
HAL Id: cea-00333639
https://cea.hal.science/cea-00333639

Submitted on 23 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application and validation of spatial mixture modelling
for the joint detection-estimation of brain activity in

fMRI.
Thomas Vincent, Philippe Ciuciu, Jérôme Idier

To cite this version:
Thomas Vincent, Philippe Ciuciu, Jérôme Idier. Application and validation of spatial mixture
modelling for the joint detection-estimation of brain activity in fMRI.. Conference proceedings :
.. Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Annual Conference, 2007, 2007, pp.5218-22.
�10.1109/IEMBS.2007.4353518�. �cea-00333639�

https://cea.hal.science/cea-00333639
https://hal.archives-ouvertes.fr


Application and validation of spatial mixture modelling for the joint

detection-estimation of brain activity in fMRI

Thomas Vincent, Philippe Ciuciu and Jérôme Idier

Abstract— Within-subject analysis in event-related functional
Magnetic Resonance Imaging (fMRI) first relies on (i) a
detection step to localize which parts of the brain are activated
by a given stimulus type, and second on (ii) an estimation
step to recover the temporal dynamics of the brain response.
Recently, a Bayesian detection-estimation approach that jointly
addresses (i)-(ii) has been proposed in [1]. This work is based
on an independent mixture model (IMM) and provides both a
spatial activity map and an estimate of brain dynamics. In [2],
we accounted for spatial correlation using a spatial mixture
model (SMM) based on a binary Markov random field. Here,
we assess the SMM robustness and flexibility on simulations
which diverge from the priors and the generative BOLD model
and further extend comparison between SMM and IMM on
real fMRI data, focusing on a region of interest in the auditory
cortex.

I. INTRODUCTION

Since the first report of the BOLD effect in human [3],
functional MRI (fMRI) has stood for a powerful tool to
non-invasively study the relation between cognitive task and
cerebral activity through the analysis of this hemodynamic
BOLD signal. Within-subject analysis in fMRI essentially
addresses two problems. The first one is about the detection

or localization of activated brain areas in response to a given
stimulus type or experimental task, while the second one
concerns the estimation of the temporal dynamic of activated
voxels, also known as the Hemodynamic Response Function
(HRF). In [1], a novel detection estimation approach has been
proposed to address both issues in a region-based analysis,
that is on a set of prespecified regions of interest (ROI).
Within the Bayesian framework, physiological prior informa-
tion has been integrated to obtain a slow-varying time course
as an estimate of the HRF in every ROI. Different two-class
independent mixture models (IMM) as prior distribution on
the response magnitude were also tested to accomodate the
voxel and stimulus-dependent signal fluctuations within the
ROI [4]. Due to the computational complexity of inhomoge-
neous mixtures, we introduced a two-class Gaussian spatial

mixture model (SMM) as a relevant alternative in [2]. It
accounts for spatial correlation between neighboring voxels
and aims at favoring the detection of activating clusters
rather than isolated voxels. We used a symmetric Ising
random field to model a priori the state of a given voxel
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(activating or non-activating). The parameter controlling the
strength of the spatial correlation is set by hand, as the
smoothing level used when spatially filtering the data. The
combination of these prior distributions with the likelihood
allows us to derive the target posterior distribution using
Bayes’ rule. We then resort to Gibbs sampling to draw
realizations from this posterior law. The posterior mean (PM)
estimates of the HRF, the Neural Response Levels (NRLs)
and the corresponding labels are directly computed from the
generated samples in a Markov Chain Monte Carlo (MCMC)
procedure. In [2], this SMM approach was shown to give
a significant gain in terms of sensitivity and specificity on
artificial fMRI data, compared to the IMM counterpart. Since
our primary interest was the comparison of SMM with IMM,
our simulations followed the generative model and did not
truly reflect a “realistic” BOLD data structure. Here, we
assess the robustness against putative misspecifications from
the assumed model and present first results on real fMRI
data obtained during an event-related paradigm.

II. REGION-BASED MODELLING OF FMRI DATA

A. Motivations

Hypothesis-driven approaches postulate a model of the
HRF response and enable local inference at the voxel level.
Such methods take place in the General Linear Model
(GLM) framework. They have been popularized by the
Statistical Parametric Mapping software (SPM, http://www.

fil.ion.ucl.ac.uk/spm). In this formulation, the model chosen
for the BOLD response is a crucial issue. SPM uses the
same temporal model for the whole brain and is actually
refined to allow variation of the HRF at the voxel level
through additional regressors: HRF derivatives [5] or half-
cosine parametrisation [6]. Although such approach yields
better fit, increasing the number of regressors implies fewer
effective degrees of freedom in any subsequent statistical

(a)

(b)

Fig. 1. (a): Slice of the color-coded parcellation at z = −4mm. (b): Parcel-
based model of the BOLD signal.



test. Moreover, a Fisher statistic has to be computed between
experimental conditions and across all HRF-related estimated
effects, making interpretation of activation maps delicate as
signed comparison can not be performed. In this respect,
we claim the necessity of a unique forward HRF model
in order to keep a single regressor for each condition, and
thus allow direct statistical comparison. Still, to conduct the
analysis in an efficient and reliable manner, local estimation
is performed at a regional scale coarser than the voxel level.
To define this scale, we use a segregation of the brain volume
constrained to the grey matter mask into a few hundreds of
connected ROIs, called parcels. Any parcellation procedure
can be used, as long as functional homogeneity is guaranteed
within each parcel. In this respect, the assumption of a shape-
invariant HRF is maintained. Actually, we resort to [7] and
Fig. 1(a) shows a slice resulting from such a parcellation
procedure.

B. Within-parcel formulation

Here, the parcel-based model of the BOLD signal intro-
duced in [1] is adopted: a linear time-invariant (LTI) system.
As shown in Fig 1(b), it characterizes every parcel P =
(Vj)j=1:J by a single HRF shape and accounts for voxel-
dependent and stimulus-related fluctuations of the magnitude
of the BOLD signal. The fMRI time course measured in
voxel Vj at times (tn)n=1:N (where tn = nTR, N being the
number of scans and TR, the time of repetition) then reads

yj =

M∑

m=1

am
j Xmh + Pℓj + bj , ∀ j, Vj ∈ P, (1)

This model remains time-invariant while it incorporates
spatially-varying and stimulus-related magnitudes, called
Neural Response Levels (NRLs) (am

j ) in the following.
Xm = (xm

tn−d∆t)n=1:N,d=0:D denotes the N × (D + 1)
binary matrix that codes the arrival times of the mth stimulus
which are approximated to fit a ∆t-sampled grid, where ∆t
is the sampling period of the HRF (∆t < TR). Vector
h = (hd∆t)d=0:D represents the unknown HRF shape in
parcel P . Note also that P ℓj models a low-frequency trend to
account for physiological artifacts and that bj ∼ N (0, σ2

bj
)

stands for the noise. For simplicity reasons, we have only
considered a Gaussian white noise model.

III. THE DETECTION-ESTIMATION PROBLEM

A. Spatial mixture modelling

We propose to estimate the HRF shape h and the corres-
ponding NRLs (am)m=1:M in P . Our aim is also to detect

which voxels in P are involved in the experimental paradigm.
In [2], we extended an originally IMM approach [1] to
account for spatial correlation by expressing a prior SMM
relying on a binary Markov random field (MRF). As our
approach stands in the Bayesian framework, other prior
knowledge is formulated upon every other sought object
in the LTI model. The reader is referred to [1] for their
expressions. However, for the sake of clarity we recall details
on the NRL SMM from [2] in what follows.

B. NRLs prior

We assume that different types of stimulus induce
statistically independent NRLs i.e., p((am) |θa) =∏

m p(am |θm) with (am) = (am)m=1:M , am =
(am

j )j=1:J and θa = (θm)m=1:M . Vector θm denotes the
set of unknown hyper-parameters related to the mth stimulus
type. We define a spatial Bayesian model by introducing
binary indicator variables qm

j that states whether voxel Vj is
activating (qm

j = 1) or not (qm
j = 0) in response to stimulus

m, so that the NRL am
j is normally distributed according to

(am
j | qm

j = i) ∼ N (µi,m, vi,m), with i = 0, 1. We impose
µ0,m = 0 for the mean of the NRLs in non-activating voxels,
leading to θm = [v0,m, µ1,m, v1,m]. Here, we introduce
space-varying probabilities Pr(qm

j = 1) = λj,m, Pr(qm
j =

0) = 1 − λj,m through a spatially correlated Ising prior on
the binary variables qm, while the NRLs remain independent
conditionally to qm. More precisely, a symmetric Ising MRF
is considered:

Pr(qm |βm) ∝ exp
(
−βm

∑

j∼k

ωjkI(qm
j = qm

k )
)
,

where I(A) = 1 if A is true and I(A) = 0 otherwise.
The notation j ∼ k means that the sum extends over all
neighboring voxels, while ωjk are prespecified constants
that weight the interaction between voxels (Vj , Vk): ωjk ∝
1/d(Vj , Vk) where d(Vj , Vk) is the distance between Vj and
Vk. Note also that this MRF is hidden since (qm)m=1:M are
not observed in (1).
Combining all information, we get a prior spatial mixture
model for every stimulus type:

p(am |θm) =
∑

qm

( J∏

j=1

p(am
j | qm

j ,θm)
)

Pr(qm |βm). (2)

Parameter βm > 0 in Pr(qm |βm) which controls the
amount of spatial smoothing is presently set by hand. Its
estimation is fairly conceivable and currently under study.
This first requires the estimation of the partition function (the
normalisation constant of the MRF) which is computationaly
intensive, and then the inclusion of a Metropolis step into the
Gibbs Sampling procedure to propose suitable values of the
correlation factor. Actually this field is strongly investigated
in statistical physics [8], [9].

C. The joint posterior distribution

Considering the constructed model and assuming no
further prior dependence between parameters, Bayes’ rule
yields [1]:

p(h, (am),(ℓj),Θ |y) ∝ p(y |h, (am), (ℓj), ǫ
2)p(h |σ2

h)

× p((ℓj) |σ
2
ℓ ) p(ǫ) p(σ2

h) p(σ2
ℓ )

∏

m

p((am),θm).



The nuisance variables ℓj can be integrated out leading to:

p(h, (am),Θ |y) ∝

( J∏

j=1

ǫ−N−1+Q
j

)
σ−D

h exp

(
−

htR−1h

2σ2
h

)

exp

(
−

∑J
j=1 ỹt

jQj ỹj

2

) M∏

m=1

(
p(am |θm)p(θm)

)
. (3)

with Qj = (IN − PP t) /ǫ2j , ỹj = yj − Sjh and Sj =∑
j am

j Xm. To get samples of the posterior pdf, we use a
Gibbs sampler which consists in building a Markov chain,
whose target distribution is (3), by sequentially generating
random samples from the full conditional pdfs of all the
unknown parameters and hyper-parameters. Finally, posterior
mean (PM) estimates are approximated using the samples
according to: x̂PM = (K − I)−1

∑K
k=I+1 x(k), ∀x ∈

{h, (am), (qm),Θ} where I stands for the length of the
burn-in period. The sampling scheme for the posterior mix-
tures ((am), (qm)) is detailed in the next paragraph while
for other quantities of interest (h,Θ), the reader may refer
to [1, Appendix A].

D. NRLs a posteriori

Since the prior on the NRLs (am) is a Gaussian mixture
and the likelihood is Gaussian, the full posterior pdf of (am)
is also a Gaussian mixture. From (3), it can be shown that
each am

j ∈ (am) is obtained by sampling a 2-class posterior
spatial Gaussian mixture in voxel Vj for the mth stimulus
type. Letting Nj = {Vk | k ∼ j}, the latter reads:

p(am
j |yj ,h,θm, ǫ2j , a

m′ 6=m
j , qm

k∈Nj
) =

∑

i=0,1

λm
i,jN

(
µm

i,j , v
m
i,j

)

which can be decomposed in three steps: (i) Identify the
posterior parameters (λm

i,j , µ
m
i,j , v

m
i,j); (ii) Sample the binary

label qm
j according to λm

i,j and (iii) Sample the NRL am
j

conditionally to qm
j according to N (µm

i,j , v
m
i,j). As detailed

in [1, Appendix A], we have for i = 0, 1:

vm
i,j =

(
v−1

i,m+gt
mQjgm

)−1
, µm

i,j =vm
i,j

(
gt

mQjem,j +i
µi,m

vi,m

)

where gm = Xmh and em,j = yj −
∑

m′ 6=m am′

j gm′ . The
posterior probability λm

i,j of the event (qm
j = i) reads:

λm
i,j =

(
1 +

rm
1−i,j

rm
i,j

πm
1−i,j

πm
i,j

)−1

(4)

with rm
i,j =

(
vm

i,j/vi,m

)1/2
exp

(
(µm

i,j)
2/vm

i,j − i(µm
i )2/vm

i

)

and πm
i,j = Pr(qm

j = i | qm
k∈Nj

, βm). To calculate (4), we
need to evaluate:

πm
1−i,j/πm

i,j = exp
(
βm

Σ
k∈Nj

wjk(1 − 2qm
k )

)
,

which only depends on the labels in the neighborhood Nj .

IV. SIMULATION RESULTS

To date, no experiment explained the causality of the
BOLD response in terms of neural activation and vascular
properties. Thus the estimation-detection task induced by

fMRI analysis is a completely blind estimation process. In
this respect, a linear time-invariant model is admittedly a
simplified approach. It is therefore relevant to test such an
estimation procedure on data embedding a more “realistic”
structure than the one used in the generative model. In this
respect, we assess the robustness of our approach against
spatial variability in the shape of the HRF and temporal non-
stationarity in the NRLs.

A. Artificial fMRI datasets

We generated a random impulse sequence for M = 2
different stimuli (or conditions). These two sets of trials
(30 trials per stimulus with 30 “blank” stimuli) produced
a paradigm sequence of length ≃ 180sec with a mean inter-
stimulus interval of 2 seconds.
2D binary label qm slices of size 20x20 voxels for every
conditions were hand-drawn with “plausible” shapes for
activation clusters. This enables a first deviation from the
assumed model in our estimation procedure, since these maps
are not generated from the Ising MRF. Conditionally to qm,
normally-distributed “basal” NRLs were simulated:

(a1
j | q

1
j = 0) ∼ N (0, .3), (a1

j | q
1
j = 1) ∼ N (1.5, .5),

(a2
j | q

2
j = 0) ∼ N (0, .6), (a2

j | q
2
j = 1) ∼ N (1, .5).

with a better contrast-to-noise ratio (SNR) for m = 1. Hence,
in what follows we focus on the more degraded situation
(m = 2). Simulated NRL and label maps for condition m =
2 are presented in Fig. 2.

(a) (b)
Fig. 2. Condition m = 2: (a) labels (white-activating) (b) Basal NRLs .

HRFs were simulated using Bezier curves parametrisation
(which do not derive from the Gaussian HRF prior) where
time-to-peak (TP), time-to-undershoot (TU) and undershoot
amplitude (UA) values are spatially varied (see Fig. 3(a)-
(b) for TU and UA respectively). At each voxel, simulated
BOLD signal was computed according to (1) with σ2

bj
= 0.5

and significant polynomial low-frequency drift Plj .

B. Hemodynamic Response Function shape variability

Functional homogeneity of the considered ROI through a
shape-invariant HRF is a strong assumption in our model.
However, some invalidating physiological factors might oc-
cur, such as local heterogeneity in the vascular system or
partial volume effect (voxels composed of different tissue
types). We simulated HRF Bezier curves with spatially
variable parameters, that is the TP, TU, and UA parameters.
Here, TP variability can be interpreted as a delay in the
neural response to a given stimulus type. Spatial distribution
of these parameters follows a 2D Gaussian field as shown



in Fig. 3(a) for TP and Fig. 3(b) for UA. Fig. 3(c) depicts
the HRF estimation results against simulated situation: the
estimated shape tends towards the average over all different
simulated HRFs. As a comparison, Fig. 3(d) shows that an
adaptive HRF estimation outperforms the SPM-like approach
in terms of detection, with more sensitivity and specificity.
Fig. 3(e)-(f) shows the same comparison on detection maps.
Here some clusters are not detected by the SPM-like ap-
proach whereas they are with an adaptive HRF (see lower
right of maps).

(a) (b)

(c) (d)

(e) (f)
Fig. 3. (a) Times to Peak 2D map. (b) Undershoot Amplitudes 2D map. (c)
bhPM (dotted line), scale adjusted by (bam)PM in activating class - hj

true

(solid lines) from different voxels colored as in TP map - hj
true

in dashed

black line. (d) ROC curves over cq2PM. Red line: using adaptive HRF
estimation, blue line: using a fixed HRF shape. (e) Label estimates cq2PM,
with adaptive HRF estimation. (e) Label estimates cq2PM, with a fixed HRF.

C. Inter-trial Neural Response Level variability

Temporal invariance assumed for NRLs is not physiolo-
gically intuitive since metabolism can fluctuate or patient
attention may decrease as fMRI experiments often last long
(up to 40 mins). To account for such deviation from the
generative model, we introduced inter-trial variability by
injecting variance upon basal NRLs: am

j,τ ∼ N (am
j , vT ), for

τ ∈ (tn)n=1:N |xm
τ = 1. Our estimation-detection procedure

is tested with 15 vT incremental values so that: am
j,τ

(k) ∈

I(k), I(k) = [am
j ± k20%]95% with k ∈ [0; 15]. As shown in

Fig. 4, the detection is robust against the inter-trial variability
of the NRLs up to a deviation of 100% from the basal value,
where both sensitivity and specificity fall under 0.8. When
investigating the values of (âm)PM, they also tend towards
the average over all the time-varying NRLs values used in
simulation (result not shown).

Fig. 4. ROC curves over b(q2)PM when increasing the temporal deviation
of NRLs, values of which are shown in the rectangular insert on the lower
right.

(a) (b)
Fig. 5. Results with real fMRI Localizer experiment. (a) Normalised bhPM

estimate. (b) Maps of PM label estimates - SMM vs IMM. Rainbow colors
range from 0.0-blue to 1.0-red

V. REAL DATA RESULTS

Real fMRI data were recorded during an experiment
designed to map auditive and visual brain functions, which
consisted of a single session of N = 125 scans lasting
TR = 2.4 s each. The chosen parcel P (632 voxels) is
a cluster obtained with SPM from thresholded t maps at
p = 0.001. This cluster results from the “audio minus video”
comparison that elicits activation when the auditory stimulus
leads to a stronger response than the visual one. Therefore,
the voxels in P should not be involved in visual perception
a priori.

We compare the SMM and IMM approaches on the
same real data (cf. [1]). Fig. 5(a) depicts the HRF estimate
obtained with the SMM extension, which is comparable
to the one reported in [1] using IMM. Fig. 5(b) shows
results on activation detection (PM estimations of labels),
mapped on anatomical images. Maps of q̂PM first appear to
be more contrasted with SMM, yielding to more certainty in
the estimation. Moreover, detecting less activations, SMM
should lead to a higher specificity than IMM. Since this
region is almost only dedicated to auditory processes, SMM
is thus more consistent by detecting much less activations in
response to the visual condition than IMM.

VI. CONCLUSION

In [2], we stated the gain of a SMM versus IMM approach
in term of sensitivity and specificity on simulated data.



Such improvement is confirmed here on real fMRI data
with more contrasted label estimates. In another respect,
we assess the robustness and flexibility of this Bayesian
MCMC estimation procedure: even if the activation delay is
not taken into account, the PM HRF estimate still provides
a sensible response which “averages” every time-to-peak
values. Moreover, the introduction of an inter-trial NRL
variability corresponding for instance to habituation effects
is well supported by the model. We also observed that the
detection seems to be strongly conditioned by the HRF
model. Indeed, a fixed HRF approach as in SPM yields
a loss in detection of whole clusters when performed on
data generated with spatially variable HRFs. Whereas our
adaptive HRF approach is able to make a better recovery of
these clusters.

Tests were also performed by using different mixture mo-
dels for NRLs simulations (results not shown). Distribution
of posterior mean estimation of NRLs tended to match a
simulated Gamma-Gaussian mixture, even if the prior and
posterior formulation are bi-Gaussian. We highlight here the
strong flexibility of Gibbs sampling, which is able to fit
a target distribution which diverges by nature from prior
knowledge.
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