
since it is unlikely that they capture the shape variations
of the HRF within the brain.

By contrast, recent works have introduced temporal
prior information on the underlying physiological pro-
cess of the brain hemodynamic response to accurately
estimate the HRF in a Bayesian framework. Such priors

compensate for the lack of information provided by the
data [15], [17], [18]. These techniques only apply to
periodic or synchronous event-related paradigms and are
devoted to the estimation of one HRF in response to
one condition or stimulus. They also deal with each
session separately and average the HRF estimates a
posteriori without taking fluctuations of physiological
factors across sessions into account. Hence, their use
has remained limited since they are not well-adapted to
actual fMRI data.

The aim of this paper is to propose a threefold efficient
generalization of [15], [18]. First, we derive a temporally
regularized estimator of the HRF when shorter and
jittered Inter-Stimulus Intervals (ISIs) are used, such
as in asynchronous paradigms. Second, we propose a
simple extension that is able to cope with mixed task
paradigms, in which mixed trial stimuli are presented
in a random order and in a rapid succession to one
another. This extension consists in estimating a HRF per
trial type. Third, we develop an estimation procedure
that is able to simultaneoulsy process all fMRI time
series (all sessions or runs) recorded for a subject in
a given region. The specific treatment of each session is
important because noise characteristics (low frequencies)
may be different between sessions. We will show that
this leads to more accurate estimates and relevant error
bars provided that the drift terms are modeled with few
parameters per session (typically three or four). Because
these extensions require a significant computational ef-
fort, we develop a powerful optimization scheme that
makes the computation fast enough (typically one second
for a single time series of two hundreds samples) for the
analysis of real data in an imaging center environment.

The rest of the paper is organized as follows. Sec-
tion II starts with the introduction of the LTI model
of the HRF for single trial asynchronous paradigms.
Successive generalizations for asynchronous multitrial
multisession paradigms are then taken into account in
a more complex badly-conditioned observation model.
In Section III, we motivate our modeling choices and
derive the selected estimator for the HRF within the
Bayesian formalism. Since such an estimate depends on
a few hyperparameters, Section IV adresses the problem
of their tuning according to the maximum-likelihood
estimator. Section V illustrates the performances of our
unsupervised approach with synthetic data. The method
is applied to a language comprehension fMRI study in
Section VI. In Section VII, we discuss the limits of
applicability and possible extensions of the proposed
method.
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II. MODELING THE CEREBRAL HEMODYNAMIC

RESPONSE

A. Notations

Throughout the paper, random variables and real-
izations of thereof are respectively denoted by upper-
case (e.g.,

�
) and corresponding lowercase (e.g., � )

symbols; in addition, notations such as �������	��
 are
employed as shorthands for ������������	��
 , whenever un-
ambiguous. Furthermore, �������	�����
 means that the pa-
rameter vector � is assumed unknown but deterministic.
The main notations used in the following are summarized
in Table I.

[Table 1 about here.]

B. LTI system for asynchronous paradigms

In event-related protocols with synchronous ISI, the
BOLD fMRI time course ������
! 	"#�$"�% is measured in any
voxel of the brain at times ��&	�('�) TR 
* 	"#�+"�% , TR being
the Time of Repetition, while stimuli occur with a fixed-
delayed impulse signal ��,-�.
	/10324065 . This means that the
sampling period is equal to TR when the stimuli occur
only at times of acquisition. The HRF is then modeled
as the convolution kernel of a LTI system [9], [15], [18].

In asynchronous experiments, the presented stimuli
occur at any time during scanning. In such cases, we
propose to put the data and the trials on a finer temporal
grid, which has to be defined such that (i) the time
occurrences of the stimuli ��,-78
87�9#7 / are defined on this
grid, and that (ii) two stimuli do not occur at the same
time. Let :(& be the sampling period of this grid. Our
strategy consists in approximating the true onsets by their
closer neighbor on this grid. This very simple procedure
can be seen as a zero-order interpolation and generates
what is called in the following an instant-matching error.
Let ��,�78
87�9#7�/ the time occurrences of the stimuli on this
finer grid. Accordingly, the HRF has to be estimated with
the same temporal resolution:

�;7 2 ' <=> ?A@CB >ED 7 , 7 2GF >ED 7CHJI 7 2' K�L7 2 � HJI 7 2.M for &8�N'�&* M4O4O4O6M &P% M (1)

with KQ7R2S'UT ,C7R2 M ,C7R2 F D 7 M4O4O4OVM ,�7R2 F < D 7XW LZY\[ <^]  and�_'`T B @ M B D 7 M4O4O4O3M B < D 7�W L . Note first that the number
of unknowns, i.e. a Hcb , may be dramatically larger
than its counterpart in the synchronous case and second,
that oversampling of the data is not required. I 7R2 is
the ) th sample of a zero-mean Gaussian white noise
process d of unknown variance egf^hji , independent of � .

Such a hypothesis may seem restrictive since it is well-
known that fMRI time series are correlated in time [19].
Nonetheless, as shown in [18] various noise correlation
structures have little influence on the performances of the
estimation. The same result has also been emphasized
in [20], where the authors analyze the influence of
the colored nature of fMRI noise on the average bias
of the HRF estimate. Alternatively, one could estimate
the temporal covariance structure of the noise with an
autoregressive model, as done in [21].

In real neuroimaging experiments, the fMRI raw data
are contaminated by a low-frequency drift mainly due to
physiological artifacts [22]: breathing and cardiac pulses
are aliased since the sampling frequency of the data is
below Nyquist’s bound. Thus, these physiological factors
introduce some low frequency fluctuations. A high-pass
filter is generally used to remove those trends before
estimating the HRF. In this study, we simultaneously
estimate the HRF and the trend with the following model�k'mlm� HJn�oAH d M (2)

where lp'qT KQ7�/ M4O4O4O6M K�7X5W L defines the binary onsets ma-
trix. Matrix n 'rT st M4O4O4OVM s�u�W consists of an orthonor-
mal basis of functions s�vw'qTxsyvG��&! z
 M4O4O4O6M syvG��&	%{
|W L mod-
eling the low frequencies (e.g. a one dimensional discrete
cosine transform). The number } of basis functions
depends on the lowest frequency ~;�Q��� attributable to the
drift term and can be defined as }�'qT��G� TR ~;�Q���4W HSb ,
where “+1” stands for the mean (constant term) andT�� W is the integer part operator. Matrix n can also take
any covariate of no interest into account, supposed to
influence the signal intensity in a linear way. Vectoro Y�[ u defines the unknown weighting coefficients
of the basis functions, called nuisance variables in the
following.

C. Asynchronous multitask paradigms

We further extend (2) to allow for a different HRF
estimate for different trial types (e.g., different stimuli
or conditions). Let �|l��������  	� � ��� be the different trial-
dependent matrices, each of them being defined as the
previous l matrix, and then suppose that the HRFs� � add in a linear way. Such an extension requires
to correctly define the oversampling period :(& as the
smallest sampling interval that allows to separate the
two closest events, whatever their type. For the sake of
simplicity, let us definel ' T l �  � � O4O4O � l � � � W Y�[ %�� [ � � <^]  �� ' Tx� L  M4O4O4O3M � L � W L Y�[ � � <^]  �
from which model (2) is able to cope with asynchronous
multitask paradigms.
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D. Multisession likelihood

As previously mentioned, the experimental paradigm
is repeated several times for a given subject, leading to
a few sessions of about 200 to 1000 data each.

It is generally assumed that the HRF remains ap-
proximately constant provided that all the exogenous
parameters (voxel, task, subject) are fixed. Accordingly,
the same vector � is sought from the available fMRI
times series, say �� M4O4O4O3M �-� , of respective length ��� , so
that a specific matrix l�� is involved for each session. In
addition, it seems relevant to select a session-dependent
value of o � and possibly }�� for the definition of n � Y[ %� � [ u�� since the physiological factors (breathing and
cardiac rates) fluctuate throughout the sessions. Hence,
the multisession extension of (2) is given by���_
�� �-��'ml���� HJn � o � H d;� M for   Y�¡�¢� O
Model ( � ) calls for two comments.

First, it relies on the following assumptions about
noises d � :£ the mean of d�� (i.e., the baseline of � ) may vary

across sessions. This variation is captured by the
constant column of matrix n � .£ the variance of d�� is supposed constant across the
sessions for the sake of simplicity. In Section V,
it will be shown that the proposed HRF estimate
remains robust with regard to departures from this
hypothesis. There is no theoretical limitation pre-
venting us from introducing a specific variance for
each session. Nonetheless, we advocate the use of
the same unknown variance for all sessions on the
same subject since we observed on our data that
the major fluctations occuring in real data are rather
due to physiological variations (modeled by session-
dependent trends) than to some modification of the
noise scaling.

Second, model ( � ) allows to introduce more informa-
tion than model (2), through the introduction of new
independent data.

To estimate and make inferences about the hemo-
dynamic response, we first need to take model ( � )
into account through the definition of the likelihood
function. For the sake of conciseness, let us introduce
the following notations:¤ '¦¥§� L  M4O4O4OVM � L�E¨ L M © 'ª¥�l L � O4O4O ��l L�V¨ L M« '¬#®R¯G°±T n  M4O4O4O6M!n � W M ² 'ª¥ o L  � O4O4O � o L �E¨ L M
where the ¬C®R¯G° operator is used to define

«
as a block-

diagonal matrix. From these assumptions, the likelihood

of the asynchronous multitrials multisession model ( � )
is given by��� ¤ �	� M � �.e3f M!² 
�' �³� ?  ����� � �	� M � �#e3f M	o � 
'´�|�GµAe3f!
 F %·¶P¸E¹Eº�»�¼�½ �= � ?  �¾ �-� ½ l¿�1� ½ n � o � ¾ ¸·À �ge6f	Á'´�|�GµAe3f!
 F %·¶P¸ ¹Eº�»^Â�½ ¾ ¤ ½ © � ½ « ² ¾ ¸ À �ge3fÄÃ (3)

where �ª'ÆÅ �� ?  �Ç� .
The number of parameters still remains large

so that least squares estimation is unreliable whenT © � « W L T © � « W is ill-conditioned (the variance of the
fitted parameters is too large). A straight application
of the inversion lemma for block matrices provides a
necessary and sufficient condition: this block-matrix is
invertible and well-conditioned if and only if the inverse
of © L �1È+� ½ « � « L « 
 F  « L 
 © ' © L �1È�� ½ «Ç« L 
 © exists
and is well-conditionned1. Note that such a matrix can be
ill-conditionned even if © L © is well-conditionned. The
limiting case, corresponding to the underdetermination
of model ( � ), can be reached if :(& is too low or É
too large.

III. IDENTIFICATION OF THE HRFS

Since the information provided by the data may not
be sufficient to derive a robust HRF estimate, we intro-
duce some constraints on the temporal structure of the
HRFs that correspond to some available physiological
prior knowledge. The proposed HRF estimate will result
from an appropriate tradeoff of both types of informa-
tion (data-driven and prior).

A. Prior information

Following [15], [18], we introduce temporal prior
information within the Bayesian framework. As phys-
iologically advocated in [5], each HRF is characterized
by the following features:

(a) Its amplitude is close to zero at the first and end
points. As a matter of fact, the HRF is causal, henceB �ËÊ >ED 7 should be zero for Ì�ÍJi and Î Y�¡ ¢� . This
means that the stimulus at time Ì should only have
influence for Ì¿hÏi . Similarly, the influence of an
activation should vanish in the past, implying that
the filter parameters should tend to zero for large
delays ( B �ËÊ < D 7 'mi ).(b) Its variations are smooth.

1Let ÐÒÑÔÓËÕ¿Ö×ÓËÕ be an invertible matrix, then Cond ØXÐÚÙ�Û
Cond ØXÐÝÜßÞ8Ù if Cond stands for the condition number [23].
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(c) Prior statistical independence is supposed to hold
between stimuli and thus between HRFs. In ad-
dition, each HRF may be related to an underly-
ing physiological process having its own dynam-
ics (specific time-to-peak and dispersion of re-
sponse).

Condition (a) is easily introduced by redefining vec-
tors � � and K ������ Ê 7 2 for the   th session and all ) Yà¡ ¢% ,
setting the first and last parameters of � � to zero:� � ' T B �ÚÊ D 7 M4O4O4O3M B �ÚÊ�� < F  � D 7 W L Y�[ < F  MK ������ Ê 7 2 ' T , ������ Ê 7 2GF D 7 M4O4O4O3M , �§�w�� Ê 7 2GF � < F  � D 7 W L Y�[ < F  Ml ������ ' T K �§�w�� Ê 7 / M4O4O4O6M K �§���� Ê 7 5 W L Y�[ %��� [ < F  O
The likelihood function (3) remains unchanged with� ' ¥á� L  M4O4O4O3M � L � ¨ L Y [ � � < F  � and l � '¥ l �  �� � O4O4O � l � � �� ¨ YË[ % ��â � � < F  � for the   th session.

Quantification of condition (b) is achieved by setting a
Gaussian probability density function (pdf) ãÒ��i MÄä �{å 

for ����� � � å MÄä � 
 . We have chosen å ' �1æ L¸ æk¸V
 F  
for the prior covariance where æ¿¸ is the truncated
second-order finite difference matrix in order to fullfil
constraint(a):

æ ¸ '
çèèèèèèèèèé
½ � b i �4�4�ê�4�4� ib ½ � b i . . .

...i . . . . . . . . . . . .

...
...

. . .
. . .

. . .
. . . i

...
. . . i b ½ � bi �4�4�ë�4�4� i b ½ �

ì�íííííííííî O
Since å F  is of full rank, ����� � � å MÄä � 
 defines a proper
prior2. For model ( � ), condition (c) may be taken into
account by the following pdf:������� å M � � 
Q' �³� ?  ����� � � å MÄä � 
ï ð �� ?  ä F � < F  � ¶P¸�¬ ¹4ñ � å 
 F �×¶P¸ ¹Eºß»�¼�½ � L å F  � �� Á M (4)

where � � 'ªT ä  M4O4O4O6MÄä �òW Yà[ � stands for the hyper-
parameters of the prior model andå � 'm¬#®X¯G°±T ä  å MÄä ¸ å M4O4O4O6MÄä � å W Y�[ � � < F  � � [ � � < F  � O
This prior model clearly favors smooth responses, since
for each condition it amounts to minimizing �á� æ ¸ � � �á� ¸
i.e., the discrete approximation of the second-order
derivative of � � . We note also that the sampling period

2The pdf ó�ØXô�õGö�÷1ø	ùQÙ is said to be proper ifúÄû ó�ØXô�õ6ö�÷�ø ù ÙVü3ôNý�þ .

:(& is integrated in the definition of the prior variancesä � and that introduction of different parameters ä � for
different HRFs allows to model specific dynamics for
each condition.

B. Modeling choices and error bar computation

Our HRF estimation technique is a two-steps opera-
tion, which first consists in jointly estimating ² and � in
the maximum-likelihood sense (see details in Section IV)
before substituting the estimates for the true values in������� ¤ M � �C� M!² 
 in order to compute its maximizer. In
the first step, we assume that the drift parameters ² as
well as hyperparameters ��'¦¥§e3f M ��L � ¨ L are deterministic.
We motivate this choice below.

It does not seem to us that considering the drift
terms as random variables would allow the addition of
significant information because we have rather poor prior
knowledge at hand. Therefore, a reasonable prior on
those would have been uninformative or even improper.
Moreover, in Subsection V-E we argue that with a small
number of nuisance variables (i.e., when } À � is small,
typically } À � ÿ i O i�� ) and a standard noise level, we
are able to accurately estimate these parameters and
be reasonably confident in the variability of our HRF
estimate. In other words, when we substitute

� ² ML for ² ,
the extra source of error on

� � MAP still is small. The same
holds for hyperparameters � . It follows that the most
important quantity � is estimated from the maximum
a posteriori (MAP) i.e., the maximum of the posterior
distribution ������� ¤ M � �C� M!² 
 . The Bayes rule ensures
the fusion of the likelihood (3) and the prior (4) into the
Gaussian posterior distribution of � given � ¤ M � M!² 
 , from
which we can derive the MAP estimate:������� ¤ M � ��� M!² 
 � ãÒ� � � MAP M � 
 (5)� F  ' be6f �= � ?  l L� l�� H å F  � M� � MAP ' be6f � �= � ?  l L� �1� � ½ n � o � 
 O

The influence of this choice of model should have lim-
ited impact on the estimation of � . However, the influ-
ence on the error bars of

� � MAP might not be negligeable.
As we would like to assess the error made on

� � MAP� , we
focus on the marginal posterior pdf ����� � � ¤ M �ê�!� M!² 
 .
As expected, this pdf is ãÒ� � � MAP� M � � 
 -distributed with� � , the Î th diagonal block of

�
. The marginal error

bars can then be derived from the standard deviations� � '¦¥�� �ËÊ  M4O4O4OVM � �ËÊ < F  ¨ , that are given by the square
roots of the main diagonal of

� � . Although slightly
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underestimated, such error bars provide a good approx-
imation of the range of variation of � � . Note that
these error bars are created for pointwise inference and
appropriate only for a single preselected time sample
since the search over all time samples requires to analyse
the posterior covariance matrix

� � , which cannot be
easily represented on the same graph as

� � MAP� .

C. Equivalence with the marginal MAP estimate

Under technical conditions, we show that our HRF
estimate

� � MAP is a valid approximation of another
Bayesian estimate that takes all fluctuations of ² into
account. This solution corresponds to the maximizer� � MMAP of the marginal pdf ������� ¤ M �ê�!�·
 :������� ¤ M �ê�!�·
3' � ����� M!² � ¤ M �ê�!�·
	� ² (6)' � ������� ¤ M!²zM �ê�!�·
3��� ² � ¤ M �ê�!�·

� ²zM
where ² is assumed to be random. Using Bayes rule, the
marginal posterior pdf ��� ² � ¤ M � ���
 rereads��� ² � ¤ M � �C�
 ï ��� ¤ � ²zM � �.e3f!
3��� ² �����
 O (7)

In the absence of relevant prior information about ² ,
a flat distribution is considered for ��� ² �-� � 
 leading
in (7) to ��� ² � ¤ M � ���
 ï ��� ¤ � ²zM � ���
 . Assuming
that ��� ² � ¤ M � ���
 is peaked enough, we may write��� ² � ¤ M � �C�A
� �$� ² ½ � ² MAP 
 , where

� ² MAP ' � ² ML

is the maximum-likelihood solution computed by our
approach (see details in Section IV). If this hypothesis
is fullfiled, the marginal distribution (6) is thus approx-
imated by������� ¤ M � �C�
� � ������� ¤ M!²zM � �-�A
��ß� ² ½ � ² ML 
�� ² ������� ¤ M!² ' � ² ML M � �C�
 O (8)

Therefore, our approach amounts to computing
� � MMAP

provided that ��� ² � ¤ M � ���
���$� ² ½ � ² ML 
 . In Subsec-
tion V-E, we discuss the validity of this assumption.

IV. HYPERPARAMETERS AND NUISANCE VARIABLE

ESTIMATION

This section focuses on the automatic tuning of hy-
perparameters � and nuisance variables ² . This part
starts with an introduction to the Maximum-Likelihood
principle and then examines a well-adapted way to tackle
the underlying optimization problem.

A. Maximum-Likelihood principle

Maximum-likelihood estimation for hyperparameters
is a very common procedure, which is currently used
in various fields of signal and image processing when
dealing with a small number of unknown but determin-
istic hyperparameters � (see for instance [24], [25]). The
underlying reason that makes this approach feasible and
attractive is that there is a large number of data ( � ) to
estimate �1� M!² 
 accurately. Similarly to [15], we select the
hyperparameters and nuisance variables by maximization
of their likelihood ��� ¤ � � �!� M!² 
 , obtained from the joint
pdf of � � M�� 
 after integration over the parameters

�
:��� ¤ ���ê�!� M!² 
�' ��� ��� ¤ �	� M �ê�	e3f M!² 
C�����w� å M � � 

���' �1�Gµ·
 F %y¶P¸¬ ¹4ñ ����
  8¶P¸ ¹Eº�»��á½ � ¤ ½ « ² 
 L � F  � ¤ ½ « ² 
� � (9)

with3 � '�e3f	È�% H © å F  � © L O
The Maximum-Likelihood (ML) estimator � � � ML M � ² ML
 of�1� M!² 
 minimizes� � °t¬ ¹4ñ ����
 H � ¤ ½ « ² 
|L!� F  � ¤ ½ « ² 
 O (10)

Computation of � � � ML M � ² ML
 is a complicated nonlinear
optimization problem of several variables. First, we must
resort to an iterative optimization scheme because of
the nonquadratic behavior of

�"� °t¬ ¹4ñ ����
 . Second, since
�"� °��� ¤ ��� �-� M!² 
 is not concave with respect to (w.r.t.)�1� M!² 
 , there may exist several local minima. Therefore,
the hyperparameters and nuisance variables given by any
deterministic algorithm depend on the initial values. In
the next subsection, we propose to resort to a variant of
the Expectation Maximization (EM) algorithm to avoid
direct optimization of (10).

B. EM-based strategy

For notation compactness, let us denote # ��'ª¥§�CL M!² L ¨ L .
The EM algorithm, introduced by [26], is a general
iterative method which ensures the increasing of the
likelihood function ��� ¤ ��� �$# �
 of a parameter vector# � given observations ¤ at each iteration. Starting from

an initial value # � @ , a series of succesive estimates # � > is

3In these definitions, every matrix %'& is supposed to have ()&$Û*(
columns +-,�Ñ/.102 . If such a choice turns out to be inappropriate,
the definitions of matrix 3 and vector 4 should be revisited, by zero-
padding matrices % & and vectors 5 & that do not have the maximal
number of components i.e., 687!9:&;()& .
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generated by alternating the following two steps:

Expectation (E): Evaluate <×�=# � M # � > � ¤ 
 (11a)

Maximization ( � ): # � > ]  '�¯?>Ä°A@Ô¯ ºB C <Ç�D# � M # � > � ¤ 
 M (11b)

where function < is defined as<Ç�E# � M # � > � ¤ 
�' ��� �"� °��� ¤ M �Ë� �ê�F#�·
X�����Ë� ¤ M �ê�!#� > 
G�ß� (12)'IH � ¥ �"� °·��� ¤ M �Ú� � �J# �
4� ¤ M �ê�F#� > ¨ M�
being an auxiliary random variable whose practical

role is to make the complete likelihood ��� ¤ M ����� �K# �

easier to compute than the original one ��� ¤ ��� � # �A
 .
Following [27], parameter vector # � can be partitioned
into two subvectors �ML ��� ' T e3f M!² L W L and � � 'T ä  M4O4O4O6MÄä �òW L which respectively control the conditional
pdfs ��� ¤ �	� M � ��� L ��� 
 and ������� å M � � 
 . Then, as
shown in Appendix I, the M-step (11b) can be divided
into two operations: maximization of < L ��� w.r.t. � L �X�
and maximization of < � w.r.t. � � (see (19) and (20)
for the definitions of < L �X� and < � , respectively).

In the present case, detailed examination of the maxi-
mization of <
L �X� w.r.t. �NL �X� shows a tricky problem:
the joint maximization w.r.t. egf and ² , required by the
definition (11b), cannot be performed since the updating
step of e3f strongly depends on ² . Nonetheless, the M-
step (11b) can be replaced by a conditional optimization
strategy that reads:O1PNQ Y/R '�� L � � M P > ]  Q '�¯?>!°)@Ô¯ ºSUT < L � � � R > ]  Q F  M # � > � ¤ 

with R > ]  Q F  'WV P > ]   M4O4O4O3M P > ]  Q F  M PNQ M P >Q ]  M4O4O4O3M P >u ]  ?X O

(13)
The variant (13) is known as the Expectation Conditional
Maximization, (ECM) [28]. It is actually a subclass
of generalized EM algorithms that are more broadly
applicable than EM but share its desirable convergence
properties4. Therefore, we resort to ECM for function<�L ��� . Hereafter, we provide the updating equations of
ECM for the estimation of ��L ��� and � � .

C. Re-estimation formulas for � L �X�
The present M step of ECM is performed by search-

ing an optimal parameter of ��L ��� at a time, sayP > ]  Q , given by (13) or equivalently by the solution
of YZ< L ��� À Y P > ]  Q ' i . This procedure is repeated

4The EM algorithm converges monotonically to a stationary point
of ó�Ø\[�]D^ õ:_`+Ù if a�Ø\_`ß÷b_`dcÚõU[A÷b^�Ù is continuous in both _ ` and_ ` c [26], [29].

for all parameters belonging to � L �X� . As shown in
Appendix II, the computation of the optimal nuisance
variables

� ² can be parallelized since� o ��' n L� Â �-� ½ l�� � � MAP Ã(M for   Y�¡ ¢� O (14)

Taking the new estimates
� o � and all the available datasets

into account5, we get for the noise variance:� e3f�' Å �� ?  Je �P� � o ��
� M (15)

where functions e �	���§
 are defined by (24) (see Ap-
pendix II). As it appears in (24), updating both o � ande3f requires the computation of

� � MAP. Strictly speaking,
this estimate is given by the solution of a linear system
without explicitely computing matrix

�
. Nonetheless,

the latter matrix is needed for setting
� eGf and is thus

computed before updating o � .
D. Re-estimation formulas for � �

The M step of the ECM algorithm w.r.t. � � is
actually identical to a M step of the standard version
of EM since all the parameters belonging to � � can
be simultaneously updated. As previously derived, the
optimal parameters �Kf � are given by the solution ofYZ< � À Y-��f � 'mi that is (see Appendix III for details)

ä f� '
ghhhhhhhi hhhhhhhj
ñ > V Â � � MAP � � � MAP 
 L H � Ã å F  � XÉ ��a ½ b 
 if ä f� ' ä f M O Îñ >lk Â � � MAP� � � � MAP� Ã L H � �nmÔå F  a ½ b M otherwise O

(16)
Finally, the successive steps of ECM are summarized

in Table II.

[Table 2 about here.]

As to numerical implementation of ECM, the following
conjunction has been selected as stopping criterion:ooo <×�E# � > M # � > F  � ¤ M �_
 ½ <Ç�E# � > F  M # � > F  � ¤ M �_
 oooooo <Ç�D# � > M # � > F  � ¤ M �_
 ooo prq  s!t » �
u �á� #v >� ½ #v > F  � �á� ¸�á�w#v >� �á� ¸ x pyq ¸ M
where # � > denotes the solution at the Ì th iteration of the
minimization stage and the thresholds have been set to� q  M q ¸ 
Q'q� b i F$z MVb i FN{ 
 .

5Since a constant noise variance has been assumed throughout the
sessions.
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Sections II – IV have allowed us to design unsuper-
vised non-parametric estimates of the HRF at a given
voxel of the brain, depending on the trial type and
the subject under study. Moreover, we have provided
uncertainty measures on this estimation to be able to
quantify the confidence we may have in the results.
Hereafter, we demonstrate the accuracy and robustness
of the proposed estimates, first on simulated datasets,
and finally through an experimental fMRI paradigm.

V. SIMULATIONS RESULTS

The first part of this section is a Monte-Carlo study
that compares the statistical properties of the Maximum-
Likelihood (ML) and MAP HRF estimates (summarized
in Table III).

In the following simulations, the CNR is defined as the
ratio between the || -norm of the HRF and the standard
deviation e  8¶P¸f of the noise6:

CNR

D' Å <> ?A@ � B �ËÊ >ED 7 ���a Hmb 
$e  8¶P¸f M
To provide a single CNR value for time series containing
several HRFs with different shapes, we simply average
the CNR of each response. The CNR is taken in the
range of observed CNR in fMRI data.

The rest of this section emphasizes the performances
of the MAP estimator and focuses on the following
topics, specific to our extensions:£ Effect of oversampling, i.e., whether it is relevant

to choose a HRF sampling period :(& for � lower
than TR, the sampling period of the data (see
Subsection V-C). For this topic, we have chosen
a high CNR to rigorously quantify the instant-
matching error.£ Successive improvements when allowing for trends
and when processing several sessions at the esti-
mation stage (see Subsection V-D). For this inves-
tigation, we have considered a higher noise level
to better highlight the improvements brought by
the multisession method on the average bias and
variance of estimation of the HRF. In addition,
a session-dependent drift term, similar to the one
observed in fMRI data, has been added to quantify
the gain that we can achieve when modeling these
fluctuations.£ Validity of the error bars on the HRF estimates (see
Subsection V-E).

6The CNR is sometimes defined as the ratio between the magnitude
of the peak signal change and the standard deviation of the noise.
However, the peak value is no longer a good descriptor of the entire
signal when different HRF shapes are considered.

£ Robustness of the HRF estimate to departure from
the hypothesis of equal noise variance across ses-
sions (see Subsection V-F).£ Influence of overparametrization, i.e., when too
many HRFs have been modeled and estimated
compared to the number that are actually present
in the voxel under study (see Subsection V-G).
For this purpose, favorable experimental conditions
have been chosen.

Each of these topics is analyzed using synthetic data.
The parameters of the simulation have been chosen
to be compatible with experimental conditions usually
encountered, as explained now.

[Table 3 about here.]

A. Common procedure for generating simulated datasets

For each session, we have first simulated a random-
intermixed sequence of indexes coding for two different
event types ( É ' � ). Each index corresponds to a
specific stimulus. Unless otherwise specified, the timing
of the trials is random, since the ISIs between successive
trials follow a uniform distribution on [2.5, 3.5]. This
might not be optimal for Maximum-Likelihood estimate.
However, an optimal design for the estimation of the
HRF will not be optimal for signal detection [20] and
we have therefore chosen a tradeoff that is generally
considered in neuro-imaging experiments. To investigate
the influence of the experimental design on the behav-
ior of the ML and MAP HRF estimates, we compare
the statistical properties of the solutions computed for
1) an event-related paradigm (low detection efficiency
and good HRF estimation [20], [30]) and 2) a block
design (high detection efficiency and poor HRF shape
estimation [20], [31]) at the same noise level.

While the optimization of the design parameters is
out of the scope of this work, these two settings contrast
two opposite situations from the HRF estimation/signal
detection point of view. The reader interested by the
optimization of experimental design may refer to an
excellent survey [32] (and references quoted therein),
which also introduces a stochastic framework based on
genetic algorithms7 to optimize a fitness measure of the
experimental design wrt several parameters (detection
efficiency, HRF shape estimation, counterbalancing of
events, ...).

The onsets of the trials are put together on the same
temporal grid using �V&�'�i O~} s for sampling period. This
step simply requires to move the onsets to the nearer
time points on the )-�3& grid.

7These tools are availbale at http://www.lsa.umich.edu/
psych/research\&labs/jjonides/download.html
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Each binary time series coupled to a stimulus is then
convolved with a specific HRF, �w or ��¸ , whose exact
shapes are plotted in Fig. 1 for instance. �^ is the
canonical HRF used by the SPM99 software8, whereas� ¸ is chosen as an extreme example of a very peaky
HRF. The true HRFs used in the following subsections
are similar up to a scaling factor, leading to different
values of the CNR at a given noise level.

A white Gaussian noise of variance egf has been added
to the data, as well as a session-dependent low-frequency
drift, which was generated from a cosine transform
basis which coefficients o � were drawn from a normal
distribution. The amount of low frequency signal was
tuned to be significant: we have checked for each session
that the ratio between the quadratic norm of the drift
components n � o � and the quadratic norm of the drift-free
data l¿�1� H d�� was no less than 50 %. We stress here
that the events are well distributed over time such that
collinearity with the low frequency signal is unlikely.

Number }Ý� depends on the chosen Cut-off-
Period (COP) for the drift term present in session   . For
instance, the selected parameters in row number 3 of
Table III leads to }��{'�� . The data are then obtained
after undersampling the sequences at a ¥ TR

À �V& ¨ rate,
the inter-scan interval being TR '�� s. Note also that the
length of the datasets varies across sessions.

B. Statistical properties of the MAP estimate

We assess the statistical properties of the ML and
MAP estimates through a Monte-Carlo study in the
finite and asymptotic9 data cases. The ML solution can
be derived from (5) by setting ��' egf À ä ' i . In
particular, we first outline the bias-variance tradeoff,
which is intrinsic to Bayesian estimation in the finite
data case and illustrate the asymptotic convergence of
the MAP estimates to the true HRFs.

To obtain an approximation of the bias for the ML
and MAP estimates, we have first computed the average
solution over ��' b i;i realizations of the noise process:# �Z� MAP ' b� �=� ?  � � � MAP # �)� ML ' b� �=� ?  � � � ML O

8www.fil.ion.ucl.ac.uk/spm/spm99.html
9There are generally two asymptotic situations. The first one occurs

when the number of data ��� �Qþ whereas the second one
amounts to increasing the CNR in order to characterize an estimator
with noise-free data. Here, we have investigated the second case.
Nonetheless, both situations are equivalent in our approach since
hyperparameter �´Û��!���!ø is automatically tuned from the data.
This means that when CNR ���Qþ , ����� , which amounts to
overweighting the likelihood term.

The estimation variance of the MAP and ML solutions
is then approximated using� �E# �Z� MAP 
 ' b� �=� ?  Â � � � MAP ½ # �)� MAP Ã ¸� �D# �Z� ML 
 ' b� �=� ?  Â � � � ML ½ # �Z� MLÃ ¸
It follows that the quantities of interest i.e., the mean
square error for any HRF � � can be computed usingÉ���� � � �����
 D'�Hò¥1�á� � � ½ H ¥ � � ¨ �á� ¸ ¨  � �E# �Z�.
 H ��� ½ # �Z�$
 ¸ O
The global MSE (gMSE) is then obtained after averaging
over all time points:� É���� � � ������
�' <=> ?  É���� � � B > � B > 
 À a O
To remove the instant-matching error, we have consid-
ered synchronous paradigms. The onsets of the stim-
uli and the data are defined on the same grid with:(&Ú' TR ' b s. The ML and MAP estimates are now
compared for low and high CNR values (see Table III).

1) Low CNR or “finite data” case: Fig. 1 shows the
average HRF estimates computed both for the ML and
MAP strategies. As it clearly appears on Fig. 1(a), the
ML solution is unbiased. The pointwise error bars that
are depicted on Fig. 1(a) have been computed as the
square roots of the variance of estimation

� �=# �)� ML 
 . The
average solutions depicted in Fig. 1(b)-(c) correspond to
the MAP estimates computed either for a constant prior
model ( �  and � ¸ have the same prior variance: ä  'ä ¸ ) or for an adaptative prior model ( ä  ��' ä ¸ ). These
average time courses illustrate the well-known intrinsic
bias-variance tradeoff that appears in Bayesian solutions
in the finite data case: the MAP solutions are biased
but less variable than the ML estimate (their error bars,
computed from

� �E# �Z� MAP 
 , are lower). To measure the
gain brought by Bayesian methodology, we use the MSE
and the summarizing index gMSE. We also note that �t¸
has been taken as an extreme example of HRF since
it is much more peaked than the usual response, better
represented by �� .

To emphasize the role played by the experimental
paradigm in terms of bias-variance tradeoff, the same
quantities have been computed for the block design and
the results are depicted in Fig. 1(d)-(f). For the ML
estimate plotted in Fig. 1(d), choosing a block design
rather than an event-related one generates an increase of
the variance of estimation and a slight bias. For the MAP
estimates (Fig. 1(e)-(f)), the variance remains roughly
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constant but the bias significantly increases compared to
the event-related situation. To summarize, working with
a poor design for HRF estimation amounts to decreasing
the CNR both for ML and Bayesian procedures.

[Figure 1 about here.]

Fig. 2(a)-(b) provide the corresponding MSE over all
time samples for �� and ��¸ , respectively. Fig. 2(a) shows
that the MSE is always lower for the MAP solutions
when dealing with �w . The MAP estimate computed with
an adaptative prior model has a larger bias around the
peak but a lower gMSE compared to ML as reported
in Table IV. By contrast, Fig. 2(b) shows that both
MAP solutions have a larger MSE around the peak
of ��¸ even if the adaptative prior model allows to
significantly reduce this error. As shown in Table IV,
the MAP estimates still remain more attractive than the
ML solution since their gMSE is always lower. It is also
important to compare both MAP estimates and to note
that the adaptative prior model provides better solutions
in terms of gMSE at the expense of the computational
cost (twice more expensive).

[Figure 2 about here.]

The MSE has also been computed for the block design
experiment. As illustrated in Fig. 2(c)-(d) as well as
in Table IV, these results show the significant increase
of the mean square error both for the ML and MAP
estimates, but more importantly for the ML solution. To
conclude, the designer of the paradigm should carefully
select the objective function to be optimized according
to the underlying question (detection vs HRF estima-
tion) [32].

[Table 4 about here.]

2) High CNR or “asymptotic” data case: Fig. 3(a)
shows the average ML estimates in the nearly noise-free
case. As illustrated, the ML estimate remains unbiased
and is asymptotically consistent since its estimation
variance tends to zero. The average MAP estimates
computed with a constant prior model10 are plotted in
Fig. 3(b) for comparison. As shown on this figure, there
is a strong evidence that the MAP converges to the
true HRF too, so that our solution is asymptotically
consistent. It should be stressed that such a result is
a direct consequence of the automatic tuning of the
hyperparameters. Indeed, if �c'pegf À ä was kept con-
stant (as in supervised estimation) the MAP estimate
would be biased when the noise variance eGf decreases.

10the MAP solution computed with an adaptative prior model is
not reported here since it provides the same average time courses.

Since ��� i when e6f�� i , the weight of the prior
model tends to vanish, so that asymptotically the MAP
estimate identifies with the ML solution. As reported in
Table IV, the gMSE index provides similar results for
both estimates.

[Figure 3 about here.]

C. How to choose the HRF sampling rate ?

The present simulation addresses tradeoff between the
bias and computational burden depending on the chosen
sampling period :(& given �V& and TR. Here, we have
considered a sufficiently high CNR to be able to assess
the statistical properties from one single realization of
the noise process.

Since the onsets of the trials occur with a temporal
resolution of �3& seconds, they are not synchronised with
the data. Our aim is to determine the optimal oversam-
pling period �:(& . This optimal value should be able to
control the instant-matching error in the estimate, and
help us to best set the tradeoff between bias reduction
and potential variance increase.

Here, we have tested the single session asynchronous
model (2), in which the drift component has been
discarded. In addition, we have imposed identical prior
variances ( ä  ' ä ¸ ).

Fig. 4 shows a qualitative comparison between :N&Q'
TR and :(& p TR models when dealing with asyn-
chronous paradigms. The influence of the oversampling
period appears clearly: the closer :N& is to �V& , the less
biased the estimate is.

[Figure 4 about here.]

We have quantitatively checked this result measuring the
quadratic error e and the mean standard deviation � of
the HRF estimates withe � � � � �-� � 
p' �á� � � � ½ � � �á� ¸a ½ b M Îr' bGM ��Ý� � � � 
p' ba ½ b < F  =� ?  � �ËÊ � O (17)

For �t that fits well with the prior model, both criteriae and � decrease with :(& , even when the sampling
period goes below �:(& (see Table V). By contrast, for� ¸ , e decreases until :(&�' �3&Ô' TR

À � and increases
for lower values, as reported in Table V. Therefore,
selecting a sampling period under �:(&�' TR

À � does not
really improve the accuracy and robustness of the global
estimate

� � MAP. These results are also obtained for lower
CNR values.

[Table 5 about here.]
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Choosing :N& p �:(& leads to an increase of the compu-
tational cost. More precisely, the results of Fig. 4(a)-(d)
where the CNR is high have been obtained in 0.03 s,
0.08 s, 0.33 s and 3.1 s respectively on a Pentium IV
1 GHz. Decreasing the CNR induces a slower conver-
gence, but for :(& '¡�3& , the HRF estimate is usuallly
computed in about one second for a dataset of two
hundreds samples. The computational burden is therefore
low enough to make this approach feasible for several
hundreds time series (voxels or region of interest).

Moreover, choosing :(&S' �:(& compared to larger
values leads to a better estimate of the noise variancee3f . This is likely to be due to the fact that some data
variance may be introduced by the undersampling step.

Finally, we note that the hyperparameters ( ��'eGf À ä ,
if ä � ' ä�M O Î Y ¡ ¢� , or � � ' e3f À ä � otherwise)
automatically adapt to the level of discretization. In the
simulation performed for different sampling periods, we
have checked that � < �¢d� ¸ < (or � D 7 £¢d� D 7X¶P¸ ) is
approximately satisfied.

D. Improvements brought by successive models

The goal of this section is to classify the performances
of the HRF estimates for the models that have been
successively designed in Section II, in terms of quadratic
error and variance reduction.

i. the influence of modeling drift terms in (2);
ii. the session-dependent model (2), where each HRF

is estimated from each session (before a possible
averaging step over the sessions), compared to the
multisession model ( � ), where each HRF admits
a single estimate derived from the whole set of
sessions.

[Figure 5 about here.]

(i) Comparison of rows 1-3 and 2-4 of Table VI proves
that the quadratic error of the HRF estimate diminishes
when modeling a drift component (more significantly
for �Q¸ ): the criterion e is smaller when the nuisance
variables are jointly estimated. The variance reduction
or the decrease of � is rather marginal, probably be-
cause the number of unknown parameters is larger when
a trend is modeled with a constant number of data.
These improvements are emphasized when dealing with
multisession estimation. Fig. 5(b) illustrates the gain
in robustness brought by model ( � ), which takes a
session-dependent drift into account, compared to the
results when the drift has not been modeled in Fig. 5(c).
Quantitative results reinforce these improvements, as
shown in rows 7-8 of Table VI.

(ii) Rows 5-6 of Table VI as well as the comparison
of Fig. 5(a)-(c) show that multisession modeling has a

greater influence on the accuracy of the HRF estimates
than the consideration of nuisance variables in the model.
Assuming stability of the HRFs across sessions in a
given voxel actually allows to bring more information,
and therefore leads to a significant bias reduction and
a slight variance decrease. The variance reduction is
even greater on data without drift component (results
not shown). Nonetheless, the drift embedded in the data
being random and session-varying, the � values reported
in Table VI do not go down when a session-dependent
drift has not been modeled. Comparison of Fig. 5(a)-
(b) demonstrates the relevance of the HRF estimates
computed from all available datasets ( ¤N'¥� ).

[Table 6 about here.]

E. Validity of the error bars

A concern is to know whether the approximation
leading to (8) has a good chance to be satisfied. This
approximation is at the origin of the variance underes-
timation of

� � MAP. Our argument is that with a small
number of drift parameters compared to the number
of data (when } À � is small enough) and a standard
CNR our approach provides an accurate estimate of the
nuisance variables such that the extra source of error
related to these parameters should be negligeable. Such
cases are realistic and occur when } À � ÿëi O i�� , for
instance when the lowest frequency ~;�Q��� is 1/120, �¦'b ¢Gi and ¦1§�'� s we can choose } � '¥� . Consequently,
we are interested in quantifying the bias on the variance
estimate provided by our approach. To achieve this goal,
we performed several Monte Carlo studies11 in which
we analyzed the influence of the number of nuisance
variables ( }��·'¥� and }Ý�·' b ¢ ) as well as the the noise
level (CNR=0.73 as in Subsection V-D and CNR=0.29)
on the estimation variance of ² . The drift terms were
held to the same value for a complete run. First of all,
we checked that our estimate

� ² ML is unbiased. For a
small number of drift terms ( }×�Ç'¨� , }�� À � �Ç'¦i O i�� )
and a standard CNR (CNR=0.73), the standard deviation
of our nuisance variable estimate

� ² ML was no larger
than 3 % of the maximal amplitude of the drift. This
analysis only gives the behavior of our estimate

� ² ML,
but even indirectly, the dispersion of

� ² ML is related to
the computed error bars on

� � MAP. In such cases, our
approach essentially provides an accurate approximation
of the dispersion of

� � MMAP at low cost.
When increasing the noise level (CNR=0.29) or mul-

tiplying the number of nuisance varia-bles ( } � ' b ¢ ,

11 © Û�ª«�F¬ realizations of the noise have been drawn to accurately
estimate the dispersion of the nuisance variable solution  4 ML.
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of

� ² ML was at least multiplied by three. In these more
difficult cases, the solutions

� � MAP and
� � MMAP are close

to each other but the main difference is that the error
bars derived on

� � MAP will be underestimated since they
will not be able to capture the dispersion attributable to
the drift terms. In other words, the estimation variance of� ² ML is not taken into account in

� � MAP. Hence, we should
compute

� � MMAP and the marginal posterior covariance
matrix ® � 12 to remove the existing bias on our error
bars. These developments are beyond the scope of this
paper (see Section VII). We therefore limit the field of
applicability of our technique to small number of nui-
sance variables ( }×�tÿ } ) and reasonable CNR (roughly
CNR ¯ji O~} ).

F. Robustness to the equal noise variance hypothesis

We are also interested in testing the robustness of
the HRF estimate to a departure from the hypothesis
that the noise is constant across sessions. For doing so,
we have considered two sessions with respective noise
variances e �  �f 'mi O id¢ and e � ¸ �f 'mi O~° . We stress here thate � ¸ �f 'mi O~° is an extremely high noise level, not found in
actual datasets but used to emphasize the robustness of
our approach in a multisession framework.

[Figure 6 about here.]

As shown in Fig. 6(a) and as expected, the HRF esti-
mates are closer to the original ones when the noise level
is low. Fig. 6(b) demonstrates that increasing the noise
variance provides oversmoothed results and stresses the
limits of the prior model for such low CNR values.
Moreover, small error bars that are visible in Fig. 6(b)
result from overconfidence in the prior. In this extremely
noisy situation, the problem discussed in Subsection V-
E is amplified. Here, this variance underestimation con-
cerns the hyperparameters and is due to the large un-
certainty on the hyperparameter estimates. With a more
important computational effort, this uncertainty could
be computed using the methodology derived in [33].
The opposite result would be observed in the standard
maximum-likelihood framework, where the higher the
noise level, the larger the error bars. Note also that the
noise variance is better estimated when the CNR is not
too low. Finally, the HRFs plotted in Fig. 6(c) have been
computed from both available datasets, assuming they
have been generated with the same noise variances, since
this assumption holds in model ( � ). Clearly, Fig. 6(c)
shows that the proposed technique remains robust with

12given by the left superior block of the joint covariance matrix±³²
´ µ
of size ¶¿Ø ·¹¸ºª	ÙE(�Ö»¶¿Ø ·¹¸¼ªÄÙE( .

regard to some departures from this hypothesis. In other
words, the multisession approach provides better results
than the session-dependent technique, even with session-
varying noise levels.

G. Overparametrization of the number of HRFs

Here, we have used two trial types: one generating
the peaked HRF �Q¸ , depicted in Fig. 5 for instance,
and one yielding no response (zero function). Two
different HRFs were modeled at the estimation stage.
The question addressed here is whether modeling the
non-existing function as a HRF influences bias and
variance of the estimate of ��¸ . Indeed, it is well known
in the maximum-likelihood framework that, the larger
the number of unknowns, the higher the variance of
estimation. Simulations (not reported here) show that
inclusion in the model of a uncorrelated and non-existant
HRF does not have any influence on the estimation of
the existing HRF, whatever the noise level.

Note that it is also possible to design a statistical test
either for assessing whether an estimated HRF is zero or
not ( �  '¾½ ?), or for comparing both estimates ( �  '��¸ ?), since the sum of squares of the difference between�t and ��¸ follows a ¿ ¸ distribution (see [34] for details).

VI. EXPERIMENT

A. MRI parameters

The experiment was performed on a 3-T whole-body
system (Bruker, Germany) equipped with a quadrature
birdcage radio frequency (RF) coil and a head-gradient
coil insert designed for echoplanar imaging. Functional
images were obtained with a T2*-weighted gradient
echo, echo planar imaging sequence (TR = 3.3s, TE =
30ms, FOV '�À��i � �À��i mm ¸ , matrix 'ÂÁÀ� � ÁÀ�$
 . Each
image, acquired in 1.3s, comprised twenty-two 4-mm-
thick axial slices covering most of the brain. A high-
resolution ( b � b � bGO � mm) anatomical image using a
3-D gradient-echo inversion-recovery sequence, was also
acquired for each participant.

B. Description of the paradigm

The method was assessed on real data acquired in
a speech discrimination experiment. The experiment
consisted of six sessions ( ¤N'ÂÁ ) comprising one hundred
trials ( � �·' b i;i ) lasting 3.3 seconds each. In each trial,
the participant heard two pseudo-words over headphones.
His task was to indicate whether he had perceived or
not a difference between the two stimuli. There were
three types of trials ( É`' ° ): ‘Phonological’, ‘Acoustic’,
‘Control’. In trials belonging to the ‘Control’ condition,
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the two auditory stimuli in the pair were exactly the
same. In the ‘Phonological’ condition, the stimuli dif-
fered along a contrast used to distinguish words in the
language of the participant (it was linguistically relevant:
path vs bath in English). In the ‘Acoustic’ condition, the
stimuli also differed but the contrast between the stimuli
was not relevant in the language of the participant (e.g.,
beat vs beet in English).

The stimuli pairs were presented during the silent gaps
lasting 2 seconds between two succesive acquisitions (the
TR was 3.3 s and the time of acquisition of one volume
was 1.3 s). The onsets of events were aligned with the
start of the second stimulus in a pair (i.e., at 1.65 s),
which felt in between two successive acquisitions. :(&�'¦1§ À � is therefore an appropriate choice for the sampling
period of the HRF.

C. Results

The top of Fig. 7 shows & maps (thresholded ats ' i O i;i b corrected for multiple comparisons) su-
perimposed on axial slices of averaged T1-weighted
images, computed with SPM99. To obtain such results,
one first has to specify an fMRI model that uses a
canonical HRF ��Ã . Second, least squares estimation and
inference on relevant contrasts of the parameter estimates
is performed. The first half of the regressors of the
fMRI model is defined by ~ � ��&8�.
 D'q��K��§�w�:Ä±��ÃÄ
E��&8�#
 for)�' bGM4O4O4O3M �ë' Å � � ��'�ÁGi;i and Î_' bGM4O4O4O3M É ' ° .
The second half derives from the convolution of the
first-order derivative of � Ã with the onsets. The use of
derivatives allows to gain robustness against variations of
the maximum amplitude or the delay of this maximum.

The middle row of Fig. 7 shows the Maximum-
likelihood HRF estimates in three different voxels from
the left superior temporal gyrus of one participant: (Ta-
lairach coordinates in millimeters: Å· ·�DÆ ' ½ ÁGi M»Ç '½ �À� M¾È ' �$
*�¾Å ¸ �DÆ ' ½ ÁÉ¢ MÊÇ ' ½ �É¢ M¾È '¢�
*�ËÅNÌ��DÆ ' ½ ÁÀ� M�Ç ' ½ ��i MÍÈ ' b Á�
 . These
time courses have been computed without oversampling
i.e., just by estimating the amplitude of each HRF at
every ¦1§ . The bottom row of Fig. 7 shows the MAP
HRF estimates in the same voxels. These results have
been obtained from model ( � ), that is discarding the
influence of the trend and the baseline and taking the
six datasets into account. We have also considered the
same prior variance for the three modeled hemodynamic
responses.

Not surprisingly, Fig. 7( Î  )-( Î ¸ ) proves that the stimuli
elicited very similar responses in Heschel gyrus (primary
auditory cortex, Å� ). The two other voxels were located
in the planum temporale. Fig. 7( I  )-( I ¸ ) shows for ÅC¸

that there is differential treatment when the stimuli
differed, regardless of the type of difference (phono-
logical or acoustic). By contrast, Fig. 7( ÏG )-( ÏE¸ ) shows
a specific increment for phonological contrasts (speech
processing).

The main error that appears on the ML solutions in
Fig. 7( ÎC )-( Ï6 ) concerns the hemodynamic delay i.e., the
time-to-peak since the instant-matching error is about¦1§ À � . To circumvent this problem, the HRFs should
also oversampled but this leads to an increased number
of parameters and thus to unstable ML solutions. This
situation therefore requires regularization.

[Figure 7 about here.]

VII. DISCUSSION

In this paper, we have described and tested a general
method for estimating the hemodynamic response func-
tion in fMRI data. The method is general enough to deal
with all specific features of fMRI data, including the abil-
ity to work on several sessions and several experimental
conditions in the context of an asynchronous sampling
in event-related paradigm. In addition, our optimization
scheme is sufficiently efficient to allow large fMRI time
series to be processed. Finally, physiological artifacts can
be correctly taken into account, provided that they are
modeled with a small number of parameters (typically
four per session). This work has been implemented in
a MATLAB toolbox13 and interfaced with the SPM99
software.

To our knowledge, this work presents the only com-
prehensive robust non-parametric estimation of the fMRI
brain response to a task or a stimulus. Applications
of the technique are manifold. This approach should
improve the observation of significant differences be-
tween the HRFs estimated for different stimuli within
the same brain region. Using the HRF estimate to
specify a subject-dependent general linear model, we
could address the problem of the validity of the choice
of the regressors14 of such a model and may improve
the localization of the signal (see [35] for a multivariate
approach of this problem). In the domain of fusion of
information (in particular with EEG signals) it is also
important to have such a robust estimate of the HRF,
to investigate the relationship between metabolic and
electrical measurements.

Physiologically, the HRF should be zero-valued at ÌÔ'i . However, in practice, one sometimes detects voxels
where this assertion is not true. The most common cause

13the HRF toolbox can be downloaded at the following URL site:
http://www.madic.org/download/HRFTBx

14These regressors has been selected empirically so far.
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of this effect seems to be uncorrected stimulus-correlated
motion. Since motion correction in fMRI data is hardly
perfect, it is often important to remove the zero constraint
at Ì�' i . In the proposed software, this constraint can
be either changed to a less stringent prior (for instance
the first-order derivative at the extremal time samples of
the HRF) or shifted in time such that the start of the
HRF estimate can be chosen arbitrarily before the actual
occurrence of the stimuli (for instance a few seconds
before). This allows the user to check the influence of
this constraint on the HRF estimation.

The method can be extended in several ways:
First, to reduce the bias on the error bars we could

resort to a second order Taylor expansion on the drift
estimate as proposed for hyperparameters in [33]. This
scheme needs an important computational effort. Alter-
natively, the usual Bayesian methodology leads to in-
tegrate the joint posterior distribution ����� M!² � ¤ M � ���

over ² . Further developments should be done to develop
the MMAP estimate and check its ability to provide
error bars that allow for the dispersion of the nuisance
variables, in particular if a large number of nuisance
variables is necessary to model drift terms as well as
other additive effects of no interest. In this framework,
a particular attention should be paid to hyperparameter
estimation. If an EM algorithm was considered to per-
form this step, the complete data should be � ¤ M � M!² 
 and
function < should be defined by<Ç�1� M � > � ¤ M �_
�'Ò�4�4�' � �"� °·��� ¤ M � M!² � � �!��
3����� M!² � ¤ M �ê�!� > 
	�ß�l� ²'ÐH � Ê � ¥ � � °��� ¤ M � M!² � � �C�
� ¤ M �ê�!� > ¨ O
Maximizing < would require the computation of terms
similar to (24), which could depend on the joint covari-
ance matrix ® � Ê � of size É ��a ½ b 
	} � É ��a ½ b 
	} .
This matrix is obtained after a block matrix inversion
that will be more expensive than the computation of
the covariance matrix

�
(see (5)) since the number of

nuisance variables }�'ÆÅ � } � would be larger than the
number of HRF coefficients É ��a ½ b 
 . On the other
hand, since vector � would have a smaller size, the
EM algorithm should converge in fewer iterations with
a higher cost per iteration.

Second, another interesting extension would consist in
considering a spatial model. Since the BOLD signal is
known to have some spatial structure [36], estimation of
the HRF over a region of interest should also provide
a more robust estimation, as demonstrated by [37] who
use a general prior on the spatial extension of the signal.

Third, the model presented here assumes that the
response is constant in time. While this assumption is

reasonable in a first instance (as long as the ISIs do
not decrease below about two seconds), it is likely that
there exists some variations in time due to physiological
or neural adaptation to the stimulus or task. This is the
subject of ongoing research.

Fourth, it is not yet clear if the responses coming
from different subjects can easily be averaged in a
single response. It may be that several subjects have too
different brain responses such that the averaging of those
signals would be difficult to interpret. The extension of
the method to deal with multisubject data should be de-
veloped, although data can be analysed at the same time
using a different HRF per subject, with a generalization
of model ( � ) that takes different noise variances across
subjects into account. Such a generalization requires to
overcome the actual difficulties encountered in group
analysis: the most salient ones consist in removing
subject-dependent movement artifacts and normalizing
all subjects in the same space reference.

Lastly, we hope that this method can be the basis
for some work that would take advantage of the recent
advance in joint recording of electrical activity at the
surface of the scalp in the MR scanner. In particular,
using such (joint) recordings, it may be possible to
partially retrieve the local field potential information
from the BOLD signal, which would provide a better
understanding of the neural computation well resolved
in time and space.

APPENDIX I
DECOUPLING THE COMPLETE LIKELIHOOLD

OPTIMIZATION

Vector # � can be partitionned into two subvectors� L ��� and � � which respectively control the conditional
pdfs ��� ¤ �	� M � �C� L ��� 
 and ������� å M � � 
 . The M-
step of the EM algorithm can be divided into two simpler
independent maximization problems. The complete like-
lihood which enters in the definition of < in (12) can be
expressed as��� ¤ M ����� � # �
�' ��� ¤ �	� M � ��� L �X��
������m� å M � � 
 O

(18)

For any set value of parameters vector # � @ , define
functions < L �X� and < � as<�L � � �1�NL � � M«# � @ � ¤ 
�'ÂH ¥ �"� °��� ¤ �	� M �ê�!� ��� � 
4� ¤ � #� @ ¨

(19)< � �1� � M«# � @ � ¤ 
�'ÂH ¥ �"� °������� å M � � 
4� ¤ � #� @ ¨ O
(20)
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It can be immediately deduced from (12) and (18) that
function < can be expressed as<Ç�D# � M # � @ � ¤ 
;'r< L � � �1� L � � M # � @ � ¤ 
 H < � �1� � M # � @ � ¤ 
 M

(21)
which shows that the M step of the EM algorithm can be
decoupled into two operations: maximization of < L �X�
w.r.t. � L ��� and maximization of < � w.r.t. � � .

APPENDIX II
UPDATING � L ���

In the present case, ¤ is made up of independent
realizations ��� � 
  	�#���C� . As a consequence, the expression
of < L ��� can be rewritten as< L � ���1� fL � � M # �·� ¤ 
;' �= � ?  <Ú� � � ���1� f � � � � M # �y� ¤ 
 O (22)

Handling successively the likelihood (3), the Gaussianity
of
�

, definition (19) and (22), we are able to derive a
closed form expression for < � � ��� :<Ú� � �X�Z�1�Mf � � � � MÑ# �y� ¤ 
;' ½ b�yÒ �Ç� �"� °�eÀff H be ff e �P� o f� 
�Ó M (23)

where function e �	���§
 is defined by the following expec-
tatione � � o f� 
Q'ÂH � ¥�ÔÔ � � ½ n � o f� ½ l � �»ÔÔ ¸ � ¤ M #� ¨ O (24)

Since the posterior pdf ������� ¤ M � �N# �-
 is ãÒ� � � MAP M � 
 -
distributed, analytic calculations give for e � :e �P� o f� 
;'¿�á� �-� ½ n � o f� ½ l�� � � MAP �á� ¸ H ñ > � l¿� � l L� � O

Here, we would like to stress the separability property,
expressed through (22), that allows to think about a
parallel update of vectors ��� � ��� , for   Y\¡ ¢� , except
for e3f . Such a property results from model ( � ) and
implies that the maximization of <8L �X� is block-wise
decoupled for vectors o � . Finally, replacing e � by its value
in (23), taking the first derivative of < � � �X� w.r.t. �Mf � � �X�
and equating to zero yields (14) and (15) for o � and e6f ,
respectively.

APPENDIX III
UPDATING � �

From the prior pdf (4) and the definition (20), function< � is defined by< � �1� f � M # ��� ¤ 
p' ½ ��a ½ b 
� �=� ?  
�"� ° ä f� ½ e �1��f � 
�H É � �"� °t¬ ¹4ñ � å 
 (25)

withe �1� f � 
�'�H � ¥ � L å f � ��� ¤ M � M #� ¨'�� � � MAP 
 L å f � � � MAPH ñ > � å ��� L å f � � M (26)

and å f � '\T ä f å MÄä f¸ å M4O4O4O6MÄä f� å W . Here again, replacinge by (26) in (25) and taking the first derivative of < �
w.r.t. � f � allow us to find the updating equations (16).
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Fig. 1. Average HRF estimates over © ÛÕª«�;� drawings of the noise distribution in the case of synchronous paradigm ( ÖZ×CÛ TR ÛÕª s) and
for a low CNR value. (a) & (d): Maximum-likelihood HRF estimates. (b)-(c) & (e)-(f): MAP HRF estimates computed with constant (b)-(e)
and adaptative prior models (c)-(f). Solid and dashed lines represent ô Þ and ô$Ø , respectively. Fine and thick lines code for true and HRF
estimates, respectively. In addition, the time samples of ô Þ and ô$Ø are marked with Ù and Ú , respectively.
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Event-related design
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Fig. 2. Mean square error computed on ô Þ in (a) & (c) and on ô$Ø in (b) & (d). Solid lines depict the MSE value for the ML estimates.
Dash-dotted and dashed lines give the MSE values for the MAP estimates computed with constant and adaptative prior models, respectively.
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Fig. 3. Average HRF estimates over © ÛIª«�F� drawings of the noise distribution in the case of synchronous paradigm ( Ö)×QÛ TR ÛÛª
s) and for a high CNR case. (a): Maximum-likelihood HRF estimates. (b): MAP HRF estimates computed with a constant prior model.
Solid and dashed lines represent ô Þ and ô Ø , respectively. Fine and thick lines code for true and HRF estimates, respectively but cannot be
distinguished at this level of CNR. The time samples of ô Þ and ô$Ø are marked with Ù and Ú , respectively.
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Fig. 4. HRF estimates for synchronous vs asynchronous estimation technique. Top row: HRFs computed using Ö)×yÛ TR (a) and Ö)×·Û
TR �FÜ (b). Bottom row: HRFs estimated using Ö)×CÛ TR �!Ý (c) and Ö)×CÛ TR �FÞ (d). Solid and dashed lines represent ô Þ and ô$Ø , respectively.
Fine and thick lines code for true and HRF estimates, respectively. The time samples of ô Þ and ô Ø are marked with Ù and Ú , respectively.
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Fig. 5. (a) and (b): comparison of the HRF estimates computed from one vs four sessions, respectively when the low frequency drift
included in the data is modeled with ()&�Û/Ý nuisance variables for each session. (b) and (c): comparison of drift modeled (b) and drift not
modeled (c) for HRF estimates computed from four sessions. In all cases, we have considered the adaptative prior model ( ø Þ�ßÛ�ø Ø ).
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Fig. 6. Testing for the robustness to the equal noise variance hypothesis. (a)-(b): HRFs estimated from a single session where the Gaussian
noise has for variance �Uà Þâá� Ûã�åä �;Þ and �åà Ø á� Ûã�Uä æ , respectively. In (c), the HRFs have been estimated from both sessions with model ( ^ ),
that is assuming � à Þâá� Û/� à Ø á� .
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(a) Heschel gyrus, Å� (b) Planum temporale, Å�¸ (c) Planum temporale, ÅMÌ
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Fig. 7. Real data originating from a speech perception experiment. Top row: statistical × maps yielded by SPM 99 (thresholded at ç�Û*�åä �F�Uª ),
superimposed on axial slices of averaged T1-weighted images. Middle row ( è Þ )-( é Þ ): Maximum likelihood HRF estimates computed from
six sessions in voxels marked by blue crosses ( ê Þ - ê ¬ ). Bottom row ( è Ø )-( é Ø ): MAP HRF estimates computed from six sessions in the
same voxels. Voxel coordinates are indicated near the time courses. ‘Phonological’, ‘Acoustic’ and ‘Control’ conditions are coupled withô Þ ÷|ô Ø ÷|ô ¬ , respectively.
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TABLE I

LIST OF NOTATIONSë &CÑ{Ó8ì � Data of session , for a given voxelí &CÑ±Ó ì � Gaussian noise vector of session ,·î�*ª Number of HRF coefficients for each conditionï à ù á& ÑÝÓ ì � ÖÚÓËÕKð Þ Binary “onsets matrix” of stimulus ñ for session ,ô ù ÑÝÓ Õ�ð Þ HRF for the ñ th condition¶ Number of different conditions in the experimentô�ÛÕò ô�ó Þ ÷�ä�ä�ä	÷�ôJóô
õ~óAÑÝÓ ô à ÕKð Þâá Set of HRFsï &PÛöò ï à Þâá& ]�ä�äGä!] ï à ô á& õ	Ñ�Ó8ì � ÖAÓ ô à Õ�ð Þâá Binary “onsets matrix” of all conditions for session ,( & Number of drift parameters for session ,% & ÛÕò ç & ´ Þ ÷�ä�äGä	÷=ç & ´ ÷ � õ	Ñ�Ó ì � ÖÓ ÷ �
Low frequency orthogonal matrix for session ,5 & Ñ{Ó ÷ �
nuisance parameters for session ,ø
Sessions number�´Ûãù 2&�ú Þ �Z& Global number of data for all sessions[�Ûüû ë ó Þ ÷�äGä�äP÷ ë ó2�ý ó Ñ{Ó8ì Complete set of data for all sessionsþ Û û ï óÞ ]?ä«ä�ä	] ï ó2 ý ó Binary “onsets matrix” for all sessions3�Û*ÿ��~7�� ò % Þ ÷Gä�ä«äP÷=% 2 õ Low frequency orthogonal matrix for all sessions4CÛ û 5 ó Þ ÷�ä�äGäP÷=5 ó2 ý ó Ñ±Ó � � ÷ � nuisance parameters for all sessions` ² ÛÕò ø Þ ÷«äGä�äP÷1ø ô õßÑ±Ó ô
Hyperparamters of the prior pdf ó�ØXô�õGö�÷�` ² Ù`±Û ò �Ñ�P÷�`?ó² õ~ó Complete set of hyperparametersö Prior covariance matrix of ô ùö ² Û*ÿ��~7�� ò ø Þ ö�÷�øÑØ�ö�÷�ä�ä«äP÷�ø ô ö õ Prior covariance matrix of ô ô MAP MAP HRFs estimate

�
Posterior covariance matrix of  ô MAP

�
Covariance matrix of the data [

� Ø" ô ù õGô ù Ù Quadratic error between ô ù and its estimate  ô ù
	 Ø" ô ù Ù Mean standard deviation error measure for  ô ù

TABLE II

ECM ALGORITHM FOR HYPERPARAMETERS AND NUISANCE VARIABLE ESTIMATION.

1) Initialize _` 
 .
2) Iteration �ÇØ���ãªÄÙ

� Estimate ` c��� ² Û ò 5 c Þ ÷�ä�äGäP÷=5 c2 ÷b� c� õ ó :
– Compute 5 c& using (14) for ,CÑ�.102 ;
– Compute � c� using (15);

� Estimate ` c² ÛÕò ø cÞ ÷�äGä�äP÷1ø cô
õ ó using (16);

3) Compute a�Ø"_`Kc8÷E_`³c Ü$Þ õå[A÷=^�Ù using (21)–(25);

4) Iterate �^Û����/ª and _` c�Û�ò ` c��� ² ÷=` c² õ ó until stop rules are satisfied;
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TABLE III

SIMULATION PARAMETERS FOR FOUR DIFFERENT DATASETS.

Subsect.
Drift �Ñ� CNR # Sess.

Flag Cut-Off-Period (s)

§ V-B No [0.7 0.028] [0.3 1.53] 1

§ V-C No 0.008 1.46 1

§ V-D Yes [180 170 160 180] 0.03 0.73 4

§ V-E Yes
[180 170 160 180]

[0.03 0.2] [0.73 0.29] 4
[40 50 50 40]

§ V-F No [0.08 0.3] [0.46 0.24] 2

§ V-G Yes 160 0.02 0.92 1

TABLE IV

GLOBAL MSE OF THE HRF ESTIMATES COMPUTED BY ML AND MAP METHODOLOGIES.

� ¶����^Ø��$õGô ù ÙÖ ª��;�
ER design Block designô Þ ô$Ø ô Þ ô$Ø

CNR=0.3

ML estimates 5.45 5.37 8.83 11.26

MAP estimates ( ø Þ Û�ø«Ø ) 1.47 3.39 1.58 5.31

MAP estimates ( ø Þ ßÛ�ø«Ø ) 1.46 2.97 1.6 4.78

CNR=1.53

ML estimates 0.21 0.22

MAP estimates ( ø Þ Û�ø«Ø ) 0.15 0.19

MAP estimates ( ø Þ�ßÛ�ø Ø ) 0.12 0.18

TABLE V

QUADRATIC ERROR
�

AND MEAN STANDARD DEVIATION
	

OF THE MAP ESTIMATES COMPUTED FOR DIFFERENT VALUES OF Ö)× .
� Ø���õ;ô.ùQÙ 	 Ø  ô.ù�Ùô Þ ô Ø ô Þ ô ØÖ)×�Û TR 0.02 0.021 0.078 0.077Ö)×CÛ TR �;Ü �åä æ ª�� Ü?¬ �Uä ÜAª�� ÜÉ¬ 0.07 0.067Ö)×CÛ TR �!Ý æåä �
ª��3Ü?¬ Ý:ä ÜAª�� ÜÉ¬ 0.069 �Uä �����Ö)×CÛ TR �FÞ æåäwª)ª�� Ü?¬ �åä æ�ª��3ÜÉ¬ �Uä ���FÞ 0.065
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TABLE VI

QUANTITATIVE ASSESSMENT OF THE HRFS ESTIMATED BY THE SUCCESSIVE MODELS OF SECTION II.

Quadratic error
� Ø���õ;ô ù Ù Dispersion

	 Ø  ô ù Ùô Þ ô$Ø ô Þ ô$Ø
Single Session & No drift & ø Þ Û�øÑØ 0.017 0.018 0.13 0.13

Single Session & No drift & ø Þ ßÛ�øÑØ 0.016 0.017 0.12 0.13

Single Session & drift & ø Þ Û�øÑØ 0.015 0.015 0.11 0.1

Fig.5(a) Single Session & drift & ø Þ ßÛ�øÑØ 0.015 0.014 0.08 0.11

multisession & No drift & ø Þ Û�øÑØ �Aª��3Ü?¬ 0.01 0.1 0.1

Fig.5(c) multisession & No drift & ø Þ ßÛ�øÑØ ��ª�� Ü?¬ ÞAª�� ÜÉ¬ 0.08 0.1

multisession & drift & ø Þ Û�øÑØ �Aª��3Ü?¬ �)ª��3ÜÉ¬ 0.06 0.06

Fig.5(b) multisession & drift & ø Þ ßÛ�øÑØ Ý
ª�� Ü?¬ �V÷ �Aª«� ÜÉ¬ �åä �FÝ �Uä ���


