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Event-Related Functional MRI: Bayesian Networks
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Habib Benali, Senior Member, IEEE

Abstract—A convenient way to analyze blood-oxygen-level-de-
pendent functional magnetic resonance imaging data consists of
modeling the whole brain as a stationary, linear system char-
acterized by its transfer function: the hemodynamic response
function (HRF). HRF estimation, though of the greatest interest,
is still under investigation, for the problem is ill-conditioned. In
this paper, we recall the most general Bayesian model for HRF
estimation and show how it can beneficially be translated in terms
of Bayesian graphical models, leading to 1) a clear and efficient
representation of all structural and functional relationships
entailed by the model, and 2) a straightforward numerical scheme
to approximate the joint posterior distribution, allowing for
estimation of the HRF, as well as all other model parameters. We
finally apply this novel technique on both simulations and real
data.

Index Terms—Bayesian inference, Bayesian networks, func-
tional MRI, hemodynamic response function.

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) is a
noninvasive technique allowing for the evolution of brain

processes to be dynamically followed in various cognitive and
behavioral tasks [1]. In the most common fMRI technique,
based on the so-called blood-oxygen-level-dependent (BOLD)
contrast, the measure is only indirectly related to neuronal
activity through a process that is still under investigation
[2]–[4]. For this reason, a convenient way to analyze BOLD
fMRI data consists of modeling the whole brain as a stationary,
linear “black box” system characterized by its transfer response
function, also called hemodynamic response function (HRF)
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[5]. This model, called general linear model (GLM), fairly
well accounts for the properties of the real system as long as
the inter-stimulus interval does not decrease beyond about two
seconds [6], [7]. When this constraint is not respected, other
models have to be developed [8], [9].

Estimation of the HRF is of the greatest interest when ana-
lyzing fMRI data, since it can give a deep insight into the un-
derlying dynamics of brain activation and the relationships be-
tween activated areas. HRFs are increasingly suspected to vary
from region to region, from task to task, and from subject to sub-
ject [10]–[12]. Age and disease are also more and more believed
to have a significant influence on the BOLD response [13], [14].
Nevertheless, accurate estimation of the response function still
belongs to ongoing research, since the problem is badly condi-
tioned. Various nonparametric methods have been developed so
far in an attempt to infer the HRF at each time sample, such as
selective averaging [6], averaging over regions [15], introduc-
tion of nondiagonal models for the temporal covariance of the
noise [16], or temporal regularization [17].

In [18] and [19], we proposed a Bayesian nonparametric es-
timation of the HRF for event-related designs. Basic yet rel-
evant physiological information was introduced to temporally
constrain the problem and calculate robust estimators of the pa-
rameters of interest. In [20]–[22], the model was extended to
account for asynchronous event-related designs, different trial
types, and several fMRI sessions, further improving the estima-
tion. For calculation reasons, all variants proposed so far have,
however, the drawback of not integrating the hyperparameter
uncertainty. Furthermore, probabilistic treatment of the drift pa-
rameters in the extended model was possible [23], [24], but at a
significantly higher computational cost.

In this paper, we propose to cast a new light on the GLM. We
still place ourselves in a Bayesian framework, permitting inte-
gration of information originating from various sources and ef-
ficient inference on the parameters of interest. A general model
is set to account for most event-related fMRI data. In a conven-
tional Bayesian approach, we would then calculate the joint pos-
terior distribution of all parameters, which would be the pivotal
quantity for all further inference. Since direct sampling from
this probability density function (pdf) would prove impossible,
Monte Carlo Markov chain (MCMC) sampling would be re-
quired, such as Gibbs sampling [25], [26]. In this case, pos-
terior conditional pdfs should be derived. In this perspective,
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we advocate that calculation of the posterior pdf is unncessary.
Instead, we resort to a novel approach that focuses on graph-
ical modeling and that, once the model has been properly set,
makes it possible to directly lead probabilistic inference about
all parameters. More precisely, we utilize graph theory [27] to
conveniently deal with the model. Indeed, graphs give a very
simple and efficient representation of the model, however com-
plex it may be. In this framework, we translate the model into a
Bayesian network. Using Markov properties of such networks,
drawing inference becomes straightforward, and Gibbs sam-
pling finally provides us with a numerical approximation of the
joint posterior pdf.

In the next part of this paper, we develop the general Bayesian
framework for HRF estimation, presenting an extended version
of the GLM. In Section III, the GLM is translated in terms of
graphical model, and it is shown how inference can readily be
performed from there. We briefly present simulations and fi-
nally apply our model to real data.

II. HRF ESTIMATION IN fMRI DATA ANALYSIS

A. Notations

In the following, denotes a real number, a vector, and
a matrix. For the sake of simplicity, —between paren-

theses—is a shortcut for . “ ” is the regular matrix
transposition. stands for the identity matrix. “ ”
relates two expressions that are proportional. For two variables

and , “ ” stands for “ given ,” and for the
probability of . is the Gaussian density function
with mean and covariance matrix calculated at sample

. Inv- is the scaled inverse-chi-square density
function1 with degrees of freedom and scale parameter
evaluated at sample .

B. General Linear Model

Let an fMRI experiment be composed of sessions,
each session involving different stimulus types. Define

as the BOLD fMRI time course of a
voxel (i.e., volume element) at (not-necessarily uniformly sam-
pled) times for session , and
the corresponding binary time series, composed of the th
stimulus onsets. The following discrete linear convolution
model is assumed to hold between the stimuli and the data

, where is the largest integer so, that
for all . The -dimensional vector

represents the th unknown HRF to be estimated,
sampled every . All HRFs are assumed to be constant across
sessions. is the actual amount of data used in
the calculation for each session. is the
regular -by- design matrix, consisting of the lagged
stimulus covariates. In the -by- matrix

1Ifu is chi-square distributed with d degrees of freedom, then dr =u is scaled
inverse-chi-square distributed with d degrees of freedom and scale parameter r .
Equivalently, a scaled inverse-chi-square distribution Inv-� (d; r ) is a special
case of the inverse Gamma distribution Inv-�(�; �), with � = d=2 and � =
dr =2. See the Appendix for the exact expression of the corresponding pdf.

are the values at times of a basis of functions that
takes a potential drift and any other nuisance effect into account,
and contains the corresponding coefficients. For
the sake of simplicity, the basis is assumed to be orthonormal,
so that . Vector accounts
for noise and is supposed to consist of independent and iden-
tically distributed Gaussian variables of unknown variance ,
assumed to be independent from the HRFs. In matrix form,
boils down to

also called general linear model (GLM). In this model, the like-
lihood of the data yields

(1)

with each term in the product reading

(2)

C. HRFs and Hyperparameters

Initsgeneralform,theGLMisusuallyill-conditioned,for there
are too many parameters to estimate compared to the information
brought by the data. Prior information must, hence, be incorpo-
rated inorder toconstrain theproblem.Since theunderlyingphys-
iological process of BOLD fMRI is as of yet only partially under-
stood, we set the following soft constaints [18], [21].

P1) The HRFs start and end at 0. This amounts to setting the
firstandlastsamplesofeachHRFto0,sothatonly
parameters (instead of ) are now unknown.

P2) TheHRFsaresmooth.Quantification isachievedbyset-
tingGaussianpriorsforthenormofthesecondderivative
of the HRFs, whose variances are adjusted by hyperpa-
rameters ’s. More precisely, we assume that

Following usual practice, can be discretized as

for . Taking into account that
, we obtain in matrix form

where is the following matrix:

. . .
. . .

. . .
. . .

. . .
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Hence

Finally, we obtain for

(3)

where is the following
-by- symmetrical positive definite matrix

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

P3) No prior dependence is assumed between HRFs, so
that

For convenience reasons, the priors for ’s are set as conju-
gate priors, i.e., these parameters are assumed to be a priori
independent identically distributed with common pdf a scaled
inverse- with degrees of freedom and scale parameter
given in the model ( set to a small value to obtain a “hardly”
informative prior). This setting is further precised later and also
analyzed in the discussion.

D. Drifts and Noise Variances

Unlike the HRFs, noise variances and drift parameters may
vary across sessions. Each is assumed to follow a scaled in-
verse- distribution with degrees of freedom and scale
parameter . Each is assumed to be Gaussian distributed
with mean and covariance matrix .

E. Joint Posterior Distribution

Considering the model so constructed and assuming no fur-
ther prior dependence between parameters, formal application
of the chain rule yields

(4)

Given data , our knowledge relative to the model param-
eters can easily be updated using the conditioning formula

In words, the joint posterior probability distribution is propor-
tional to the joint probability of (4). Replacing all distributions
by their functional forms, this joint posterior pdf could be calcu-
lated in closed form, as is indeed done in most works applying
Bayesian analysis. Since direct sampling from the joint posterior
pdf is impossible, we must resort to MCMC, e.g., Gibbs sam-
pling where the conditional pdfs should be derived. In this per-
spective, we propose to avoid calculating the joint posterior pdf
to directly proceed to inference. In order to do so, we beforehand
embed our model in a framework that allows for convenient rep-
resentation, handling, and numerical inference: Bayesian graph-
ical models.

III. GRAPHICAL MODELING

A. Directed Acyclic Graphs and Bayesian Networks

A graph is a mathematical object that relates a set of ver-
tices, or nodes, , to a set of edges, , consisting of pairs of
elements taken from . There is a directed edge or arrow be-
tween vertices and in if the set contains the or-
dered pair ; vertex is a parent of vertex , and
vertex is a child of vertex . A directed graph is a graph
whose edges are all directed. A path is a sequence of distinct
vertices for which is in for each

. The path is a cycle if the end points are al-
lowed to be the same, . An oriented graph with no
cycle is called a directed acyclic graph (DAG).

A distribution p over is compatible with a DAG if it sat-
isfies all independence relationships entailed by . is
then called a Bayesian network. For more details, the reader
is referred to [27]. The major feature of Bayesian networks is
that must factorize according to the so-called factorization
property

(5)

where is the set of parents of vertex . This is nothing
but a multidimensional generalization of the Markov chain rule.
Defining a Bayesian network, hence, amounts to 1) defining rel-
evant variables (i.e., nodes) , 2) defining structural relation-
ships (i.e., edges) , and 3) defining functional relation-
ships . Pearl [28] showed a property that proves to
be very efficient for numerical sampling, namely that nothing
more is required to calculate the conditional probability of any
node: the probability distribution of any variable in the net-
work, conditioned on the state of all other variables, is given by
the product

(6)
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Fig. 1. Structural dependence of yyy .

Fig. 2. Structural dependence of hhh .

where r.v. stands for “remaining variables” and for the
children nodes of . Note that can have several parents
and, hence, may not be restricted to . This formula
states that the conditional probabilities can be derived from local
quantities that are part of the model spectification.

B. Constructing the GLM Graphical Model

The GLM can easily be expressed in terms of a Bayesian net-
work. This translation requires two major steps: representing the
structural relationships, and then the functional relationships.

Equation (1) states that each depends on the corresponding
and , as well as all ’s. This equation can, hence, be rep-

resented by the graph depicted in Fig. 1.
As to the model relative to the prior information on the HRFs,

it expresses that each depends exclusively on . Fig. 2 is,
hence, a good model for it.

Gathering all parts leads to the graph proposed in Fig. 3. Ir-
respective of the functional relationships between nodes, appli-
cation of (5) to the graphical model states that the joint pdf for
all variables decomposes as

which, once developed, is exactly (4). Our graphical model,
thus, unambiguously embeds all structural relationships of the
GLM. However, complicated may be, it is still much sim-
pler to conceptualize it in graph form than as it was presented be-
fore. Whereas determination of structural relationships between
two given variables in model remains a tough problem to
tackle, the corresponding DAG clearly and unambiguously rep-
resents all possible independence relationships, that can be read
off the graph using its Markov properties.

Among others, a direct consequence of this mod-
eling is that it is now possible to apply (6) to the GLM
graph model, expressing the conditional pdfs of all vari-

Fig. 3. DAG corresponding to the GLM.

ables, , and
as a function of the distributions already defined

(7a)

(7b)

(7c)

(7d)

Note that the functional relationships have not been defined
yet—all the properties abovementioned are entailed by the
sole structural relationships. As a matter of fact, the graphical
representation is much more general than the GLM. The
only constraints set by the graph is that the functional rela-
tionships be of the form , and

. But these conditional distributions can,
in turn, be chosen at will. On the other hand, the graphical
model can be made more specific for our purpose, so that it
exactly fits the GLM. Identifying all functional relationships of
the network to their counterparts for model then makes the
DAG a perfect representation of the GLM. and
can be chosen to a scaled inverse- and a Gaussian distribu-
tion, respectively, as detailed in Section II-C. and
can be set as in Section II-D. Finally,
can be set as in (2).

C. Numerical Inference

To obtain a numerical approximation of the joint posterior
pdf, we apply Gibbs sampling. This consists of starting with a
seed vector and sequentially modifying one vector component at
a time by sampling according to the conditional pdf of that com-
ponent given the remaining variables. Samples are composed of
the set of all vectors whose components have been updated an
equal amount of times.

A key issue with Gibbs sampling is to partition the vector
of all parameters into components whose conditional sampling
can easily be performed. Another one is derivation of the
conditional pdfs corresponding to the chosen clustering. In
our case, both questions are answered at once, thanks to
the previous step of graph modeling. As a matter of fact, it
first allows us to decompose the parameter vector onto its

canonical components: ’s and ’s, ’s, and
’s. All ’s being given, no sampling needs to be done on

these variables. The updating steps are performed on these
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variables; we, therefore, need access to the following condi-
tional pdfs: , and

. But these are just the conditional distributions
given by Pearl’s theorem and structurally developed in (7).
Integration of the exact functional relationships into (7) leads
to (see the Appendix for a summary of the properties used)

• According to (7a), is proportional to the
product of two inverse-chi-square distributions in ; it is,
hence, also inverse-chi-square distributed

-

with

• According to (7b), is proportional to the
product of two multivariate Normal distributions in ; it
is, hence, also multivariate Normal distributed

with

• According to (7c), is proportional to the
product of two inverse-chi-square distributions in ; it
is, hence, also inverse-chi-square distributed

with

• According to (7d), is proportional to the
product of two multivariate Normal distributions in ; it
is, hence, also multivariate Normal distributed

with

The sampling can then be performed by sequentially updating
the ’s, the ’s, then the ’s, and finally the ’s. Conver-
gence monitoring is performed component-wise using parallel
sampling as detailed in [29]. More precisely, we first take the
logarithm of and , so that all variables are spanned from

to . For each estimand , and
, we draw parallel sequences of length (we typically

took and ), each sample being denoted ,
with and . We then compute the be-
tween-sequence variance BV, and the within-variance sequence
WV as follows:

with

and

where

We then calculate

for each scalar estimand. These quantities are supposed to de-
cline to 1 as the sampling converges. We stop the algorithm
when all are close enough to 1, e.g., smaller than 1.1, and
remove percent of each chain to account for a burn-in period.

We are admittedly mostly interested in the HRFs, but knowl-
edge of the values taken by the other parameters are relevant as
well for our analysis and a better understanding of brain pro-
cessing. Gibbs sampling gives us access to estimates for all pa-
rameters or any quantity of interest related to them. For instance,
in this paper, parameter estimators are given as

Once Gibbs sampling has converged, these quantities are ap-
proximated by their sample counterparts.

IV. SIMULATIONS

We simulated data with two HRFs , as depicted in
Fig. 4. To obtain the ’s corresponding to these HRFs, we cal-
culated them as follows. If we knew that , then we could
infer using Bayes’ theorem

where would be given by (3), and
could be taken as a uniform prior, asuming no particular prior
knowledge. would then be Inv- distributed
and

This last relation can, in turn, be taken as estimate for , leading
to

For the simulation, we also took two sessions of
time samples. and the sampling interval were both set to
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Fig. 4. Simulations. Estimated (dashed line) and simulated (solid line) HRF
(Available: www.fil.ion.ucl.ac.uk/spm/spm99.html).

1.5 s. Quadratic drifts (
and ) and Gaussian white
noises were also added. Note that the
noise standard deviations are about of the same amplitude as
the HRF. For the analysis, we set both orders to , and
took a quadratic drift in consideration with each
set to , and to a diagonal matrix such, that

. All and were
set to 1 to implement vague priors for ’s and ’s. As to the
remaining hyperparameters, the goal was to set them, so that
they provide a magnitude order for the corresponding variables
as follows:

• each was set to ;
• was set to

where is SPM canonical HRF and is a
scaling factor.

Gibbs sampling took about 2 250 updates for each of the 10
parallel chains to converge, and we kept the last 10% of each
chain. We obtained the following estimates:

Estimates for , and were accurate. As shown in Fig. 4,
HRF estimates were also very accurate for the noise level con-
sidered.

Fig. 5. Convergence monitoring. Every 50 steps is represented max[ R̂]
taken among all � (diamonds), � (circles), h (squares), and � (stars).

V. REAL DATA

Eleven healthy subjects (age 18–40) were scanned while per-
forming a motor sequence learning task. Using a joystick, they
were asked to reach a target projected on a screen for 3 s, fol-
lowing an elliptic curve as precisely and rapidly as possible.
They had to complete 64 trials of sequence (SEQ) mode (the
targets appeared in a predefined order, unknown to the subject,
to form a 8-item-long sequence) and 16 trials of random (RAN)
mode (the targets appeared pseudorandomly). The time interval
beween two consecutive trials, or inter-stimulus interval, was
randomly selected to uniformly lie between 3 and 4 s. Func-
tional -weighted acquisitions were performed on a 3 T Bruker
MEDSPEC MR system (TR: 3 486 ms, TE: 35 ms, flip
angle: 90 , matrix 64 64 42, voxel size 3 3 3 mm).

The data imply to work with HRFs ( and
corresponding to SEQ and RAN, respectively) and

sessions. For the analysis, we first adjusted the stimulus on a
grid of interval . Both HRFs were assumed to have
a common order , for a total duration of 5 TRs. The
prior hyperparameters were set as in Section IV. To illustrate the
method, we selected two voxels, and . was located in the
right cerebellum and in the right inferotemporal lobe. Our
goal was to estimate both HRFs corresponding to conditions
SEQ and RAN, respectively.

Based on our monitoring system, convergence took around
1 300 iterations to occur. Fig. 5 shows a typical convergence
curve. As showed in Fig. 6, the method was able to extract dif-
ferent HRF behaviors for different conditions, despite a very low
signal-to-noise ratio. The high noise level was reflected in the
large estimate error bars but did not prevent discrimination be-
tween conditions. The estimated values for the other parameters
are given in Table I.

VI. DISCUSSION

Our approach made it possible to associate the well-known
GLM for HRF estimation in fMRI data analysis to a directed
acyclic graph. This had the first advantage of making clear all
modeling hypotheses. Moreover, in a Bayesian framework, the
complex, yet central, step of calculating the joint posterior pdf
was avoided. Instead, the graph provided us with a very conve-
nient tool to first break down the set of all variables into coherent
subsets, namely its nodes. Using the Markov properties, it was
direct to derive all conditional pdfs that were required for Gibbs
sampling as products of conditional pdfs that have been
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Fig. 6. Real data. HRFs corresponding to the SEQ (solid line) and RAN
(dashed line) stimuli. Each sample has been slightly shifted to the left (SEQ)
or to the right (RAN) for a better graphical rendering.

TABLE I
ESTIMATES OF THE SMOOTHING PARAMETERS � , THE NOISE VARIANCES � ,

AND THE BASELINES �

specified with the modeling. Fully probabilistic numerical in-
ference was then straightforward at a reasonable time cost. Fur-
thermore, solving the same problem with several variables set
to certain values was an easy matter, since all that must be done
is removing these variables from the sampling scheme.

Because variable partitioning is implied by the graph struc-
ture, our application of Gibbs sampling differs from classical
applications. For instance, we sequentially sampled each HRF,
resp. drift vector, resp. noise variance, whereas a conventional
procedure would simultaneously sample all HRFs, then all drift
parameters, and so on. What influence this difference makes on
the convergence speed of the Markov chain is a matter that needs

to be further investigated. Another point would be to compare
our method to a more conventional procedure where part, or all,
of the nuisance parameters (e.g., drift parameters) are integrated
out of the joint posterior pdf, and inference is done on the poste-
rior marginal pdf of the HRFs. In the “marginal” scheme, each
sample is performed on a lower dimension, and the Markov
Chain is also of lower dimension. For these reasons, it is ex-
pected that convergence will be faster. This scheme is, however,
very sensitive to model changes and makes inference on other
parameters tedious.

Influence of the prior parameters is of importance to check sen-
sitivity of the estimates. and were found to have very little
weightonthe inference, and somemore.Selectionof and

did not much matter for drift and noise parameters, but had a
dramatic influence on HRF estimation. The ad hockery proposed
to manually set these hyperparameters seems to be useful, but its
influence on the sampling scheme is still unclear. Indeed, except
for this, we did not even have a prior idea of the magnitude order
of , whereas scaled inverse-chi-square pdfs are relatively local-
ized around their mode. To remedy this flaw, we suggest that set-
tingpriors for would prove more adapted to thestateof ig-
norance that we are in relative to these parameters than conjugate
priors.Ageneralprocedureisproposedin[30]tosamplefrompdfs
thathavethestructureimpliedby(6)usingrejectionsampling.An-
other improvement would be to modify the model, so that be-
comes independent of the HRF intensity. This could be achieved
byconsiderationofanormalizedHRFandascalingfactor.Choice
of noninformative, i.e., improper,2 priors might also help to cir-
cumvent that problem. The reason why we did not consider this
option here is that it is safe to use improper priors as long as the
posterior pdf can be proved to be proper. Since one advantage of
our method is to avoid calculation of the posterior pdf, this step
cannot be performed in our setting without making it lose some of
its appeal. Nonetheless, we are optimistic and believe that further
investigation could justify use of improper priors in a restricted
fashion.

In the framework of DAG modeling, the local properties of
relationships renders the model very simple to structurally or
functionally modify at a local level, either because it does not
correctly explain the phenomenon under interest, or because a
more complex model is sought. As a matter of fact, the proposed
model for HRF estimation can already be seen as an improve-
ment of the graphical model associated to the basic one-HRF,
one-session linear model. Fig. 7 illustrates how this model can
successively be expanded by introduction of smoothing priors,
several sessions, and several stimulus types. These models can
be dealt with as efficiently as the one detailled in this paper.
Their joint posterior distribution would be given by application
of (5), whereas all conditional distributions required by Gibbs
sampling could easily be obtained through (6).

Besides, consideration of local spatial information, as in [23],
[24], [31] could be achieved by gathering all voxel graphical
models that were here assumed to be independent from each
other and adding relationships between neighboring ’s. An-
other point would be to relax the assumption that all HRFs are

2A prior pdf p is improper if its integral is not finite, i.e.,

p(x) dx =1:
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Fig. 7. Successives complexification of the HRF model. (a) basic model;
(b) model with hyperparameter for smoothness regularization; (c ) model
accounting for one stimulus type and several sessions; (c ) model accounting
for several stimulus types and one sessions; (d) GLM considered in this paper.

constant across sessions and rather assume that they share the
same shape accross sessions, with an amplitude that can vary,
as discussed in [22]. As more and more information is incorpo-
rated into the model, the corresponding graph will become more
and more complex. However, tools have been developed to deal
with such graphs. Parallel processing of Gibbs sampling can be
implemented. To avoid the problem of simultaneous updating of
neighboring variables, one has to apply the so-called “edge re-
versal” control policy, as detailed in [28]. For huge graphs, [32]
proposed an efficient variant of Gibbs sampling.

We finally believe that this novel approach has a much
broader application range than just fMRI data analysis. Indeed,
we are confident in the fact that any Bayesian model can be
embedded in a graphical framework. This would allow to
concentrate on the modeling, since efficient and automated
inference would directly derive from the model.

VII. CONCLUSION

In this paper, we proposed a novel Bayesian inference frame-
work for HRF estimation in fMRI data analysis, based on trans-

lating the existing Bayesian model into a Bayesian network to
combine the features of graphical modeling and Bayesian anal-
ysis. This approach makes extensive use of Bayesian networks
to 1) represent the model in a compact, yet efficient way, and 2)
lead probabilistic inference through Gibbs sampling. This tech-
nique takes advantage of Markov properties of DAGs. Models
can easily be designed, and both structural (i.e., of indepen-
dence) and functional relationships are clearly presented. More-
over, using Gibbs sampling on the DAG, fully probabilistic nu-
merical inference is straightforward. Ongoing research includes
integration of more diffuse prior pdfs when necessary, as well
as spatial constraints for the HRFs.

APPENDIX

The results detailed here originate from [29].

A. Multivariate Normal Distribution

If is a -dimensional multivariate Normal distributed vari-
able with mean and covariance matrix , then

If has a probability distribution defined by

where is multivariate Gaussian with mean and covariance
matrix , then is multivarite Gaussian with mean

and covariance matrix

B. Inverse-Chi-Square Distribution

If is inverse-chi-square distributed with degrees of
freedom and scale , then

If has a probability distribution defined by

where is inverse-chi-square distributed with degrees of
freedom scale , then is inverse-chi-square with

degrees of freedom and scale so, that
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