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Abstract

Within-subject analysis in fMRI essentially addresses two problems, i.e., the de-
tection of activated brain regions in response to an experimental task and the esti-
mation of the underlying dynamics, also known as the characterisation of Hemody-
namic response function (HRF). So far, both issues have been treated sequentially
while it is known that the HRF model has a dramatic impact on the localisation of
activations and that the HRF shape may vary from one region to another. In this pa-
per, we conciliate both issues in a region-based joint detection-estimation framework
that we develop in the Bayesian formalism. Instead of considering function basis to
account for spatial variability, spatially adaptive General Linear Models are built
upon region-based non-parametric estimation of brain dynamics. Regions are first
identified as functionally homogeneous parcels in the mask of the grey matter using
a specific procedure (Thirion et al., 2006). Then, in each parcel, prior information
is embedded to constrain this estimation. Detection is achieved by modelling acti-
vating, deactivating and non-activating voxels through mixture models within each
parcel. From the posterior distribution, we infer upon the model parameters using
Markov Chain Monte Carlo (MCMC) techniques. Bayesian model comparison allows
us to emphasize on artificial datasets first that inhomogeneous gamma-Gaussian
mixture models outperform Gaussian mixtures in terms of sensitivity/specificity
trade-off and second that it is worthwhile modelling serial correlation through an
AR(1) noise process at low signal-to-noise (SNR) ratio. Our approach is then val-
idated on an fMRI experiment that studies habituation to auditory sentence rep-
etition. This phenomenon is clearly recovered as well as the hierarchical temporal
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organisation of the superior temporal sulcus, which is directly derived from the
parcel-based HRF estimates.

Key words: Bayesian modelling, fMRI, gamma-Gaussian mixture model,
detection-estimation, Markov Chain Monte Carlo methods, Bayes factor, model
comparison.

1 Introduction

Since the first report of the BOLD effect in human (Ogawa et al., 1990), func-
tional magnetic resonance imaging (fMRI) has represented a powerful tool to
non-invasively study the relation between cognitive stimulus and the hemody-
namic (BOLD) response. Within-subject analysis in fMRI is usually addressed
using a hypothesis-driven approach that actually postulates a model for the
HRF and enable voxelwise inference in the General Linear Model (GLM)
framework. In this formulation, the modelling of the BOLD response i.e.,
the definition of the design matrix is crucial. In its simplest form, this ma-
trix relies on a spatially invariant temporal model of the BOLD signal across
the brain meaning that the expected response to each stimulus is modelled
by a single regressor. Assuming the neurovascular system as linear and time-
invariant (LTI), this regressor is built as the convolution of a sparse spike train
representing the stimulation signal and the canonical HRF, i.e., a composition
of two gamma functions which reflects the BOLD signal best in the visual and
motor cortices (Glover, 1999).

Intra-individual differences in the characteristics of the HRF have been exhi-
-bited between cortical areas in (Aguirre et al., 1998; Miezin et al., 2000;
Neumann and Lohmann, 2003; Handwerker et al., 2004). Although smaller
than inter-individual fluctuations, this regional variability is large enough to
be regarded with care. To account for these spatial fluctuations at the voxel
level, one usually resorts to hemodynamic function basis. For instance, the
canonical HRF can be supplemented with its first and second derivatives to
model differences in time (Friston, 1998; Henson et al., 2002). To make the
basis spatially adaptive, Woolrich et al. (2004a) have proposed a half-cosine
parameterisation in combination to the selection of the best basis set. Al-
though powerful and elegant, the price to be paid for such a flexible modelling
lies in a loss of sensitivity of detection: the larger the number of regressors in
the basis, the smaller the number of effective degrees of freedom in any sub-
sequent statistical test. Crucially, in a GLM involving several regressors per
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condition, the Student-t statistic can no longer be used to infer on differences
between experimental conditions. Rather, an unsigned Fisher statistic has to
be computed, making direct interpretation of activation maps more difficult.
Indeed, the null hypothesis is actually rejected whenever any of the contrast
components deviates from zero and not specifically when the difference of the
response magnitudes is far from zero.

In this paper, to facilitate cognitive interpretations, we argue in favour of a
spatially adaptive GLM in which a local estimation of the HRF is performed.
This allows us to factorise the expected BOLD response with a single regres-
sor attached to each experimental condition and to enforce direct statistical
comparisons based on response magnitudes. However, to conduct the analysis
in an efficient and reliable manner, local estimation is performed at the scale
of several voxels.

As mentioned earlier, the localisation of brain activation strongly depends on
the modelling of the brain response and thus of its estimation. Of course, the
converse also holds: HRF estimation is only relevant in voxels that elicit signal
fluctuations correlated with the paradigm. Hence, detection and estimation are
intrinsically linked to each other. The key point is therefore to tackle the two
problems in a common setting, i.e., to set up a formulation in which detection
and estimation enter naturally and simultaneously. This setting cannot be
the classical hypothesis testing framework. Indeed, the sequential procedure
which first consists in estimating the HRF on a given dataset and then build-
ing a specific GLM upon this estimate for detecting activations in the same
dataset, entails statistical problems in terms of sensitivity and specificity: the
control of the false positive rate actually becomes hazardous due to the use
of an erroneous number of degrees of freedom. We rather propose a Bayesian
approach that provides an appropriate framework to address both detection
and estimation issues in the same formalism.

The literature on Bayesian fMRI methods offers several approaches to ade-
quately choose priors for detection. As introduced in (Everitt and Bullmore,
1999; Vaever Hartvig and Jensen, 2000; Penny and Friston, 2003) and further
developed in (Smith et al., 2003; Woolrich et al., 2005; Ou and Golland, 2005;
Woolrich and Behrens, 2006; Flandin and Penny, 2007), prior mixture models
define an appropriate way to perform the classification or the segmentation
of statistical parametric maps into activating, non-activating or deactivating
brain regions. The pioneering contributions related to mixture modelling in
fMRI (Everitt and Bullmore, 1999; Vaever Hartvig and Jensen, 2000) have
proposed a voxel by voxel classification to decide whether the estimated effect
is analogous to signal or noise in each voxel. Yet, the use of mixture mod-
elling in a joint detection-estimation problem introduces specific concerns in
comparison to the usual “hypothesis testing framework”. Indeed, our data are
not the voxelwise z-statistics but rather the raw fMRI time courses, which are
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required for the estimation step.

As regards HRF estimation, various priors may be thought of depending on the
underlying HRF model. Basically, three classes of models coexist. Parametric
models appeared first in the literature (Friston, 1994; Lange, 1997; Cohen,
1997; Rajapakse et al., 1998; Kruggel and Von Crammon, 1999). In this set-
ting, the estimation problem consists in minimising some criterion with respect
to (w.r.t.) some parameters of a precise function (e.g., Gaussian, gamma ,...).
However, parametric models tend to introduce some bias in the HRF estimate,
since it is unlikely that they capture the true shape variations of the brain dy-
namics. Moreover, the objective function to be minimized is often non-convex
making the parameter estimates unreliable and dependent of the initialisation.
Hence, more flexible semi-parametric approaches have been proposed later to
capture these variations (Genovese, 2000; Gössl et al., 2001; Woolrich et al.,
2004a). In a semi-parametric framework, the HRF time course is decomposed
into different periods (initial dip, attack, rise, decay, fall, ...), each of them
being described by specific parameters. In the same time, non-parametric ap-
proaches or Finite Impulse Response (FIR) models have emerged in the fMRI
literature as a powerful tool to infer on the HRF shape (Nielsen et al., 1997;
Goutte et al., 2000; Marrelec et al., 2003; Ciuciu et al., 2003; Marrelec et al.,
2004). Most of these works take place in the Bayesian setting and constrain
the HRF to be temporally smooth, which warrants a stable estimation in case
of ill-posed identification.

Whatever the model in use, most methods are massively univariate and there-
fore neglect the spatial structure of the BOLD signal. Early investigations have
shown that estimating the HRF using regularised FIR models over a function-
ally homogeneous region of interest provides more reliable results (Gössl et al.,
2001; Ciuciu et al., 2004). In the following, a region-based non-parametric
model of the HRF is therefore adopted. Then, the critical issue arising con-
sists in exhibiting a functionally homogeneous clustering of the fMRI datasets
over the whole brain. To that end, the grey matter’s mask is segregated into
a few hundreds of connected Regions of Interest (ROIs), called parcels. The
parcels are derived using the parcellation procedure proposed by Thirion et al.
(2006), according to a compound criterion balancing spatial and functional ho-
mogeneity. The second step of our analysis solves for the detection-estimation
problem over each parcel.

The rest of this paper is organised as follows. Section 2 details how anatomical
information is handled and how parcels are built up. Then, the forward parcel-
based model of the BOLD signal is derived and priors over the unknown pa-
rameters are specified. In Section 3, we explain the key steps of our inferential
procedure based on MCMC methods, posterior mean (PM) HRF estimation
and marginal Maximum A Posteriori (MAP) classification for detection. On
artificial datasets, Section 4 reports the performance of our approach in terms
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of sensitivity-specificity trade-off depending on the mixture prior and the noise
modelling. In Section 5, our joint detection-estimation approach is tested on
real fMRI data acquired during an habituation study to auditory sentence
repetition. On the same datasets, we also performed a classical GLM analysis
employing the widely used Statistical parametric mapping (SPM) software 1 .
The two approaches are then compared and the main differences are exhib-
ited. The pros and cons of the proposed method are discussed in Section 6 and
some future extensions are envisaged.

2 Methodology

2.1 Definition of functionnally homogeneous brain regions

2.1.1 Anatomical representation

The segmentation of the grey-white matter interface is performed on an
anatomical T1-weighted MRI image using the BrainVisa software 2 (Mangin
et al., 1995). It provides us with the anatomical representation of the cortex.
To accommodate the coarser spatial resolution of fMRI data (typically, 3.5mm
along each direction), the grey matter mask Ma is dilated using a sphere as
structural element, with a radius equal to the resolution of functional images.

Concurrently, a functional maskMf was computed from the motion-corrected 3

BOLD EPI volumes. Also, an average EPI volume was created. Then, we car-
ried out a histogram analysis of this volume: a Gaussian density N (µ, σ2) was
fitted on the main mode of the EPI signal of interest. A threshold defined as
µ − 3σ was used to obtain the functional mask. Finally, the mask of interest
where activation most likely occurs was built as Ms = Ma ∩Mf .

2.1.2 Parcellation of the grey-matter

The volume in mask Ms was then divided in K functionally homogeneous
parcels or ROIs using the parcellation technique proposed in (Thirion et al.,
2006). The goal of this procedure is to segregate the brain into connected and
functionally homogeneous components. For doing so, the parcellation algo-
rithm relies on the minimisation of a compound criterion reflecting both the
spatial and functional structures and hence the topology of the dataset. The
spatial similarity measure favours the closeness in the Talairach coordinates

1 http://www.fil.ion.ucl.ac.uk/spm/
2 http://brainvisa.info
3 We applied the SPM2 motion-correction algorithm.
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system. The functional part of this criterion is computed on parameters that
characterise the functional properties of the voxels. These parameters can be
chosen either as the fMRI time series themselves or as the β-parameters es-
timated during a first-level SPM analysis. The latter choice is nothing but
a projection onto a subspace of reduced dimension, i.e., the feature space.
Typically, the feature space is defined from a F-contrast in a SPM analysis.

The number of parcels K needs to be set by hand. The larger the number of
parcels, the higher the degree of within-parcel homogeneity. Of course, there
exists a trade-off between the within-parcel homogeneity and the signal-to-
noise ratio (SNR). If the number of voxels is too small in a given parcel, the
HRF estimation may become inaccurate, specifically in regions where no voxel
elicits a specific response to any experimental condition. To objectively choose
an adequate number of parcels, Thyreau et al. (2006) have used the Bayesian
information criterion (BIC) and cross validation techniques on an fMRI study
of ten subjects. They have shown converging evidence for K ≈ 500 for a
whole brain analysis and recommend K = 200 as a fair setting for a restricted
analysis to the grey matter’s mask leading to typical parcel sizes around a few
hundreds voxels.

2.2 Parcel-based modelling of the BOLD signal

Vectors and matrices are displayed in lower and upper cases, respectively, both
in bold font (e.g., y and P ). Unless stated otherwise, subscripts i, j, m and
n are respectively indexes over mixture components, voxels, stimulus types
and time points. We refer the reader to appendix A for the definitions of the
non-standard probability density functions (pdf). Also, the pdf families are
denoted using calligraphic letters (e.g., N and G for the Gaussian and gamma
densities).

The regional forward model of the BOLD signal introduced in (Makni et al.,
2005) is used to account for voxel-dependent and task-related fluctuations
of the magnitudes of the BOLD response. Hereafter, the latter magnitudes
are called Neural Response Levels (NRLs). In short, this time-invariant model
characterises each and every parcel by a single HRF shape and a NRL for each
voxel and stimulus type. As shown in Fig. 1, this means that although the HRF
shape is assumed constant within a parcel, the magnitude of the activation
can vary in space and across experimental conditions. Let P = (Vj)j=1:J be
the current parcel and Vj a voxel in P . Then, the generative BOLD model
reads:

yj =
M∑

m=1

am
j Xmh + P`j + bj, (1)

where
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• yj = (yj,tn)n=1:N denotes the BOLD fMRI time course measured in voxel Vj

at times (tn)n=1:N (N is the number of scans) with tn = nTR and TR is the
time of repetition,

• Xm = (xm
tn−d∆t)n=1:N,d=0:D is a N × (D + 1) binary matrix corresponding

to the arrival times for the mth condition. ∆t is the sampling period of the
HRF, usually smaller than TR. The onsets of the stimuli are put on the
∆t-sampled grid by moving them to the nearest time points on this grid.
Note that Xm can be adapted to paradigms having trial varying stimulus
magnitudes or durations.

• Vector h = (hd∆t)d=0:D represents the unknown HRF shape in parcel P (D+
1 is the number of HRF coefficients). It actually seems reasonable to assume
a single HRF shape in homogeneous parcels.

• am
j stands for the NRL in voxel Vj for condition m (M is the number of

experimental conditions in the paradigm). Hence, the activation profile as-
sociated to the mth stimulus type in voxel Vj is computed as the product
h× am

j .
• P = [p1, . . . , pQ] is the low frequency orthogonal matrix of size N ×Q. It

consists of an orthonormal basis of functions pq = (pq(tn))n=1:N . To each
voxel is attached an unknown weighting vector `j that has to be regressed
in order to estimate the trend in Vj. We denote l = (`j)j=1:J the set of low
frequency drifts involved in P .

• bj ∈ RN is the noise vector in voxel Vj. In (Woolrich et al., 2001; Worsley
et al., 2002) an autoregressive (AR) noise model has been introduced to
account for the serial correlation of the fMRI time series in the detection
analysis. Importantly, when this temporal correlation is correctly estimated,
the number of false positives decreases, yielding more conservative detection
results. Similarly, in a joint detection-estimation framework, Makni et al.
(2006b) have shown that the introduction of a spatially-varying first-order
AR noise in model (1) provides a lower false positive rate. Hence, bj is
defined by bj,tn = ρj bj,tn−1 + εj,tn , ∀j, t, with εj ∼ N (0N , σ

2
εj

IN), where 0N

is a null vector of length N , and IN is the identity matrix of size N .

Although the noise structure is correlated in space (Woolrich et al., 2004b)
and non-stationary across tissues (Worsley et al., 2002), we do not essentially
account for this correlation for two reasons. First, it is likely that a large
part of the noise may be due to misspecification of the HRF. Second, we
actually assume that the spatial correlation of the signal of interest is more
important. Hence, the fMRI time series y = (yj)j=1:J are supposed to be
statistically conditionally independent and identically distributed (iid). The

7



Fig. 1. Summary of the proposed regional BOLD model. The size of each parcel
P varies typically between by a few tens and a few hundreds: 80 6 J 6 350. The
number M of experimental conditions involved in the model usually varies from 1
to 5. In our example, M = 2, the NRLs (a1

j , a
2
j ) corresponding to the first and the

second conditions are surrounded by circles and squares, respectively. Note that our
model accounts for asynchronous paradigms in which the onsets do not necessarily
match acquisition time points. As illustrated, the NRLs take different values from
one voxel to another. The HRF h can be sampled at a period of 1s and estimated
on a range of 20 to 25s (e.g., D = 25). Most often, the LFD coefficients `j are
estimated on a few components (Q = 4).

likelihood then factors over voxels:

p(y |h,a, l,θ0) =
J∏

j=1

p(yj |h,aj, `j, θ0,j)

∝
J∏

j=1

|Λj|1/2 σ−N
εj

exp
(
−

J∑

j=1

ỹt
jΛjỹj

2σ2
εj

)
(2)

where θ0,j = (ρj, σ
2
εj

), θ0 = (θ0,j)j=1:J and ỹj = yj −∑
m a

m
j Xmh−P`j. Note

that σ−2
εj

Λj defines the inverse of the autocorrelation matrix of bj. According to
Kay (1988, Chap VI, p. 177), Λj is tridiagonal, with (Λj)1,1 = (Λj)N,N = 1,
(Λj)n,n = 1 + ρ2

j and (Λj)n+1,n = (Λj)n,n+1 = −ρj ∀n = 2 : N − 1. Its
determinant is given by |Λj| = 1−ρ2

j . In what follows, we do not approximate

Eq. (2) by dropping the term |Λj|1/2, as done in previous works (Roberts and
Penny, 2002; Penny et al., 2003; Woolrich et al., 2004b). Indeed, when the AR
parameter ρ significantly departs from zero (e.g., ρ ≥ 0.4), this approximation
is biased and potentially far from the exact likelihood.

On the sole basis of the likelihood function (2), it seems impractical to identify
the pair (h,a). Indeed, Maximum likelihood (ML) estimation of (h,a) is a
bilinear inverse problem since (1) is linear w.r.t. h when a is fixed and vice-
versa. Therefore, the ML solution (h∗,a∗) is not unique. For instance, every
couple (h∗/s,a∗×s) defines another pair of solutions in the ML sense whatever
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the scale parameter s > 0. To get rid of identifiability problems and reach a
more reliable estimation, in the Bayesian formalism we introduce suitable prior
distributions attached to the unknown quantities (h,a).

2.3 Priors

2.3.1 The Hemodynamic response function

Akin to (Buxton and Frank, 1997; Goutte et al., 2000; Marrelec et al., 2003),
the HRF is characterised as follows: (i) its variations are smooth; (ii) it is
causal and returns to a baseline after a given time interval T (ht = 0, ∀ t < 0
and t > T ); T is fixed by the user according to the experimental paradigm (usu-
ally 25 seconds).

Condition (i) may be fulfilled using an approximation of the second-order
derivative ‖∂2h‖2:

(∂2h)dτ ≈ (h(d+1)τ − 2hdτ + h(d−1)τ )/τ
2, ∀ d = 1 : D − 1.

In matrix form, we get ∂2h = D2h.
Condition (ii) is ensured with a HRF h whose magnitude vanishes at first
and last time points (h0 = hD = 0). Hence, D2 is the truncated second-order
finite difference matrix of size (D − 1)× (D − 1) and ‖∂2h‖2 = htR−1h with
R = (Dt

2D2)
−1 a symmetric positive definite matrix. The prior on h thus

reads h ∼ N (0, σ2
hR). To overcome the scale ambiguity problem mentioned

earlier, we constrain the HRF to be of unitary norm (‖h‖ = 1). Alternative
constraints such as setting the value of the peak could be considered.

2.3.2 The “neural” response levels

Mixture models are often used as a second stage to segment the SPMs (i.e.,
the statistical maps) resulting from a first-level temporal analysis of fMRI
time series (Vaever Hartvig and Jensen, 2000; Everitt and Bullmore, 1999;
Woolrich et al., 2005). This means that the data to be classified correspond
to some normalised effect ctβ̂/ std (ctβ̂), where vector c defines a contrast of
interest (typically a comparison between two experimental conditions) and β̂
is the vector of parameter estimates after fitting a GLM against the fMRI
data.

In the present paper, as well as in (Makni et al., 2005), prior mixture models
are used in a different way, closer to that proposed by Svensen et al. (2000).
In the same spirit, a mixture model is introduced on the NRLs for every ex-
perimental condition m and not specifically on the linear combination ctβ̂.
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Table 1
Model definition and notations. Here, AR(1) stands for a first-order autoregres-
sive noise in time whose parameters vary in space. In this respect, it is referenced as
a spatially-varying AR(1) noise. The second noise model under study is a spatially-
varying white noise. The columns describe the different NRLs priors: GMM stands
for a two-class Gaussian mixture model (a zero-mean Gaussian density (G) for non-
activating voxels and a Gaussian density (G) for activating voxels). GaGMM stands
for a two-class gamma-Gaussian mixture model (a centred Gaussian density (G) for
non-activating voxels and a gamma density (Ga) for activating voxels). GaGGaMM
stands for a three-class mixture model composed of a zero-mean Gaussian density
and two gamma densities (a gamma density (Ga) for activating voxels and a flipped
gamma density (Ga) for deactivating voxels).

GaGMM GMM GaGGaMM

AR(1) noise M1 M3

white noise M2 M4 M5

In (Makni et al., 2006a), it was stressed that a two-class Gaussian mixture
model (GMM) may be inadequate for segregating noise from true activations.
In particular, it can be shown that this kind of independent mixture may de-
generate in the sense that the two probability density functions (pdf) overlap
almost entirely if there are not enough activating voxels in the current par-
cel (see (Makni et al., 2005, §VII.)). For this reason, we have rather adopted an
inhomogeneous prior mixture model. Among several possibilities (Gaussian-
lognormal MM, Gaussian-truncated Gaussian MM, ...), a gamma-Gaussian
mixture model (GaGMM) has been retained for technical reasons that will
become clearer in what follows. The non-activating voxels are still modelled
using a zero-mean Gaussian pdf while a gamma distribution is used to enforce
positivity of activating voxels. Akin to (Vaever Hartvig and Jensen, 2000;
Woolrich et al., 2005), a three-class mixture prior model is actually considered
to account for deactivating voxels. Since we assume that deactivation corre-
sponds to a negative BOLD response, we use a flipped gamma density defined
on the left part of the real line leading to define the GaGGaMM extension (see
Table 1).

In our model, different stimulus types are supposed to induce statistically in-
dependent hemodynamic magnitudes or NRLs i.e., p(a |θa) =

∏
m p(a

m |θm)
with a = (am)m=1:M , am = (am

j )j=1:J and θa = {θ1, . . . , θm}. Vector θm de-
notes the set of unknown hyper-parameters related to the mth stimulus type.
Because our mixture model is voxelwise, the prior pdf factors over voxels:
p(am |θm) =

∏
j p(a

m
j |θm). Importantly, the hyper-parameters are kept con-

stant for all voxels in a given parcel because of the within-parcel homogeneity.
These parameters may actually vary from one parcel to another. Let qm

j be
the allocation variable (the label) that indicates whether voxel Vj is activating
(qm

j = 1), deactivating (qm
j = −1) or non-activating (qm

j = 0) in condition m.
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The marginal density p(am
j |θm) thus reads:

p(am
j |θm) =

1∑

i=−1

Pr(qm
j = i |λm)f(am

j | qm
j = i,θm)

=
1∑

i=−1

λi,mfi(a
m
j |θm), (3)

with λm = (λ−1,m, λ0,m, λ1,m) and f0(a
m
j |θm) = N (0, v0,m), f±1(a

m
j |θm) =

G(α±1,m, β±1,m). The λi,m parameters define the prior probabilities of the three-
class mixture on the NRLs (

∑
i λi,m = 1). For instance, λ1,m gives us the prior

probability of being activated in response to condition m. Since the mixture is
independent in space, we have λ1,m = Pr(qm

j = 1 |λm),∀j. Note that qm
j |λm

follows a multinomial distribution over the 3-dimensional probability simplex,
i.e., qm

j ∼MN3(1; λm) (see Appendix A). Hence, seven hyper-parameters are
necessary to describe the prior mixture for each experimental condition m:
θm = {λ±1,m, α±1,m, β±1,m, v0,m}.

Compared to (Woolrich et al., 2005), we set the mean of the non-activating
class to zero (µ0,m = 0, ∀m), while we do not need to place restrictions on
the mode of the activation and deactivation gamma classes.

2.3.3 The nuisance variables

We assume that l is a random process independent of h such that p(l;σ2
` ) =∏

j p(`j;σ
2
` ) and `j ∼ N (0, σ2

` IQ).

2.3.4 The hyper-parameters

All the hyper-parameters are concatenated into the overall parameter vec-
tor Θ = {θ0, σ

2
h, σ

2
` ,θa}. Without informative prior knowledge, the following

priors are retained for (σ2
h, σ

2
` ,θ0):

p(σ2
h, σ

2
` ) = (σhσ`)

−1, p(θ0) =
J∏

j=1

p(ρj, σ
2
εj

) =
J∏

j=1

σ−1
εj
1(−1,1)(ρj), (4)

to ensure stability of the AR(1) noise process (Kay, 1988).

Mixture parameters. As regards variances v0,m, an improper Jeffreys’

prior p(v0,m) = v
−1/2
0,m is considered because we do expect non-activating voxels

in a given parcel. Hence, class 0 should never be empty a priori. However, to
avoid emptiness and subsequent degeneracy problems making the sampling of
the posterior distribution of v0,m unfeasible, a conjugate prior could also be
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chosen, that is, an inverse gamma density IG(v0,m, av0 , bv0), where (bv0 , cv0)
are fixed values chosen in an appropriate way to make the prior flat enough.

The non-negativity of parameters αi,m is guaranteed through the use of an
exponential density E(αi,m; si) ≡ G(αi,m; 1, si) as prior distribution (see Ap-
pendix A). For parameters βi,m we resort to the conjugate prior, given by a
gamma density G(βi,m; bi, ci) for i = ±1.

Mixture probabilities. As regards mixture probabilities λm ∈ [0, 1]3, a
Dirichlet prior distribution is used as it is conjugate to the multinomial distri-
bution used for labels, i.e.,MN3(q

m
j |λm). More exactly, a symmetric Dirichlet

density D3(λm | δ) is selected with δ = δ13 and δ > 0 (see Appendix A).

The full prior density p(θm) thus reads:

p(θm) = v
−1/2
0,m

Γ(3δ)

3Γ(δ)

∏

i=±1

λδ−1
i,m si

cbi
i

Γ(bi)
βbi−1

i,m exp(−si αi,m − ci βi,m). (5)

Values of (a±1, b±1, c±1, s±1, δ) are fixed empirically but do not really influence
the results in most cases 4 . These parameters make the sampling steps of
(α±1,m, β±1,m) always possible even when one of the two classes ±1 is empty,
because the hyper-prior densities have been chosen proper.

2.4 The full posterior distribution

Combining data-driven information in each parcel with prior knowledge us-
ing Bayes’ rule, we get the full posterior distribution, which is the keystone
both for localising activations and deactivations as well as for estimating the
corresponding parcel-based HRF:

p(h,a, l,Θ |y) ∝ p(y |h,a, l,θ0) p(a |θa) p(h |σ2
h) p(l |σ2

`) p(Θ)

∝ σ−D
h σ−JQ

`

J∏

j=1

(
(1− ρ2

j)
1/2

σN+1
εj

1(−1,1)(ρj)

)
× · · ·

× exp

(
−htR−1h

2σ2
h

−
J∑

j=1

(
1

2σ2
εj

ỹt
jΛjỹj +

1

2σ2
`

‖`j‖2
))

× · · ·

×
M∏

m=1

(
p(θm)

J∏

j=1

p(am
j |θm)

)
(6)

where p(am
j |θm) and p(θm) are defined by (3) and (5), respectively.

4 except potentially when the corresponding class is empty: Ji,m = 0 for i = ±1.
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Note that the parcel-based HRF h can be identified if at least one voxel elic-
its activation in response to one or several experimental conditions involved
in model(1). In addition, other identifiability problems may occur on hyper-
parameters such as the mean and variance parameters. It is necessary that at
least two voxels belong to each class in order to properly estimate the vari-
ances attached to the mixture components. In practice, there is no numerical
problem because of the choice of proper priors for the hyper-parameters; see
Subsection 3.1.2 for practical details.

3 Inference scheme

Our objective is to obtain an estimate of the joint posterior distribution of
all unknown parameters, given the observed data. Exact and analytical ap-
proaches are not feasible with non-Gaussian models such as (6). Several com-
peting inferential schemes are possible. For instance, approximations to the full
posterior distribution can be derived in the Variational Bayes (VB) framework
or using Taylor series expansion. In our context, given the bilinear structure
of the generative BOLD model (6), the VB formulation would be feasible only
at the expense of separability assumptions between a and h in the approxima-
tion of the posterior distribution. Further work is required to decide whether or
not this hypothesis is tenable. Instead, we resort to a more computationally
demanding but exact approach to simulate realisations of the full posterior
distribution.

3.1 Gibbs sampling algorithm

To draw realisations of the full posterior distribution, a Gibbs sampler is im-
plemented. This consists in building a Markov chain, whose stationary dis-
tribution is the joint posterior pdf (6), by sequentially generating random
samples from the full conditional pdfs of all the unknown parameters and
hyper-parameters ; see (Liu, 2001; Robert, 2001) for a general introduction to
MCMC.

As shown in appendix B, direct sampling according to the full conditional
distributions is only feasible for the HRF h, the labels q, the nuisance vari-
ables l, the noise variances σε, the mixture probabilities λm, and part of the
hyper-parameters (scales σh and σ`, class 0 variances v0 and shape parameters
βi for i = ±1). In contrast, direct simulation is not tractable for the other
parameters, i.e., the NRLs a corresponding to classes ±1, the AR parameters
ρ and the scale parameters αi of the gamma densities for i = ±1. Therefore,
single-component Metropolis-Hastings jumps (Hastings, 1970) are specifically

13



designed. More precisely, separate jumps are proposed for each of the param-
eters in turn. To this end, suitable instrumental distributions regarding the
parameters of interest are designed (see Appendix B for details).

3.1.1 Initialisation

Parameters are uniformly initialised. This means that we set up all voxels with
the same noise statistical parameters (θ0,j = θ0,∀j) and that we use the same
starting values of mixture hyper-parameters (θm = θ?, ∀m). In the first parcel,
the HRF is initialised to the canonical shape (Glover, 1999). In the next ones,
the HRF is set up using the mean of the estimates computed over the already
processed neighbouring parcels. We resort to the same strategies for the labels
and the corresponding NRLs when the parcel sizes match approximately. We
have checked that this strategy provides shorter burn-in periods 5 and thus
reduces the computation load.

3.1.2 identifiability issues

To cope with these identifiability problems, we have carried out the following
three steps procedure over the first iterations of our MCMC algorithm:

• initialise each parcel-specific HRF with a fixed shape in order to obtain a
first estimate of labels q̂;

• check that the class of activating voxels is effectively not empty for at least
one experimental condition:

−− If ∃m ∈ N∗
M = {1, . . . , M} such that in every parcel P ∃ j ∈ {V1, . . . , VJ} ∈

P | qm
j = 1 then release the HRF constraint to estimate the complete

model i.e., including the HRF shape;
−− otherwise, discard the current parcel: the HRF estimate is not reliable in

P . Since the corresponding NRLs are close to zero in that case there is no
evoked activation due to the experimental paradigm.

3.1.3 Convergence diagnosis

We use a burn-in period of 500 iterations, followed by 1000 subsequent jumps
and compute PM and MAP estimates every two jumps. Observations of the
chain with different initial conditions confirmed that a burn-in of 500 jumps
was sufficient. In addition, convergence has been checked by monitoring on-
line the behaviour of the estimated values of some scalar parameters (e.g.,

5 The burn-in period is the starting part of the Markov chain built by any MCMC
algorithm which is used to ensure that the subsequent samples follow the equilibrium
target distribution, i.e., the posterior law.
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noise variances, AR parameters, ...) from one iteration to another. These ob-
servations confirmed also that 1000 iterations were sufficient.

3.1.4 Computational load and parallel implementation

Our current implementation (PyHRF package) is in Python, while the most
intensive computations (e.g., computation of the inverse covariance matrix of
h) have been coded in C-language and interfaced with the Gnu Scientific

Library (GSL) 6 . This allows us to take advantage of a parallel computing
system available through the Seppo library (Simple Embarassingly Parallel
Python 7 ) and the Pyro (Python Remote Object) server. Using such a system,
all the parameter estimates are obtained in about 2 mn for a parcel of mean
size (250 voxels) for two experimental conditions (M = 2). Since about 200
parcels are necessary to cover the grey matter’s mask, a complete within-
subject analysis takes about 2 hours when running four processes on a dual
core bi-processors Pentium IV (2.7 GHz). PyHRF will be available in the next
release of BrainVisa 8 in March 2008.

3.2 Derivation of parcel-based summaries

After convergence of the MCMC algorithm in each parcel P , the samples of the
quantities of interest are averaged over iterations to compute approximations
of marginal posterior expectations:

x̂PM

P =
L1∑

k=L0

x(k)/L, L = L1 − L0 + 1, ∀x ∈ {h,a, l,Θ} ⊂ P , (7)

where L0 stands for the length of the burn-in period and L the effective number
of iterations. For classification purpose, we proceed in two steps:

1. Compute the PM estimates (p̄m
j )i of Pr(qm

j = i |yj) for i = −1, 0 using
the following expression:

(p̄m
j )i =

L1∑

k=L0

I
[
(qm

j )(k) = i
]
/L, (8)

where I stands for the identity function. Then, deduce (p̄m
j )1 from the

constraint of unitary probability mass: (p̄m
j )1 = 1− (p̄m

j )−1 − (p̄m
j )0.

6 http://www.gnu.org/software/gsl
7 see http://www.its.caltech.edu/∼astraw/seppo.html
8 http://brainvisa.info.
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2. Sort the probabilities (p̄m
j )i and select the MAP estimate:

(q̂m
j )MAP = arg max

i
Pr(qm

j = i |yj) ≈ arg max
i

(p̄m
j )i. (9)

whatever the number of components in the mixture. The MAP estimator is
easily obtained in the two-class mixture case: Vj is non-activating ((q̂m

j )MAP =
0) for the mth condition if (p̄m

j )1 < 0.5.

In combination with these PM estimates, one can attach uncertainty measures
to the NRLs. More precisely, the error bars are derived as follows:

em
j =

1

L

L2∑

k=L1

(σm
i,j)

(k) with i = (q̂m
j )MAP. (10)

Interestingly, σm
0,j is directly given by

√
vm

0,j since the full conditional posterior

distribution of the zero class is Gaussian, i.e., N (µm
0,j, v

m
0,j). In contrast, the

standard deviations (SD) σm
±1,j require further computation since these full

conditional densities are gamma-Gaussian (see Section A.5). As derived in
Eq. (A.13), the variance of a gamma-Gaussian density admits a closed form
expression, which gives σm

±1,j after taking the square root. These SD estimates
are then plugged into (10) to get corresponding error bars em

j .

The stochastic algorithm is summarised in Table 2.

3.3 Statistical comparisons for cognitive interpretation

Akin to the contrast definition in any GLM-based approach, statistical com-
parison between our task-related NRL estimates can be addressed in the pro-
posed formalism. One might be interested in assessing unsigned or signed
differences like using Fisher or Student-t tests, respectively in the classical
hypothesis testing framework.

Let m and m′ be the indexes of the conditions we plan to contrast across the
brain. This contrast can be assessed by measuring how close the voxelwise
marginal distributions (pm

j , p
m′
j ) of the NRLs (am

j , a
m′
j ) are in every voxel Vj.

Since these densities write as posterior mixtures, say pm
j =

∑
i πif

m
i,j, we start

with identifying the MAP estimates (q̂m
j , q̂

m′
j ) and then we compare the full

conditional posterior densities (fm
q̂m
j ,j
, fm′

q̂m′
j ,j

) instead of computing a distance

between pm
j and pm′

j . Hence, three different (respectively, six) situations may
arise depending on the mixture prior in use (two or three-class mixture, res-
pectively). The different cases correspond to all possible combinations of the
pair (q̂m

j , q̂
m′
j ):
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Table 2
Gibbs sampling algorithm in a given parcel P. The parameters of the sampled
distributions are derived in appendix B.

• Setting up: choose h0,a0, l0,θ0, θ0
a.

• Iteration k: draw samples hk, ak, λk, (ε2)k, θk
a from the conditional posterior

pdfs:

−− HRF: hk ∼ N (µh,Σh),

−− HRF variance: (σ2
h)k ∼ IG(

D/2, htR−1h/2
)
,

−− NRLs: for every condition m and every voxel j,
−− (um

j )k ∼ U [0, 1] ; if (um
j )k 6 λm

−1,j , then (qm
j )k = −1 else if (um

j )k 6
λm
−1,j + λm

0,j then (qm
j )k = 0, otherwise (qm

j )k = 1.

−− (am
j )k | (qm

j )k = 0 ∼ N ((µm
0,j), v

m
0,j).

(am
j )k | (qm

j )k = ±1 ∼ GN (am
j |α±1,m, µm

±1,j , v
m
±1,j).

−− drift coefficients: ∀ j, (`j)k ∼ N (µ`j
,Σ`j )

−− Noise variances: ∀ j, (σ2
εj

)k ∼ IG((N + 1)/2, ‖ỹj‖2
Λj

/2).

−− AR parameters: ∀ j, (ρj)k ∼
√

1− ρ2
j exp

(
− Aj

2σ2
εj

(
ρj − Bj

Aj

)2
)
1(−1,1)(ρj).

−− Mixture parameters: for every condition m,
−− Weighting probabilities λm:

(λm)k ∼ D(δ′), with δ′i = δ +
Card

[
Ci,m =

{
j ∈ 1 : J |κm

j = i
}]

︸ ︷︷ ︸
=Ji,m

,

∀i = −1 : 1.

−− Variance of NRLs for non-activating voxels: (v0,m)k ∼ IG(ηk
0,m, νk

0,m).

−− Shape parameters: (α±1,m)k ∼ exp(Ji,mτi,mαi,m)/Γ(αi,m)Ji,mIR+(αi,m).

−− Scale parameters: (β±i,m)k ∼ G(Ji,m αi,m + bi + 1,
∑

j∈Ci,m
am

j + ci).

• Iterate until convergence is achieved. PMEs of {h,a, l, θa} are computed
using (7).

• Classification is performed according to the MAP criterion using (8)-(9).

a. if q̂m
j = q̂m′

j = −1, voxel Vj generates deactivations for both condi-

tions. Comparing the NRLs (am
j , a

m′
j ) is achievable by measuring how

close (fm
−1,j, f

m′
−1,j) are. This comparison therefore answers the question

of deciding whether or not the deactivation is stronger for one condition
w.r.t. the other (signed comparison) or if there is any difference between
the two conditions (unsigned comparison).

b. if q̂m
j = q̂m′

j = 0, voxel Vj is non-activating for both conditions. Comparing

the NRLs (am
j , a

m′
j ) amounts to computing a criterion between (fm

0,j, f
m′
0,j ).

The interesting comparison consists in deciding whether or not there is
some difference in the non-activating profile.
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c if q̂m
j = q̂m′

j = 1, both conditions elicit activations in Vj. By measuring

how close (fm
1,j, f

m′
1,j ) are, we hope to know if activation occurring for

condition m or m′ is stronger or if there is any difference irrespective of
its sign.

d. if q̂m
j = −1 and q̂m′

j = 0, Vj is deactivating in response to themth stimulus
type but is non-activating in response to the m′th condition. To quantify
this decision, one can measure a signed or unsigned criterion between
(fm
−1,j, f

m′
0,j ). By symmetry this case is equivalent to q̂m

j = 0 and q̂m′
j = 1.

e. if q̂m
j = −1 and q̂m′

j = 1 or vice-versa, Vj is activating in condition m′ and
deactivating in condition m. To quantify this decision, one can measure
a signed or unsigned distance between (fm

−1,j, f
m′
1,j ).

f. if q̂m
j = 0 and q̂m′

j = 1 or vice-versa, Vj is activating in condition m′ and
non-activating in condition m. To quantify this decision, one can measure
a signed or unsigned criterion between (fm

0,j, f
m′
1,j ).

Due to the use of mixture models, these comparisons can allow us to assess
the null hypothesis (H0 : am

j = am′
j ) or the alternative one (e.g., H1 : am

j 6= am′
j

or H1 : am
j < am′

j ) depending on the computed criterion. The question is
now to define what kind of signed or unsigned criteria we can implement to
quantitatively discriminate the two underlying distributions (fm

i,j, f
m′
i′,j).

3.4 Unsigned task comparison

Unsigned comparison between fm
i,j and fm′

i′,j can be computed using the
Kullback-Leibler (KL) divergence i.e.,

D(fm
i,j‖fm′

i′,j) =
∫

R
fm

i,j(a) log
fm

i,j(a)

fm′
i′,j(a)

da.

In the present case, its exact computation is only feasible when the two dis-
tributions are Gaussian i.e., when i = i′ = 0 (case b); see (A.3) in appendix A
for details. Otherwise, an approximation of D(·‖·) has to be derived. For doing
so, we proceed as follows. In cases (a, c, e), the sampling step of the NRLs
(am

j , a
m′
j ) relies on two Metropolis jumps, one for each NRL. The correspond-

ing instrumental laws are truncated normal distributions (see (A.4) in ap-
pendix B). Therefore, we approximate fm

i,j and fm′
i′,j by these positive Gaussian

distributions which mean and variance parameters are given in (A.5)-(A.6).
We end up by applying the KL divergence formula (Eq. (A.3)) to these trun-
cated Gaussian approximations. In cases (d, f), we proceed similarly for the
single activating or deactivating component.
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3.5 Signed task comparison

To go one step further and recover a sign information regarding the difference
dm−m′

j = am
j − am′

j , we need to estimate its posterior probability distribution

fm−m′
j from a histogram HB

j (.) with B time bins (βb)b=1:B constructed over the

last 500 iterations (i.e., the generated values (dm−m′
j )(k) = (am

j )(k) − (am′
j )(k))

in any voxel of the mask Mf . The posterior cumulative distribution func-
tion (cdf) F (·) can then be easily estimated from HB

j (.). Contrast-based pos-

terior probability maps (PPMs) are thus given by looking at differences dm−m′
j

above a given threshold α:

P (dm−m′
j > α) = 1− F (dm−m′

j 6 α) = 1−
∫ α

−∞
fm−m′

j (t) dt (11)

≈ 1−
d∑

n=1

HB
j

(
βn + βn+1

2

)
∆β d < α 6 d+ 1. (12)

where ∆β = βn+1 − βn. Setting α = 0, we actually find the voxels where
am

j > am′
j . Finally, we can threshold P (dm−m′

j > α) at level η to retain the
voxels which make the comparison significant at this level (e.g., η = 0.95).
Formally, the thresholded PPMs are given by P (dm−m′

j > α) > η. Note that
this only provides uncorrected PPMs for multiple comparisons. The control of
the familywise error is an open issue in the Bayesian formalism and is beyond
the scope of this paper.

4 Results on synthetic data

4.1 Goal of the study

A comparison between two different prior mixture models has been done
in (Makni et al., 2006a). In short, it has been shown that the gamma-Gaussian
mixture model (GaGMM ) introduced on the NRLs is more efficient than a
two-class Gaussian mixture model (GMM ) in terms of specificity: it provides
a better control of the false positive rate. Similar conclusions have been drawn
in (Makni et al., 2006b) when considering an AR(1) noise model instead of a
white Gaussian one in combination with a GMM prior. As the two changes
induce higher computation time, it is worth assessing which modelling effort
is preferable i.e. leads to the more significant improvement: the introduction
of an inhomogeneous prior mixture or the consideration of serial correlation.
For doing so, the models described in Table 1 are tested on the same artificial
fMRI dataset.
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4.1.1 Artificial fMRI dataset

These data were obtained by first generating two sets of trials, each of them
corresponding to a specific stimulus (M = 2). These binary time series were
then multiplied by a stimulus-dependent scale factor. Here, the functionally ho-
mogeneous region P consisted of J = 60 voxels. The number of activating vox-
els J1,m was varied with the stimulus typem according to (J1,1, J1,2) = (22, 30).
Positive NRLs corresponding to activating voxels were simulated according to
gamma pdfs:

activating voxels : a1
j ∼ G(α1 = 3, β1 = 1), a2

j ∼ G(α2 = 10, β2 = 2),

non-activating voxels : a1,2
j ∼ N (0, v0,m = 0.1).

Remark that the chosen gamma parameter values yields a lower SNR for
condition 1 ((µ1, v1) = (3, 3) vs. (µ2, v2) = (5, 2.5)). For all voxels, the binary
stimulus sequence was convolved with the canonical HRF hc, whose exact
shape appears in Fig. 2(a) in ¥-line. An AR(1) noise bj was then added to
the stimulus-induced signal

∑
m a

m
j Xmh in every voxel Vj. All AR parameters

were set to the same value: (ρj)j=1:J=0.4, which is compatible with the serial
correlation observed on actual fMRI time series. Also, a low SNR (SNR =
0.3) was considered in our simulations, in conformity with the real situation.
Space-varying low-frequency drifts P`j (generated from a cosine transform
basis with coefficients `j drawn from a normal distribution) were also added
to the fMRI time courses according to (1).

4.1.2 General comments

As shown in Figs. [2-5](a), all HRF estimates obtained using the four different
models match the canonical time course hc pretty well. Figs. [2-5](b) show
the corresponding NRL estimates that we obtained from models M1-M4,
respectively in response to condition 1 while Figs. [2-5](c) summarize the same
results for condition 2.

Since the artificial fMRI time courses were synthetised using a GaGMM prior
and some correlated noise, it is not surprising that the estimation performed
under model M1 provides the most accurate NRL estimates. Let us remark
that the NRL estimates have a small but not negligible amount of bias, which
is due to the bias/variance trade-off arising in the Bayesian approach in the
non-asymptotic case. Nonetheless, we have checked that the bias tends to zero
when the SNR increases.
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4.1.3 Influence of the noise model

Figs. [2-3](b)-(c) illustrate the impact of the noise model: a more accurate
estimation of the NRLs, with smaller error bars and lower mean square er-
ror, is observed in Fig. 2(b)-(c) compared to Fig. 3(b)-(c), that is for model
M1 compared to model M2. This is a direct consequence of accounting for
serial correlation in M1. The same conclusion holds when looking at Figs. [4-
5](b)-(c), so irrespective of the prior mixture type. As regards the HRF esti-
mate (compare Figs. [2-3](a)), the noise model has only little influence on the
recovered shape, as already advocated in (Marrelec et al., 2003). As regards
AR parameters, the estimated first order coefficients (ρi)i are close to the true
values in every voxel for both models M1-M3 (results not shown).

We also assessed the sensitivity and the specificity of the four models. Figs. [2-
5](d)-(e) show the posterior mean estimates (p̄m

j )1 of deciding that voxel Vj

lies in class 1, i.e., is activating for models M1-M4 and conditions 1 and 2,
respectively. These results confirm our expectations: the modelling of the tem-
poral correlation significantly improves both the sensitivity and the specificity.
A higher/lower value of (p̄m

j )1 is obtained with M1-M3 when Vj is truly
activating/non-activating (compare Figs. [2-3](d)-(e) for GaGMM priors or
Figs.[ 4-5](d)-(e) for GMM priors). This means that models M1-M3 provide
lower false positive (FP) and false negative (FN) rates than models M2-M4,
respectively. This effect is stronger in condition 1. This is in agreement with
the idea that the precision of the noise model plays a more important role at
a lower SNR.

4.1.4 Influence of the mixture prior

Not surprisingly, the estimated NRLs are recovered more accurately using the
true prior mixture (M1-M2): compare Figs. [2-4](b)-(c) one to another for an
AR(1) noise model and observe the difference in Figs. [4-5](b)-(c) for a white
noise model. This effect is much more important at low SNR, i.e., for condition
1. However, we have checked that when the true NRLs of the activating voxels
follow a Gaussian distribution, the estimated shape and scale parameters of
the gamma density in the GaGMM mixture provide close estimates of the mean
and variance parameters of the uncentered Gaussian distribution (results not
shown).

We are now interested in assessing the differences between M2 and M3. The
purpose of such a comparison is to decide whether or not a good mixture
type provides more accurate and sensitive results than a precise noise mod-
elling. Contrasting Figs. [3-4](b) allows us to note thatM2 outperformsM3 in
terms of accuracy of estimation for the first experimental condition. The NRLs
attached to the non-activating voxels are over-estimated, leading to a much
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Fig. 2. Estimation results on the simulated data using model M1. (a) HRF re-
sults: Symbols ¥ and ◦ represent the true hc and its corresponding HRF estimate,
respectively. (b)-(c): NRL estimates for conditions 1 and 2, respectively. True val-
ues appear on the x-axis and estimated values on the y-axis. The error bars follow
Eq. (10). (d)-(e): PM estimates of activation probabilities p̄m

j (◦ symbols) for the
conditions 1 and 2, respectively. Symbols ∗ depict the true class attached to each
voxel.

larger bias. In case of high SNR arising for the second condition, the com-
parison of Figs. [3-4](b) is less clear. The small NRLs are still over-estimated
but the large ones are better estimated using M2 in some cases (e.g., voxels
27, 58, 60). In terms of detection, Fig. 3(d) shows that a single false nega-
tive (voxel 3) is retrieved by model M2 for condition 1, while five FNs are
found by model M2, as shown in Fig. 4(d) (voxels 3, 6, 19, 26, 32). Hence,
model M2 achieves better results in terms of sensitivity and specificity. There-
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Fig. 3. Simulation results using model M2. The same legend as in Fig. 2 holds. Only
one FN voxel is present, indicated with an upward arrow.

fore, we conclude that introducing an inhomogeneous prior mixture is more
powerful than modelling the serial correlation as regards both estimation and
detection.

Receiver-operator-characteristic (ROC) curves have been also computed to
quantitatively evaluate the differences between models M1-M4. Fig. 6 illus-
trates and confirms that modelM1 provides the most sensitive detection when
specificity is fixed and a better specificity at a given sensitivity. These ROC
curves also validate that modelM4 is the less sensitive and the less specific out
of the four models. Finally, model M2 outperforms M3 and provides better
results in terms of sensitivity and specificity, irrespective of the stimulus type.
Fig. 6(a)-(b) allows us to claim again that the noise model has a stronger im-
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â
2

true NRLs a1 true NRLs a2

(d) (e)

(p̄
1 j
) 1

(p̄
2 j
) 1

voxels voxels

Fig. 4. Simulation results using model M3. The same legend as in Fig. 2 holds. FN
voxels are indicated by upward arrows.

pact in detection at low SNR since the distance between continuous and dotted
lines is larger in Fig. 6(a) than in Fig. 6(b), except at very low specificity (0.1).
This holds whatever the mixture type.

4.2 Deactivation modelling

Our purpose was to compare an inhomogeneous two-class mixture model with
its three class extension. In the latter case, a third class is used to account for
putative deactivation phenomenon arising for instance during sustained bursts
of interictal epileptiform activity (Bagshaw et al., 2005; Bénar et al., 2006).
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Fig. 5. Simulation results using model M4. The same legend as in Fig. 2 holds. FP
and FN voxels are indicated by downward and upward arrows, respectively.

Suitable artificial fMRI datasets were simulated accordingly. We considered
a ROI consisting of J = 60 voxels. Let J−1,m, J0,m J1,m be respectively the
number of deactivating, non-activating and activating voxels in response to
condition m. We set (J1,1, J−1,1) = (28, 19) and (J1,2, J−1,2) = (32, 12), so that
(J0,1, J0,2) = (13, 16). We simulated the NRLs as follows:

activating voxels : a1
j ∼ G(3, 1), a2

j ∼ G(5, 2)

non-activating voxels : a1,2
j ∼ N (0, 0.1)

deactivating voxels : −a1
j ∼ G(5, 4), −a2

j ∼ G(5, 4)

The same procedure as before (see §4.1.1) was applied to simulate artificial
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Fig. 6. (a)-(b): ROC curves associated to the four different models for condition
1 (a) and condition 2 (b), respectively. Continuous line, interrupted line with ◦,
continuous line with • and interrupted line with ∗ represent the ROC curves for
models M1-M4, respectively.

fMRI time series. The only difference concerns the noise type, which is white,
Gaussian and homogeneous in space to save computation time (∀j, σ2

j = 0.3).
Hence, model M2 and M5 (see Table 1) were tested and compared in terms
of estimation, detection performance and evidence.

The HRF estimates corresponding to models M2-M5 are shown in Figs. [7-
8](a), respectively. These estimated time courses appear very close to the true
HRF shape. Figs. [7-8](b)-(c) show the NRL estimates related to conditions 1
and 2, computed for model M2 and M5, respectively. First, we observe that
M2 provides under-estimated NRLs for activating voxels but over-estimated
parameters for deactivating ones, irrespective of the stimulus type. The esti-
mated error bars also appear significantly larger when deriving from M2. In
contrast, model M5 provides more reliable NRL estimates with smaller error
bars, as illustrated in Fig. 8-(b)(c). Also, the mean square error is decreased
for the NRLs corresponding to deactivating and non-activating voxels.

Fig. 7(d)-(e) demonstrates that modelM2 reports a few FN voxels (see upward
arrows). All these voxels have small NRL coefficients, inducing their assign-
ment to class 0. More importantly, we observe that the truly non-activating
and deactivating voxels are mixed in class 0, irrespective of the condition.
Fig. 8(d)-(e) reports the posterior mean estimates (p̄m

j )i (see (8)), which are
then combined to get the final classification according to the MAP criterion
(q̂m

j )MAP (see (9)). As indicated on these graphs, model M5 produces an ac-
curate classification. Fig. 8(d)-(e) respectively show the presence of three FN
voxels for condition 1 and only two FNs for condition 2. These classification
errors could be explained by the low values taken by the true NRL coefficients
in these voxels, making likely the assignment to class 0.

Finally, note that modelling the third class induces a higher computation time.
In our simulations, inferring the parameters of models M2 and M5 takes
about 6 and 11 minutes, respectively. If the ROI is large or if the experimental
paradigm involves numerous conditions, it seems reasonable to start with a
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careful analysis of the paradigm to anticipate potential deactivations before
inferring upon parameters of M5 instead of M2.
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Fig. 7. Simulation results using model M2. FN voxels are indicated by upward
arrows. The truly deactivating voxels that have been mixed in class 0 are surrounded
by rectangle.

4.3 Bayesian model comparison

More formally, from a statistical point of view we compare models M1-M5

by computing sample-based approximations to the model evidence p(y |Mm).
That allows us to derive Bayes factors BFmn as ratios of model evidence (see
Appendix C for computational details). Bayes factor provides us with good
statistical summary for model comparison. As reported in Table 3, there is
a strong evidence in favour of Model M1. More interestingly, our conclu-
sion drawn from the parameter estimates are also confirmed when comparing
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Fig. 8. Simulation results using model M5. The same legend as in Fig.2 holds. FP
and FN voxels are surrounded by rectangles (3 FNs in (d) and 2 FPs in (e)). ◦, ·
and ∗ symbols represent (p̄m

j )1 , (p̄m
j )−1 and (p̄m

j )0, respectively.

M2 with M3 using Bayes factor (line 2, Table 3). This also holds for the
comparison between the two-class and the three-class mixtures, M2 and M5

respectively (line 5, Table 3).
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Table 3
Values of the integrated log-likelihood log p(y |Mm) computed from a stabilized
version of the harmonic mean identity (Raftery et al., 2007) for models Mm with
m ∈ N∗

5. Model comparison based on the computation of Bayes factors log BFmn =
log p(y |Mm)− log p(y |Mn) for every pair (m,n). NR stands for Not Relevant.

Model m log p(y |Mm) Fig. # log BFmn, n = 1 : 4

M1 −199 Fig. 1 NR 18 316 400

M2 −217 Fig. 2 −18 NR 298 378

M3 −515 Fig. 3 −316 −298 NR 378

M4 −595 Fig. 4 −400 −378 −80 NR

M2 −700 Fig. 6

M5 −344 Fig. 7
log BF 52 = 356

5 Results on real fMRI data

5.1 fMRI experiment

5.1.1 MRI settings

The experiment was performed on a 3-T whole-body system (Bruker, Ger-
many) equipped with a quadrature birdcage radio frequency (RF) coil and a
head-gradient coil insert designed for echo planar imaging (EPI). Functional
images were obtained with a T2*-weighted GE-EPI sequence with an acqui-
sition matrix at the 64× 64 in-plane spatial resolution and 32 slices. A high-
resolution (1 × 1 × 1.2 mm3) anatomical image was also acquired for each
subject using a 3-D gradient-echo inversion-recovery sequence.

5.1.2 Experimental paradigm and contrast selection

The reader may refer to (Dehaene-Lambertz et al., 2006) for details about this
fMRI experiment. In short, the motivation of this study was to measure the
reduction in the neural activity subserving a cognitive representation when this
representation is accessed twice (the so-called “repetition suppression” effect),
resulting in a detectable adaptation of the measurable signal in fMRI (Grill-
Spector and Malach, 2001; Naccache and Dehaene, 2001). The experiment
consisted of a single session of N = 216 scans lasting TR = 2.4 seconds
each. Sixty sentences presented in a slow event-related design (SOA=14.4s)
were recorded. Each sentence (S1) could be repeated two (S2), three (S3)
or four (S4) times in a row. The main goal of our subsequent analysis was
twofold. First, our primary interest was to exhibit regions which activation to
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a given sentence either decrease with repetition or keep a constant magnitude
across the repetitions. Second, we were interested in inferring the hierarchical
temporal organisation from the parcel-based HRF estimates along the superior
temporal sulcus (STS).

Since the most significant habituation effect occurs between the first and sec-
ond sentence repetitions, we modelled the four conditions S1-S4 but we only
studied the contrast S1 − S2.

5.2 Pre-processings

As explained in Subsection 2.1.1, the grey matter’s mask was first com-
puted (see Fig. 9(a)) and then dilated using a 4mm-radius sphere to account
for the width of the cortical ribbon. Fig. 9(b) shows the result of this step.
The resulting mask Ma contains 19719 voxels at the fMRI resolution.

(a) (b) (c)

Fig. 9. (a): Slice of Subject 1’s anatomical mask (z = −4 mm). (b): its dilated
version Ma to match the functional resolution. (c): corresponding parcellation in
the same slice. Each colour codes for a different parcel.

We checked that for nine out of ten subjects the raw fMRI data were motion-
free approximately. All T1-weighted MRI images were normalised onto the MNI
template and functional images were transformed accordingly. fMRI volumes
were also spatially smoothed using a Gaussian kernel with FWHM = 6 mm
along each direction. A first level analysis was performed for each subject
using SPM2. The GLM modelled the four presentations of a given sentence
with two regressors (the canonical HRF and its time derivative). Then, the
parcellation was computed from the parameter estimates of this analysis. We
chose a relevant F-contrast c = [1, 0,−1, 0, · · · ; 0, 1, 0,−1, · · · , ...] to study
the habituation effect between the first and second presentations of a given
sentence (S1 − S2). Fig. 9(c) depicts an axial view of this parcellation for the
same slice (z = −4 mm).

Our approach strongly relying on a functional homogeneity assumption, we
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started by comparing the results using increasing parcel numbers (from K =
100 to K = 500 parcels in Ms = Ma ∪Mf ). We checked that K = 200 is
large enough to guarantee a higher and sufficient degree of homogeneity. Here,
the smallest and the largest parcels contained 44 and 190 voxels, respectively.
Within each parcel, the degree of functional homogeneity was measured by
computing a correlation matrix over the parameter estimates of the GLM.
Note that this could also be done over the fMRI signals attached to each
parcel.

5.3 Results

Our method was tested on the nine datasets. Here, we only report results for
Subject 1. Although the habituation effect and brain dynamics (i.e., the HRF
shape) are subject to inter-individual variability in terms of spatial localisation
and activation delay, the conclusions drawn for Subject 1 remain quite valid
for the others.

In what follows, the proposed joint detection-estimation algorithm was applied
to each parcel of Subject 1’s brain. Fig 10(a)-(b) shows the maps of the NRL
estimates corresponding to conditions S1 and S2, respectively, in a given slice
of the brain. In the same slice, Fig 10(c)-(d) shows the activation probabil-
ity maps attached to S1 and S2 (see (9) for details) our algorithm provides.
Activating voxels appear in red colour.

5.3.1 Probing for putative deactivation

This first analysis was devoted to looking at putative deactivations, that is
the presence of negative NRLs. We actually performed tests on all parcels to
assess differences between the GaGMM prior and its 3-class extension. For
illustrative purpose, Fig. 11 depicts the results of such a comparison on two
parcels P1 and P2, composed of 129 and 135 voxels, respectively. Interestingly,
the vast majority of voxels in P1 elicit a coherent activation in response to
the first presentation of a sentence (S1), while in P2, most voxels are non-
activating. As shown in Fig. 11(a)-(b), the same S1-based classification map
is obtained in P1 irrespective of the mixture model. The same conclusion
holds with respect to S2 (results not shown). In P2, Fig. 11(c)-(d) illustrates
that a few voxels move from the non-activating state to the deactivating one.
However, the corresponding NRL estimates are of small magnitudes indicating
that this new classification may arise by chance. Bayesian model comparison
statistically confirms our result since numerical evaluation of Bayes factors
gives us log BF 52 = −1.2 for P1 and log BF 52 = −.5 for P2. These results
show that there is less evidence in this dataset for supporting model M5.
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Fig. 10. (a)-(b) NRL estimates in one slice of subject 1’s brain (at z = −4 mm) in
response to S1 (a) and S2 (b). Values correspond to the NRL coefficients only for
voxels belonging to Ms. Otherwise they are equal to 0. (c)-(d): detection results in
the same slice for S1 and S2, respectively. Voxels colour-coded in red are detected as
activating. In black are the parcel borders that are superimposed to the different map
results to show the parcellisation influence on the estimation of such parameters.

Therefore, the introduction of the third class in the mixture is not necessary to
analyse these data, particularly in the brain regions involved in the treatment
of phonological stimuli (language comprehension). In the rest of the paper, we
restrict ourselves to the GaGMM prior.

5.3.2 Unsigned comparison between conditions

The result of our KL-distance map is shown in Fig. 12(a) in one slice of the
brain (z=−4 mm). In Fig. 12(b)-(c), the KL-distance map is then compared
to the standard F-test map by extracting the most significant, say MS, voxels
from both volumes, according to the corresponding criteria (the largest KL
divergence and the highest F value). This thresholding procedure shows com-
mon features in the activation patterns but also discrepancies in the temporal
lobes that elicit different responses. On this slice, the KL-based criterion pro-
vides less activations. This may be due either to our approximation of the KL
divergence or to the criterion itself.
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Fig. 11. Comparison of S1-based classification maps between the GaGMM prior (left
column, (a)-(c)) and its 3-class extension (right column, (b)-(d)) in two different
parcels, P1 (top row, at y = −16 mm) and P2 (bottom row, at y = −52 mm).
Square spots in white, orange and brown match with activating, non-activating and
deactivating voxels, respectively.
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Fig. 12. Statistical maps are superimposed to a functional image and results are
given in one slice of the brain (z = −4 mm). (a): KL-distance for voxels in Ms at
z = −4 mm. (b): The MS most significant voxel KL-distance values. (c): The MS
most significant voxel F-values.

5.3.3 Signed comparison between conditions

The mapping of the habituation phenomenon calls for signed comparisons
since we are looking for voxels where a significant decrease of NRLs between
S1 and S2 can be observed. Fig. 13 shows such a comparison over the whole
brain between the PPM derived using the proposed methodology and the
thresholded T-map obtained using SPM2. The activated regions (in blue) for
the contrast S1 > S2 elicit therefore a higher response when a sentence is
presented only once.
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Statistical differences appear between the proposed PPM and the correspond-
ing SPM. On the one hand, in the majority of slices we observe more activa-
tions on the PPM shown in Fig. 13(a). To a certain extent, these differences
can be explained by the shape variations of the HRF estimate and its devia-
tion from the canonical shape prescribed in SPM. Moreover, the correction for
multiple comparisons used for the t-map may dramatically reduce the number
of activating voxels. In contrast, no correction has been applied over the PPM.

On the other hand, in the temporal lobes (top row, right slices of Fig. 13(b)),
sensitivity of detection seems better on the Student-t map: the activated clus-
ters appear larger. Note also the presence of isolated activating voxels in
Fig. 13(a). It is likely that this reflects the presence of false positives. To
circumvent this issue and decrease the FP rate in the PPM, a spatial correla-
tion model between neighbouring voxels can be introduced; see (Vincent et al.,
2007b,a) and the discussion.

In Fig. 14, we represent the estimated HRFs in parcels corresponding to areas
where we notice sensitivity differences. It clearly appears that in some parcels
our HRF estimates exhibit unexpected timing properties. For instance, in cen-
tral regions (x = 0, y < 0), we obtained initial dips that were difficult to predict
in advance. This requires further analysis (see Discussion). In regions where
the HRF estimate is very close to the canonical shape, the PPM and SPM
provide similar activation patterns. Finally, some regions were also detected
as activating (S1 > S2) by both methods while there is no evidence in the lit-
erature to suppose a priori that they elicit responses to auditory stimuli (see
for instance Fig. 14(b) along the interhemispheric axis).

5.3.4 Habituation and temporal organisation

We focus on superior temporal regions ranging from the primary auditory
cortex (Heschl’s gyrus) to associative areas (middle and posterior STS). Al-
though it has been shown in (Dehaene-Lambertz et al., 2006) that repetitions
affect both amplitude and delay of responses, we only model habituation effect
on the NRLs by considering the different sentence presentations as different
conditions. This procedure is not optimal but remains quite simple.

The first interesting region is Heschl’s gyrus located in the primary audi-
tory cortex around voxel with coordinates (−48,−12, 0) mm in the standard
Talairach space. This area shows the same response magnitude each time a
sentence was presented. Fig. 15(a)-(b) shows the NRL estimates in parcel PHe,
which is circled in black for S1 and S2, respectively. In every voxel of PHe, these
magnitude parameters are very close to each other making the KL-distance
between the marginal posterior distributions of S1 and S2 close to zero (see
Fig. 15(c)). Hence, the measured difference between S1 and S2 is not statisti-
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(a)

(b)

Fig. 13. From left to right and from top to bottom, brain slices organised along
increasing axial axis (the bottom of the brain appear first in the superior left corner).
Study of the contrast S1 > S2. (a): thresholded PPM (see (11)) at η = 0.999; (b):
thresholded SPM t-map at T=3.09 (corrected for multiple comparisons) obtained
using SPM2.

cally significant. Summary statistics computed over the NRL estimates in PHe

are reported in Table 4 (left col.) and confirm our first analysis quantitatively.
The same study was done in PBr containing Broca’s area and centered around
voxel (−40, 24, 0) mm in the Talairach space. Fig. 15(d)-(e) clearly indicates
a strong decrease in the NRLs between S1 and S2. The higher value of the
KL divergence reported in Fig. 15(f) confirms the presence of a significant
habituation effect in PBr. Our quantitative analysis (see Table 4, right col.)
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(a)

(b)

Fig. 14. (a): Single-slice comparison (z = 0 mm, slice 7 in Fig. 13) for the contrast
S1 > S2. left panels: thresholded PPM at η = 0.999; right panels: thresholded
SPM t-map at T=3.09 (corrected for multiple comparisons) obtained from the SPM
analysis. (b): same comparison in slice z = 24 mm (slice 13 in Fig. 13). HRF esti-
mates (in blue) in these regions compared to the canonical hemodynamic response
function used in SPM (in red).
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also shows the same trend as outlined by the strong discrepancies between the
mean and standard deviations of S1 and S2.

In (Dehaene-Lambertz et al., 2006), a sine-wave GLM was designed and fitted
to study the speed of habituation. It allowed one to exhibit a temporal organ-
isation of the temporal lobe with fastest responses located in Heschl’s gyrus
and slowest ones in temporal poles. Here, given the proposed methodology,
the temporal organisation is studied more directly by measuring and sorting
the timing properties of the parcels PHe and PBr.
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Fig. 15. (a)-(b) & (d)-(e): NRL estimates in the sagittal slices located at
x = −48 mm and x = −40 mm, respectively. (a)-(b) provide the magnitudes in re-
sponse to S1 while (d)-(e) give us the NRLs in response to S2. (c)-(f): KL-distance
maps between the corresponding NRLs. Images are superimposed to functional data.
The parcels containing the Heschl’s gyrus (top row) and Broca’s area (bottom row)
are surrounded in black and referenced as PHe and PBr in the text. (g)-(h): HRF
estimates in PHe and PBr, respectively.

In these parcels, we also investigated the temporal aspects of the STS
organisation by measuring different features (time-to-peak Tpeak, time-to-
undershoot Tundershoot) on the estimated HRFs (see Fig. 15(g)-(h)). We com-
puted these quantities over each parcel (PHe and PBr and their four closest
neighbours) separately before averaging them to get a mean estimate. We
found that the responses in PHe (Tpeak = 6 s. and Tundershoot = 13.3 s.) occur
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Table 4
Summary statistics in parcels containing Heschl’s gyrus and Broca’s area.

Statistics
PHe, Heschl’s gyrus PBr, Broca’s area

S1 (m = 1) S2 (m = 2) S1 (m = 1) S2 (m = 2)

maxj(âm
j )PM 39.45 31.29 46.57 22.33

minj(âm
j )PM 0.35 −0.88 −4.21 −0.32

Mean (âm
j )PM 7.96 3.76 19.81 9.91

Median (âm
j )PM 5.09 1.44 19.95 10.49

Std (âm
j )PM 7.62 6.72 8.95 4.92

and return to the baseline earlier than the responses in PBr (Tpeak = 6.4 s. and
Tundershoot = 13.6 s.). After averaging these quantities over the five parcels, we
obtained congruent results (Tpeak = 6.1 s. and Tundershoot = 13.2 s. around PHe

vs. Tpeak = 6.5 s. and Tundershoot = 13.5 s. around PBr) meaning that the region
embedding Hesch’s gyrus elicits brain activations faster than the region includ-
ing Broca’s area. This confirms more directly what has been already derived
in (Dehaene-Lambertz et al., 2006) although no statistical test is provided to
assess the significance of this result. The next question concerns of course the
putative reasons of these earlier responses in Hesch’s gyrus. There is a large
evidence in these datasets for supporting faster neurodynamics as the main
origin of these results instead of faster hemodynamics. This can be checked
for instance using complementary analysis like a phase analysis conducted in
(Dehaene-Lambertz et al., 2006).

6 Discussion

In this paper, we have proposed an original method to perform a parcel-based
joint detection-estimation of brain activity from fMRI data. It has been shown
on simulated datasets that a gamma-Gaussian mixture as prior pdf on the
NRLs outperforms a Gaussian mixture in terms of sensitivity/specificity trade-
off. It has also been reported that the noise model has an influence over this
compromise, particularly at lower SNR: a first-order AR model provides lower
false positive and negative rates in comparison with a white noise model.

Our method extends previous works (Makni et al., 2005, 2006b,a) to deal
with anatomically informed whole brain analysis. As already done in (Smith
et al., 2003; Nieto-Castanon et al., 2003; Flandin et al., 2002), analysis was
constrained to the mask of the grey matter obtained from a segmentation of
the T1-weighted MRI. Our approach also relies on functional homogeneity as-
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sumptions at a regional scale that can be assessed either from the fMRI time
series themselves or from the GLM parameter estimates. To meet these condi-
tions, we resort to an automatic parcellation technique developed in (Thirion
et al., 2006) but alternative clustering strategies may be thought of. Our
approach therefore depends on this prior decomposition making the global
within-subject analysis a two-steps procedure. The quality of the parcels will
have an impact on the model fitting and a slight modification of the parcel-
lation may generate different results especially in case of identifiability prob-
lems. By varying the number of parcels, we have checked that our results
remain quite stable for different parcellations. The solution to this problem
actually lies in the coupling of the parcellation procedure with our detection-
estimation approach. This a very appealing direction of research but remains
beyond the scope of the present work. At the expense of an increased compu-
tational complexity, the two steps could be merged in a combined approach
through a hierarchical Bayesian model: one might be interested in improv-
ing the parcellation from the results of the detection-estimation stage using
an iterative strategy: neighbouring parcels would be grouped if their underly-
ing hemodynamics share similar features. The algorithm should take place in
the context of reversible jumps MCMC to properly handle fusion/segragation
moves between parcels Green (1995); Richardson and Green (1997). Besides,
the parcellation identification issue could also be attacked using triplet Markov
fields (Benboudjema and Pieczynski, 2007), which seem suitable for modelling
nonstationarities in image segmentation.

A strong feature of our approach is the possibility to derive parcel-based HRF
time courses throughout the brain. It allows us to assess the spatial variability
of the HRF shape and to check that this shape greatly fluctuates across parcels.
Since the parcellation procedure is derived at the group level, one is able to
compare subject specific HRFs in a given parcel. Doing so, we have noticed
that the between-subject variability in the HRF shape seems to be larger than
the within-subject spatial variability, as already suggested in (Handwerker
et al., 2004).

Our results also suggest that the modelling of spatial HRF fluctuations is im-
portant to segregate brain regions involved in the experimental paradigm (Hes-
chl’s gyrus, Broca’s area, ...). The adaptation effect was particularly evident
between the first and second sentences. The pattern of adaptation was dif-
ferent across regions with a set of regions demonstrating the same response
each time a sentence was presented ( i.e., Heschl’s gyrus) and regions showing
a more or less strong decrease between the first and second presentation (eg,
Broca’s area, superior STS).

Nonetheless, there exist fMRI experiments for which the proposed approach
may fail because of the inhomogeneity of the HRF shape both in space and
across conditions at a regional scale. This may occur when neurodynamic and
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hemodynamic fluctuations intermix. Indeed, recent studies of the fine structure
of the fusiform face area (FFA) (Grill-Spector et al., 2006) have shown that the
FFA is actually highly heterogeneous. It appears that the FFA is composed
in reality of several small scale subregions that respond strongly, not only
to faces, but also to cars and sculptures. The subregions discovered in (Grill-
Spector et al., 2006) were associated with very distinct HRFs. For such studies,
the best way to capture these HRF fluctuations is to perform a voxel-based
non-parametric analysis on the basis of which statistical comparisons can be
done across conditions, as demonstrated in (Ciuciu et al., 2003; Marrelec et al.,
2004).

We have also distinguished some differences between our PPMs and the SPMs
derived from a classical GLM-based analysis. Our results confirm the interest
of a simultaneous procedure for detecting and estimating brain activity. The
proposed procedure actually improves the sensitivity of detection in some re-
gions where the temporal characteristics (time-to-peak, time-to-undershoot,
...) of our HRF estimate deviate from those of the canonical shape. Unfortu-
nately, this effect is not systematic on the datasets since in other regions a loss
of sensitivity was observed. The reasons underlying this unexpected decrease
have to be identified. To elucidate this issue, future work will be devoted to the
comparison of a degraded version of our joint detection-estimation procedure
with the actual one. The degraded version corresponds to an inference scheme
where the HRF is maintained fixed and is not sampled at every iteration of the
Gibbs sampler. We will quantify statistically this sensitivity difference on sim-
ulated data where we know exactly the ”ground” truth. For doing so, we could
generate fMRI data over the whole brain using the fMRI simulator developed
by (Drobnjak et al., 2006).

In the present paper, we get rid of the scale ambiguity problem due to the
bilinearity of (1) w.r.t. the pair (h,a) by imposing a unitary norm constraint
over h. This could have a dramatic impact on the convergence of our sam-
pling scheme and then on the recovered HRF shape by distorting the target
distribution of the MCMC scheme. Alternative strategies may first consist in
cancelling this normalisation step. However, the resulting sampling scheme is
too slow to converge in a reasonable amount of time (Veit and Idier, 2007). An
efficient alternative has been proposed in (Veit and Idier, 2007). It has been
applied to the joint detection-estimation of brain activity in (Ciuciu et al.,
2007). It consists in adding to the MCMC procedure a sampling step of a
positive scalar parameter s coding for the HRF scale. It can be shown that its
sampling is fast, follows a generalized inverse Gaussian distribution in case of
Gaussian mixtures and guarantees the theoretical convergence of the generated
Markov chain to the posterior distribution. Deriving the target distribution of
this scale parameter for inhomogeneous mixtures is beyond the scope of this
paper.
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To conclude about the real impact of our within-subject analysis, inference
should take place at the group level. In other words, we should compare the
results of two random effect analyses (RFX) based on the same group statis-
tics (e.g., mean effect) and statistical test (Student t-test). The first RFX
analysis would correspond to the gold standard, in which the input data are
given by the normalised effects of a standard individual SPM analysis. The
second analysis would take the results of our algorithm for each subject as
inputs. Of course, this is only feasible in case of multi-subjects parcellation,
what is currently obtained using the procedure described in (Thirion et al.,
2006, 2007).

From a methodological point of view, we have shown that our joint detection-
estimation technique is able to identify deactivations in the brain. This is
owing to the introduction of a third class in the prior mixture model associ-
ated to the NRLs. Nonetheless, we did not exhibit real deactivations on the
analysed datasets. In the future, we should therefore validate the 3-class exten-
sion on specific datasets. A good candidate could be a dataset acquired during
an event-related auditory paradigm in which silence events are presented ran-
domly to compare activations to a baseline derived from such events. As al-
ready shown in (Ciuciu et al., 2003), silence events may generate deactivations
in the temporal lobe if they are presented to the subject when the gradients
of the scanner are switched off. This will be the subject of further work.

Smoothing the data spatially provides a reliable manner for recovering clusters
of activation instead of isolated spots, at the expense of a loss of resolution.
To avoid this preprocessing, the proposed method could be extended by in-
troducing spatial correlation in the prior model. This could be done either
on the NRLs (a) or on the underlying states (labels q). We argue in favour
of the second solution for simplicity reasons. As already derived for Gaussian
mixtures in (Vincent et al., 2007b,a), it is quite simple to sample from an
Ising (2-class model) or Potts (3-class model) Markov random field (MRF)
that enforce neighbouring voxels to be classified in the same state (e.g., ac-
tivating). This approach actually seems more reasonable in terms of compu-
tational load than considering edge-preserving MRF based on non-quadratic
potentials (Green, 1990; Geman and McClure, 1987). Also, for computational
reasons this extension has been developed in a supervised framework meaning
that the hyper-parameter encoding spatial regularity of the hidden MRF is
set by hand. Future work will be focused on an spatially adaptive extension in
which this parameter is estimated as well, as already done in (Woolrich et al.,
2005; Woolrich and Behrens, 2006).

Another extension that could be introduced at little expense concerns the
analysis on the cortical surface, as proposed in (Andrade et al., 2001). This
will probably improve the sensitivity of detection by constraining the analysis
to the cortical surface. Such study needs first a segmentation of the anatomical
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MRI, then an extraction of the grey-white matter interface (e.g., as a mesh),
and finally requires an interpolation of the fMRI signal on the nodes of the
mesh (see for instance (Grova et al., 2006) for a suitable approach).

Finally, the model presented here assumes that the NRLs are constant in time.
Hence, to account for putative habituation effects, it requires to model repeti-
tions of the same stimulus as different experimental conditions, what may be
not optimal in terms of sensitivity of detection. To account for trial-varying
NRLs due to adaptation or learning effects arising either as a direct conse-
quence of the paradigm or as a alteration of subject’s arousal, the proposed
model can be generalised in a way that makes the number of unknown param-
eters not too large. As proposed in (Ciuciu et al., 2006), habituation can be
modelled at the voxel level by a pair of parameters: the NRL to the first trial
of the stimulus and a mean habituation speed across the consecutive trials
that follows a hyperbolic parametric model depending on the inter-stimulus
intervals.

Hopefully, all these additional points will induce improvements in the detection-
estimation results and will help to a better comprehension of brain functions.
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Appendix

A Densities

We give the definitions of the densities used throughout this paper. We also
provide numerical recipes for efficient simulations according to complex dis-
tributions when necessary.
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A.1 Multivariate Normal density

The multivariate Normal density for d-dimensional variable x with mean vec-
tor µ and covariance matrix Σ is given by

N (x |µ,Σ) = |2πΣ|− 1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (A.1)

The general formula of Kullback-Leibler (KL) divergence between a test den-
sity, say q(x) and a reference density p(x) is

KL(q||p) =
∫
q(x) log

q(x)

p(x)
dx. (A.2)

For multivariate normal densities q(x) = N (x |µq,Σq) and p(x) = N (x |µp,Σp),
Eq (A.2) takes the following form:

KL(q||p) =
1

2
log

|Σp|
|Σq| +

1

2
tr (Σ−1

p Σq) +
1

2
(µq − µp)

tΣ−1
p (µq − µp)−

d

2
.

For univariate normal densities q(x) = N (x |µq, σq) and p(x) = N (x |µp, σ
2
p),

the KL (A.2) distance becomes:

KL(q||p) = =

(
σ2

p − σ2
q

)2
+ (µp − µq)

2
(
σ2

p + σ2
q

)

4σ2
pσ

2
p

. (A.3)

A.2 Positive normal density

The truncated normal distribution for a scalar variable x ∈ R+ with parame-
ters (m, v) expresses as follows:




N+(x |m, v) = C−1 exp

(
−(x−m)2/2v

)
IR+(x),

C =
√
πv

[
1 + erf

(
m/
√

2v
)]
/
√

2,
(A.4)

where erf is the error function (Abramowitz and Stegun, 1970, p. 297):
erf(z) = 2/

√
π

∫ z
0 e

−t2 dt. Parameter m defines the mode of the density if
m > 0. Note that the knowledge of C is not required for simulating a realisa-
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tion of the density. Indeed, its mean µ and variance σ2 are given by

µ = m+

√
2v

π

exp(−m2/2v)

1 + erf(m/
√

2v)
, (A.5)

σ2 = v +
m2

4
−

[
µ− m

2

]2

. (A.6)

Hence, the standard inversion technique of the cumulative distribution func-
tion (Devroye, 1986; Gelfand et al., 1992) may be used. First, it consists in
simualting an uniform variate u ∼ U ([0, 1]) and then in calculating:

x = m+
√

2v
−1

erf
(
u+ erf

(
m/
√

2v
)

(u− 1)
)
,

The erf function is approximated numerically in practice. In cases where
the approximation error becomes important (i.e., when |m| is too large), this
simulation method is inefficient. Instead, we use efficient alternatives which
are based on accept-reject algorithms (Robert, 1995), the most powerful relies
on multiple instrumental distributions (Mazet et al., 2005) 9 .

A.3 Gamma density

The gamma density for variable x ∈ R+ with shape parameter α > 0 and
scale parameter β > 0, is defined by

G(x |α, β) =
βα

Γ(α)
xα−1 exp (−βx) IR+(x) (A.7)

where Γ(x) is the gamma function defined as

Γ(x) = (x− 1)Γ(x− 1) =
∫ ∞

0
tx−1e−t dt. (A.8)

The mean and variance are respectively given by E [x] = α/β and var [x] =
α/β2, while the mode of the distribution is given byM0 = (α−1)/β. Particular
cases of the gamma distribution are the Erlang distribution G(x |α, 1), the
exponential distribution E(x | β) = G(x | 1, β) and the chi-squared distribution
G(x | ν/2, 1/2) denoted by χ2

ν . The Erlang distribution may be used in pratice
as a preliminary step for simulating a gamma variate x ∼ G(α, β) since we get
a right sample if x = u/β and u ∼ G(α, 1).

Note also that the inverse gamma distribution, denoted by IG(·α, β) through-
out the paper is the distribution of x−1 when x ∼ G(·α, β).

9 This code available on-line at http://www.iris.cran.uhp-nancy.fr/francais/si/
Personnes/Perso Mazet/rpnorm-fr.htm.
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A.4 Beta density

The Beta density for variable x ∈ [0, 1] with shape parameter α > 0 and scale
parameter β > 0, is defined by

Be(x |α, β) =
xα−1(1− x)β−1

B (α, β)
I[0,1](x) (A.9)

where B (α, β) is the Beta function:

B (x) =
∫ 1

0
tα−1(1− t)β−1 dt =

Γ(α)Γ(β)

Γ(α+ β)
.

The mean and variance are respectively given by

E [x] =
α

α + β
, and var [x] =

αβ

(α + β)2(α+ β + 1)
.

The mode of the Beta distribution evolves w.r.t. the domains of (α, β):

M0 =





α− 1

α + β − 2
if α > 1and β > 1

0 and 1 if α < 1and β < 1

0 if




α < 1 and β > 1

α = 1 and β > 1

1 if




α > 1 and β < 1

α > 1 and β = 1

does not exist if α = β = 1

Importantly, for simulating Beta-distributed random variate x ∼ Be(· |α, β),
we proceeds as follows. First, generate two exponential variables e1 ∼ E(· |α)
and e2 ∼ E(· | β). Second, compute x as e1/(e1 + e2).

A.5 gamma-Gaussian density

The non-standard gamma-Gaussian density for variable x ∈ R+ with shape
α > 0, mean µ > 0 and variance parameters v > 0, is defined by

GN (x |α, µ, v) = K−1
α xα−1 exp

(
−(x− µ)2/2v

)
IR+(x) (A.10)
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where Kα is the normalising constant:

Kα =
∫ +∞

0
xα−1 exp

(
−(x− µ)2 /2v

)
d x

= exp
(
−µ2/4v

)
v

α
2 Γ(α)Dα(−µ/√v). (A.11)

The last equation follows from (Gradshteyn and Ryzhik, 1994, p. 337, Eq
3.462-1) that relies upon the gamma function (see (A.8)) and the Parabolic
Cylinder functions Dν (Gradshteyn and Ryzhik, 1994, p. 885, Eq 7.711-1 & p.
1065) 10 . Importantly, the first two centered moments of a gamma-Gaussian
random variable x ∼ GN (x |α, µ, v) can be computed analytically:

E
[
x |α, µ, v

]
=

1

Kα

∫ +∞

0
xα exp

(
−(x− µ)2/2v

)
d x =

Kα+1

Kα

(A.12)

var
[
x |α, µ, v

]
= E

[
x2 |α, µ, v

]
− E

[
x |α, µ, v

]2
=
Kα+2

Kα

− K2
α+1

K2
α

. (A.13)

Simulating gamma-Gaussian random variables x ∼ GN (· |α, µ, v) is not
straightforward and thus more effortful as compared to sampling from stan-
dard laws. Following (Moussaoui et al., 2006), to solve for this problem, we
resort to a Metropolis-Hastings algorithm which needs the specification of
an instrumental distribution q (Hastings, 1970; Robert, 2001). To avoid high
rejection rate, this instrumental pdf has to be chosen to fit the target distribu-
tion f = GN (· |α, µ, v) at best. In this regard, expression (A.10) is useful to
characterisef in terms of mode, mean or variance from which the instrumental
distribution q may be adjusted. Calculating the first-order derivative of (A.10)
w.r.t. x and equating to zero, the mode of f is obtained as the solution of the
following second order equation:

x2 − µx− v (α− 1) = 0, subject to x > 0.

Let us denote ∆ = µ2 + 4v (α − 1).The mode of f , which is non-negative by
definition, expresses as follows:

ν =





0 if ∆ < 0

max
(
(µ+

√
∆)/2, 0

)
otherwise.

(A.14)

Hence, the instrumental density q is taken as a truncated normal distribution
N+(x | ν, v), which is easier to sample from as detailed in Appendix A.2.

10 See also http://mahieddine.ichir.free.fr for implementation of Parabolic Cylinder
functions.
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A.6 Multinomial density

The density of a multinomial discrete distribution for variable x = {x1, . . . , xN}
with parameters π = {π1, . . . , πN} is defined by

MNM(x |π) =
M !

∏N
i=1 xi!

N∏

i=1

πxi
i I∑

i
xi=M

where xi > 0, πi > 0 and
∑N

i=1 πi = 1.

A.7 Dirichlet density

Let δ = {δ1, . . . , δN} be some positive parameters. The probabilistic density
function of the N -state Dirichlet distribution for variable π = {π1, . . . , πN}
satisfying πi > 0 with parameters δ, is defined by

DN(π | δ) =
Γ(

∑N
i=1 δi)∏N

i=1 Γ(δi)

N∏

i=1

πδi−1
i I∑

i
πi=1,

where Γ(x) is, as before, the gamma function (A.8). Parameters δi are prior
observation counts for events governed by πi. The Dirichlet distribution is the
conjugate prior of the parameters of a multinomial distribution. One special
case is the symmetric Dirichlet distribution where δi = δ0 ∀i. In this case, the
density becomes

DN(π | δ0) =
Γ(Nδ0)

Γ(δ0)N

N∏

i=1

πδ0−1
i .

The real vector (X1/S, . . . , XN/S) follows a Dirichlet distribution denoted as
DN(· | δ) if Xi ∼ G(δi, β) are independent, and S =

∑
iXi. This holds true for

any β, so in practice we choose β = 1. This result is very useful in practice for
simulating realisations of a Dirichlet process.

B Computational details for the MCMC procedure

In this section, we derive the full conditional distributions of the quantities (h,
(a,q), ` and Θ) to be sampled. When the sampling procedure w.r.t. a given
parameter cannot be implemented as a Gibbs sampling step, we provide the
reader with the derivations of some relevant instrumental distribution needed
in the corresponding Metropolis Hastings move.
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B.1 The HRF h and its scale σ2
h

Let us denote Sj =
∑

m a
m
j Xm. h is N (µh,Σh)-distributed with:

Σ−1
h = σ−2

h R−1 +
J∑

j=1

St
jΛjSj and µh = Σh

J∑

j=1

σ−2
εj

St
jΛj

(
yj − P`j

)
. (B.1)

Variance σ2
h is simulated according to p(σ2

h |h) = IG
(
D/2,htR−1h/2

)
.

B.2 The nuisance variables ` and their scale σ2
`

Vectors `j being independent (j = 1 : J), they can be sampled in parallel
according to N (µ`j

,Σ`j
) where

Σ−1
`j

= σ−2
` IQ + σ−2

εj
P tΛjP and µ`j

= σ−2
εj

Σ`j
P tΛj(yj − Sjh). (B.2)

Variance σ2
` is simulated according to IG((QJ + 1)/2,

∑
j ||`j||2/2).

B.3 The voxelwise mixtures (q,a)

Although we do not introduce any spatial correlation between the NRLs, the
latter are sampled one-at-a time since the distribution p(am

j | rest) 11 depends

on a
\m
j = [a1

j , , . . . , a
m−1
j , am+1

j , . . . , aM
j ] due to the linearity of model (1) with

respect to aj. The sampling of the NRLs is therefore implemented through
two nested loops, the inner corresponding to the stimulus types (e.g., index
m) and the outer to voxels (e.g., index j). Since the full conditional posterior
p(am

j | rest) is a mixture, its sampling can be achieved in two steps. The first
one consists in drawing a realisation of class qm

j while the second one proceeds
conditionally on class qm

j . To carry out the first step, we need to identify the
posterior mixture in voxel j and for condition m:

p(am
j | rest) ∝ exp

(
− 1

2σ2
εj

||ej,m − am
j gm||2Λj

) 1∑

i=−1

λi,mfi(a
m
j |θi,m) (B.3)

where gm = Xmh, and ej,m = yj − P`j −∑
n 6=m a

n
j gn.

11 rest stands for the “remaining variables”.
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After straightforward calculations including the normalisation of (B.3), we get
the following expression:

p(am
j | rest) =

1∑

i=−1

λm
i,jfi(a

m
j |θm

i,j), with : (B.4)

f0(a
m
j |θm

0,j) = N (am
j |µm

0,j, v
m
0,j) (B.5)

f1(a
m
j |θm

1,j) = GN (am
j |α1,m, µ

m
1,j, v

m
1,j) (B.6)

f−1(a
m
j |θm

−1,j) = −GN (−am
j |α−1,m,−µm

−1,j, v
m
−1,j) (B.7)

The mixing probabilities are given by

λm
i,j =

(
1 +

∑

i′ 6=i

λ̃m
i′,j/λ̃

m
i,j

)−1
, ∀ i = −1 : 1

λ̃m
0,j = λ0,m

(
vm

0,j/v0,m

)1/2
exp

(
(µm

0,j)
2/2vm

0,j

)
,

λ̃m
i,j = λi,m

β
αi,m

i,m

Γ(αi,m)
Km

i,j exp
(
(µm

i,j)
2/2vm

i,j

)
, for i ∈ {−1, 1} ,

and depend on the normalising constants Km
i,j, for i = ±1, of the corresponding

gamma-Gaussian densities; see (A.11) for its closed-form expression.

The parameters of the conditional posterior densities fi(a
m
j |θm

i,j) are given by:




vm

1,j = vm
−1,j = σ2

εj
(gt

mΛjgm)
−1
, vm

0,j =
(
v−1

0,m + (vm
1,j)

−1
)−1

µm
i,j = vm

i,j

(
σ−2

εj
gt

mΛjem,j − i βi,m

)
, ∀ i = −1 : 1.

(B.8)

Sampling the class qm
j first amounts to generating um

j ∼ U([0, 1]) and then to
applying the following rules:

qm
j





−1 if um
j 6 λm

−1,j,

0 if λm
−1,j < um

j 6 λm
−1,j + λm

0,j,

1 otherwise.

Once qm
j is correctly set, it remains to sample from the conditional distribu-

tion fi(· |θm
i,j) as suggested by (B.4). If qm

j = 0, this operation is straightfor-
ward because f0(· |µm

0,j, v
m
0,j) is Gaussian (cf. (B.5)). However, if qm

j = ±1, this
operation is computationally more expensive since f±1(· |θm

±1,j) are gamma-
Gaussian; see Appendix A.5 for details. Strictly speaking, the sampling of
f−1(· |θm

1,j) consists first in simulating a realisation of (−am
j ) using a well-

suited positive normal density and then negating that realisation.

Interestingly, when αi,m = 1, which corresponds to taking an exponential
prior for the NRL distribution, the conditional posterior density fi(· |θm

i,j) is
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exactly a truncated normal distribution with parameters equal to those of pi.
In that case, the Metropolis-Hastings is not necessary since all proposals are
accepted (the acceptation rate equals to 1). The sampling of the truncated
normal density can be achieved efficiently as detailed in Appendix A.

B.4 Mixture probabilities

Since we have Pr(qm
j = i |λm) = λi,m, for i = −1 : 1 and because the prior is

conjugate, i.e., a symmetric Dirichlet distribution D(λm | δ) with δ > 0, the
full conditional posterior distribution is also Dirichlet and reads:

p(λm | qm
j = i, δ) ∝ Pr(qm

j = i |λm) p(λm | δ)
∼ D(δ′), with δ′i = δ + 1, and δ′l = δ, ∀ l 6= i.

The spatial correlation being not modelled in (6), we may write Pr(qm =
κ |λm) =

∏
j Pr(qm

j = κj |λm), with κj = −1 : 1 and the joint posterior
distribution p(λm |κ, δ) is given by

p(λm |κ, δ) ∝ ∏

j

Pr(qm
j = κj |λm)p(λm | δ) ∼ D(δ′) (B.9)

with δ′i = δ +
Card

[
Ci,m =

{
j ∈ 1 : J |κm

j = i
}]

︸ ︷︷ ︸
=Ji,m

.

B.5 Mixture hyper-parameters

Variance v0,m is very easy to sample because p(v0,m | zm) = IG
(
(J0,m −

1)/2, ν0,m/2
)
, where ν0,m =

∑
j∈C0,m

(am
j )2.

For the two other classes, we proceed to the sampling of the scale and
shape gamma distribution parameters α±1,m and β±1,m, respectively. Following
(Moussaoui et al., 2006), we use a Metropolis-Hastings step for α±1,m parame-
ters with a gamma instrumental density defined below. Simulating parameters
β±1,m is easier since they follow a gamma distribution.

The posterior density of each hyper-parameter αi,m takes the form

p(αi,m | rest) ∝
∏

j∈Ci,m

β
αi,m

i,m

Γ(αi,m)
(am

j )αi,m−1 p(αi,m | si)

∝ g(αi,m)Ji,mIR+(αi,m), (B.10)

50



where

g(αi,m) = exp(τi,mαi,m)/Γ(αi,m), τi,m = ln βi,m +
∑

j∈Ci,m

(am
j − si)/Ji,m.

This posterior distribution does not belong to a known family, so its simula-
tion requires a MH jump. Akin to (Moussaoui et al., 2006), to obtain a good
instrumental law q(αi,m), we propose to approximate function g(αi,m) using
a gamma density G(ti,m, ui,m). More precisely, parameters (ui,m, ti,m) of this
density are determined in order for its mode and inflexion points match those
of function g(αi,m). After some simple manipulations, we obtain:

ti,m = 1 + α2
mode/(αmode − αinfl)

2, ui,m = αmode/(αmode − αinfl)
2, (B.11)

where αmode and αinfl are the mode and the superior inflexion point (αinfl >
αmode) of g(αi,m). Calculating the first and second derivatives of g(αi,m) yields
these two non-linear equations that implicitly define αmode and αinfl:

ψ(αmode) =τi,m and ψ(1)(αinfl) = (ψ(αinfl)− τi,m)2, (B.12)

where ψ is the digamma function defined by ψ(x) = d
dx

log Γ(x) and ψ(1)

is its first derivative (trigamma function). Details about these functions are
provided in (Abramowitz and Stegun, 1970, p. 253). The resolution of the two
equations (B.12) is done using a root finding numerical method (cf. (Press
et al., 1992, Ch. 9)). Finally, the posterior density (B.10) is simulated using a
Metropolis-Hastings algorithm with a instrumental density q(αi,m) chosen as
a gamma distribution G(t′i,m, u

′
i,m) whose parameters are given by

t′i,m = Ji,m(ti,m − 1) + 1, u′i,m = Ji,mui,m. (B.13)

The sampling of shape parameters βi,m is done according to the full conditional
posterior distribution

p(βi,m | rest) ∝ β
(Ji,m αi,m+bi)
i,m exp

(
−βi,m(

∑

j∈Ci,m

am
j + ci)

)

∼ G(Ji,m αi,m + bi + 1,
∑

j∈Ci,m

am
j + ci). (B.14)

B.6 Noise variances

Sampling the noise variances σ2
ε can be performed in parallel. Drawing a noise

variance is straightforward because p(σ2
εj
| rest) = IG((N + 1)/2, ‖ỹj‖2

Λj
/2).
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B.7 AR parameters

For each voxel Vj, we have:

pj(ρj) = p(ρj | rest) ∝
√

1− ρ2
j exp

(
−aj (ρj −mj)

2
)
1(−1,1)(ρj), (B.15)

where aj = Aj/2σ
2
εj

and mj = Bj/Aj, with Aj =
∑N−1

n=2 ỹ
2
j,n and Bj =

∑N−1
n=1 ỹj,nỹj,n+1.

The density pj is log-concave, unfortunately it does not seem to belong to a
referenced family of pdf, from which an efficient sampling technique would be
available. Here, we propose to resort to a Metropolis-Hastings independence
algorithm that uses a beta pdf gj ∼ Be(ζj, κj) defined over (−1, 1) 12 as the
instrumental distribution:

gj(ρ) ∝ (1 + ρ)ζj−1(1− ρ)κj−1, ∀ |ρ| < 1. (B.16)

The parameters ζj and κj have to be tuned in an appropriate way, so that gj

approximates pj as closely as possible. Here, ζj and κj are chosen in such a way
that log gj and log pj have the same curvature around a common maximizer
over (−1, 1). Let us first remark that the maximizer rj of log pj is uniquely
defined by

2aj(rj −mj)(1− r2
j ) + rj = 0, |rj| < 1.

Moreover, rj takes an explicit expression, as the root of a polynomial of degree
three. Then, (ζj, κj) can be found by solving





(log gj)
′(rj) = 0

(log gj)
′′(rj) = (log pj)

′′(rj)

which is a linear system. After some straightforward calculations, the solution
can be expressed as follows:

ζj = aj(1 + rj)
2(1 +mj − 2rj) + 3/2

κj = aj(1− rj)
2(1−mj + 2rj) + 3/2

It can be practically checked that gj(ρ) and pj(ρ) take very similar values for
all ρ ∈ (−1, 1). Therefore, the proposal ρ′j (sampled from gj) has a high ac-

ceptation probability min
{
1, pj(ρ

′
j)gj(ρj)/pj(ρj)gj(ρ

′
j)

}
. In practice, the worse

acceptation ratio that we observed was about 0.92.

12 If x ∈ (0, 1) and x ∼ Be(ζ, κ) then ρ = 2x − 1 is said Be(ζ, κ)-distributed over
(−1, 1).
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C Bayesian model comparison

We have introduced Bayesian model comparison through the computation of
Bayes factors:

BFmn
∆
=
p(y |Mm)

p(y |Mn)
=

∫
p(y |θm,Mm) p(θm |Mm) dθm∫
p(y |θn,Mn) p(θn |Mn) dθn

, with (m,n) ∈ N∗
4.

These quantities are thus computed as the ratios of integrated likelihoods or
model evidence of the different models. Of course, they are approximated from
the MCMC outputs using the metholodogy proposed in (Kass and Raftery,
1995; Chib, 1995; Chib and Jeliazkov, 2001) and further developed in (Raftery
et al., 2007). The latter relies on the harmonic mean identity :

1

p(y |M∗)
= E

[
1

p(y |θ,M∗)
|y,M∗

]

This suggests that the model evidence can be approximated by the harmonic
mean of the likelihoods p(y |θ(l),M∗) based on L draws θ(1), . . . , θ(L) from
the posterior distribution p(θ |y,M∗):

̂p(y |M∗) =


 1

L

L1∑

l=L0

1

p(y |θ(l),M∗)



−1

(C.1)

with L = L1 − L0 + 1. These sample might come out of a standard MCMC

implementation. Although ̂p(y |M∗) is consistent as the sample size L in-
creases, its precision is not guaranteed: it may have an infinite variance.

Therefore, we have implemented a stabilized version of ̂p(y |M∗) which is
presented in detail in (Raftery et al., 2007). In short, it consists in replac-
ing p(y |θ(l),M∗) by p(y | f(θ(l)),M∗) in (C.1) such that f is a measur-
able function of θ and a dimension reduction transformation. Since the vox-
els are assumed independent in space, one may proceed separately for each
voxel:p(y | f(θ(l)),M∗) =

∏
j p(yj | f(θ

(l)
j ),M∗). More precisely, this means

that f can be derived by integrating out analytically the NRLs aj and the
noise variance σ2

εj
for each voxel Vj. This seems sufficient to ensure that

var
[
(p(y | f(θ),M∗))

−1 |y
]
<∞. Hence, in practice we consider the following

estimator:

̂p(y |M∗) =


 1

L

L1∑

l=L0

1
∏

j p(yj | f(θ
(l)
j ),M∗)



−1

.

Doing so, we have computed the log-evidence log p(y |Mm) of models M1-
M5 once they have been fitted against the first set of artificial data. Then,
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the logarithms of Bayes factors have been derived:

log BFmn = log p(y |Mm)− log p(y |Mn),∀(m,n) ∈ N∗
4.

The same procedure has been applied to models M2-M5 with artificial data
eliciting deactivations.
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