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ABSTRACT 

In an area that contains high concentrations of natural organic matter, it is expected that it plays 

an important role on the behavior of rare earth elements (REE), like europium, and of trivalent 

actinides. Competitive interactions with H+, inorganic species, major cations, e.g., Ca(II) or Mg(II), 

could influence these metals transport and bioavailability. Competitive experiments between 

cations, which can bind differently to humic substances and Eu3+, will bring an improved 

understanding of the competitive mechanisms. The aim of this study is to acquire data for 

Eu(III)/Cu(II) and Eu(III)/Ca(II) competitive binding to a sedimentary originated humic acid 

(Gorleben, Germany). The NICA-Donnan parameters for Ca2+, Cu2+, and Eu3+ obtained from 

competitive binding experiments using Ca2+ or Cu2+ ion selective electrodes were used to model 

time-resolved laser fluorescence spectroscopy (TRLFS) measurements. Eu3+ and Cu2+ are in direct 

competition for the same type of sites, whereas Ca2+ has an indirect influence through electrostatic 

binding.  

 

KEYWORDS humic acid, competition, rare earth elements, lanthanides, TRLFS 

 BRIEFS: Competitive binding between a rare earth analogue and divalent cations onto humic 

substances reveals different binding sites for the rare earth elements.. 
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Introduction 

Natural organic matter (NOM) plays a major role on the geochemical cycle and transport of major 

and trace elements in natural and contaminated environment. The knowledge of radionuclides 

transport in the geosphere is a key issue for the assessment of the safety of nuclear facilities. Humic 

acids (HA) and fulvic acids (FA) provide excellent analogues for the reactive components of NOM 

in soils and rivers and can be used to model metal ion binding to NOM. Several f-block elements, 

which have a water stable +III redox state, are long-lived radionuclides (RN) typically the actinides 

(An) like Pu, Am and Cm, and among the lanthanide (Ln) the 151Sm isotope. Moreover, analogies 

between An3+ and Ln3+ ions are sometimes used to implement database. Complexation of Eu(III) 

with HA or FA can be considered as an analog to actinide complexation to NOM as well as a 

relevant test element for a better understanding of rare earth elements (REE) behavior in complex 

geochemical environment, i.e., soil solution, soils, and aquifers. 

Competitive interactions with H+, inorganic species, and major cations (Ca2+, Mg2+…) could 

influence REE transport and bioavailability. Hence, it is important to obtain reliable Eu3+ binding 

data for organic and inorganic ligands and to calibrate models in order to predict Eu3+ speciation in 

natural multicomponent systems (i.e., soils and rivers). Data sets for Eu3+ binding to HA and FA are 

available for different salinities and pH values (1-4). However, these data sets are frequently not 

interpreted within consistent modeling framework approaches. Moreover, studies integrating 

competitive binding effects are scarce. These competition mechanisms between classes of cations 

(5-7), whereas others are not (8-11), can be interpreted in the framework of NICA-Donnan model 

(12-14). Competitive experiments between Eu3+ and cations that can bind differently to humic 

substances could complement the available information. (12) 

Since the work from Milne et al. (13, 14), NICA-Donnan generic data for HA and FA proton and 

metal binding are available. It has been shown that these data can be used, in a first approximation 

to describe the complexation comportment of various humic samples (15, 16), even if specific data 

are often still needed in order to increase the confidence in both the model prediction and of the 
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generic data (17, 18). The aim of this work is to obtain laboratory data that can be use to implement 

models which can help in understanding environmental situation. This is done under experimental 

conditions limiting the formation of other Eu(III) complexes (e.g., Eu(OH)n
3-n and Eu(CO3)m

3-2m) in 

order to facilitate the implementation of the binding parameters in the models. We present data for 

Eu3+/Cu2+ and Eu3+/Ca2+ competitive binding to the Gorleben humic acid (Gohy-573 HA). Ca2+ and 

Cu2+ were chosen because they are known to bind differently to HS (14), i.e., nonspecific versus 

specific binding for Ca2+ and Cu2+, respectively. The competitive binding experiments using Ca2+ or 

Cu2+ ion selective electrodes (ISE) are used to derive the Ca2+, Cu2+, and Eu3+ parameters for the 

Gohy-573 HA, extracted from the German repository test site (19), within the NICA-Donnan 

approach. Then, these parameters are used to model Time Resolved Laser Fluorescence 

Spectroscopy (TRLFS) measurements. Based on these results the competitive effect of Ca2+ and 

Cu2+ on Eu3+ speciation is predicted. 

Materials and Methods  

Humic Acid Sample. The Gohy-573 HA was extracted from one of the deep groundwaters in the 

Gorleben area and was provided by Manfred Wolf (Institut für Grundwasserökologie, GSF – 

Forschungszentrum für Umwelt und Gesundheit, Munich, Germany). Its isolation, purification and 

characterisation are described in detail elsewhere (19, 20).  

Reagents. The reagents used were Cu(NO3)2 (Certiprep, Spex), Eu(NO3)2 (europium ICP 

standard solution, Aldrich), KNO3 (Panreac), KCl (Suprapur, Merck) for ISE experiments. In the 

TRLFS experiments the reagents used were Cu(NO3)2, Ca(NO3)2 (Certiprep, Spex), EuCl3 (Aldrich) 

and deionized water (Milli Q, Millipore). 

Ion Selective Electrode Measurements. The pH was measured using a pH electrode (Metrohm, 

6.0133.100) and an Ag/AgCl glass reference electrode (Metrohm, 6.0733.100). After addition of 

acid or base, the rate of drift for both electrodes was measured after 1 min and readings were 

accepted when the drift was less than 0.25 mV min-1. For each data point, the maximum drift 

monitoring time was 20 min. The pH electrode was calibrated with standard buffers (SCHOTT) of 
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different pH (4.01, 6.87, and 9.18, respectively). During the fixed pH experiment, the pH was 

controlled with CO2 free KOH (0.01 M) and HNO3 (0.01 M). 

Cu2+ and Ca2+ Binding to Gohy-573 HA in the Absence and Presence of Eu3+ at pH 5.5. 

Performing a speciation calculation without HA, only Eu3+
, Ca2+, and Cu2+ ions are the dominant 

species in solution under our conditions (21, 22). The free Cu2+ and Ca2+ concentrations in solution 

were measured potentiometrically using a Cu2+ ISE (Metrohm, 6.0508.140), and a Ca2+ ISE 

(Metrohm, 6.0508.110), respectively. Routine calibrations were performed at pH 5.5 in the absence 

of HA, in the ranges 0.5 μM ≤ [Cu(II)]total ≤ 1 mM in 1 mM KNO3 background electrolyte, and 0.5 

μM ≤ [Ca(II)]total ≤ 1 mM in 1 mM KCl background electrolyte. 

First, the Cu2+ and Ca2+ parameters were obtained with direct titrations of Gohy-573. Solutions of 

Gohy-573 HA (60 mg/L for Cu2+, and 200 mg/L for Ca2+) was titrated to pH 5.5, and then pH was 

kept constant for 30 min to stabilize the Gohy-573 HA before titration with (i) Cu2+ in the 

concentration range of 10–75 μM, and (ii) Ca2+ in the concentration range of 9–200 μM. 

Second, the Eu3+ parameters were obtained through competitive experiments with Cu2+ and Ca2+. 

Solutions of Gohy-573 HA (60 mg/L) containing 20 μM of Cu2+, and Gohy-573 HA (200 mg/L) 

containing 30 μM of Ca2+, was titrated to pH 5.5 and then pH was kept constant for 30 min before 

titration with Eu3+ in the concentration range of 3–60 μM in the case of Cu2+, and 1–50 μM in the 

case of Ca2+. 

At each step, the concentration of free M2+ was measured after the pH has been stabilized at pH 

5.5 for 10 min and the drift of the electrode was less than 0.1 mV/min. The concentration of free 

Cu2+ in the solution was then corrected from the dilution factor (less than 10 %), and the amount of 

Cu2+ bound to Gohy-573 HA was calculated as the difference M(II)total – M2+
free. 

Time-Resolved Laser Fluorescence measurement. The free europium concentration in solution 

was measured using TRLFS. All luminescence measurements were performed at ambient 

temperature. In the TRLFS experiments a wavelength tuneable Nd:YAG/OPO system (Spectra 

Physics/GWU) operating at 20 Hz was used as excitation light source. The spectra were recorded 
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with an intensified CCD camera (Andor Technology) coupled to a spectrograph (MS257, Oriel 

Instruments) as detector. For the time-resolved detection the luminescence signal is collected over a 

certain time interval (gate width) a certain time (gate delay) after excitation by the laser flash. In the 

experiments the gate delay was set to 10 µs and the gate width to 100 µs. To increase the signal-to-

noise ratio, every spectrum for a certain time step results from an accumulation of 10000 single 

spectra. Europium (III) is often excited at λex = 394 nm which corresponds to its highest resonant 

absorption transition. We decided to excite the samples at λex = 356 nm and λex = 361.7 nm. At λex 

= 361.7 nm the luminescence spectra contains significant contributions from both free and bound 

Eu3+ due to efficient indirect excitation via sensitization by the ligand (antenna effect). The 

luminescence observed corresponds to the 5D0→7F2 hypersensitive transition and the 5D0→7F1 

transition of Eu3+. At λex = 356 nm, the signal of free Eu3+ in water is negligible under our 

experimental conditions, and the spectra correspond to Eu3+ bound to Gohy-573 HA. The 

luminescence spectra were analyzed according to a factor analysis assuming two species. The input 

parameter were (i) the spectra of a given Eu3+ concentration totally bound to the Gohy-573 HA 

obtained at λex = 356 nm and (ii) the spectra of free Eu3+ in water for the same total Eu3+ 

concentration. Before the fit, all spectra obtained in the presence of Gohy-573 HA in solution were 

corrected from the absorption of Gohy-573 HA. The percentage of free Eu3+ solution could be 

obtained from this fit with an error of 10%.  

Eu3+ Binding to Gohy-573 HA in the Presence of Cu2+ and Ca2+ at pH 5.5. Competition 

experiments between Eu3+ and Cu2+ were made at a Gohy-573 HA concentration of 20 mg/L and a 

total Eu3+ concentration of 7 μM. The background electrolyte concentration was equal to 1 mM of 

KNO3 and the pH was set to 5.5 ± 0.1. The total Cu2+ concentration ranged from 1 μM to 0.3 mM.  

Competition between Eu3+ and Ca2+ were made with a Gohy-573 HA concentration of 15 mg/L 

and a Eu3+ concentration of 5 μM; pH was set at 5.5 ± 0.1. The total Ca2+ concentration ranged from 

1 μM to 0.1 M. For total Ca2+ concentrations lower than 0.3 mM the background electrolyte was 
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fixed with 1 mM KNO3. For total Ca2+ concentrations ranging from 0.3 to 20 mM, it was fixed with 

0.1 M KNO3. For total Ca2+ concentrations higher than 20 mM the ionic strength was fixed by the 

Ca2+ salt added in the system and calculated for each data points.  

Modeling. Chemical calculations were made using ECOSAT (23), which includes speciation with 

inorganic ligands and the NICA-Donnan model, abundantly described elsewhere (12), which 

describes complexation of metals and protons with humic substances. Deviation from nonideality 

for inorganic species is accounted with the Davies equation. 

Results and Discussion 

ISE Data: Ca2+ and Cu2+ Binding to Gohy-573 HA in the Presence and Absence of Eu3+. The 

Cu2+ and Ca2+ potentiometric titrations are shown in Figure 1. The amounts of Cu2+ and Ca2+ bound 

are, in both cases, in the range of previously published data for humic acids of different origin (12, 

14). However, the steeper slope of the Ca2+ binding isotherm, compared to the one obtained in a 

previous study (24), indicates that the Gohy-573 HA is more chemically heterogeneous than the 

purified peat humic acid, because the degree of heterogeneity controls the slope of the binding 

isotherm (12). 

The effect of Eu3+ is more significant on Cu2+ than on Ca2+ binding (Figure 2). Indeed, for Eu3+ 

added to the Cu2+ solution with final Eu3+ concentrations ranging from 0 to 60 μM, the percentage 

of free Cu2+ measured in solution increases from 0 to 25% of the total Cu2+ amount corresponding to 

an increase of the free Cu2+ in solution by a factor of 10. Whereas in the experiments with Ca2+, for 

an Eu3+ concentration ranging from 0 to 60 μM, the percentage of free Ca2+ measured in solution 

varies only by a few percent: the [Ca2+]free in solution is increased by a factor of 1.5. Experiments 

with higher Eu3+ concentrations were not performed because they would be irrelevant for most 

natural or repository conditions. 

TRLFS data: Eu3+ Binding to Gohy-573 HA in the Presence of Ca2+ and Cu2+. The effect of 

Cu2+ on Eu3+ binding to Gohy-573 HA measured by TRLFS is more significant than the effect of 
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Ca2+ (Figure 3). The addition of Cu2+ concentrations ranging from 0 to 0.4 mM increases [Eu3+]free 

measured in solution by a factor of 6. Whereas, in order to have the same effect with Ca2+ on the 

Eu3+ binding, it is necessary to raise the Ca2+ concentration up to 0.1 M. The competitive Ca2+ 

experiments done with an ionic strength fixed to 1 mM, corresponding to low calcium 

concentrations, have no effect on Eu3+ binding to Gohy-573 HA. From these competitive 

experiments, we can conclude that competition between Cu2+ and Eu3+ is more important than for 

Ca2+ even at high concentrations. These differences are accounted for if Cu2+ and Eu3+ compete for 

the same binding sites within a given range of total Cu2+ and Eu3+ concentrations. The Ca2+ data 

show that nonspecific binding is negligible in the case of Eu3+ even at low ionic strength.  

Modeling: Specific NICA-Donnan Gohy-573 HA Parameters for Eu3+, Cu2+ and Ca2+ 

Derived from ISE Experiments. Using the generic parameter values for Eu3+, Cu2+, and Ca2+ 

parameters (14), a reasonable description of the competitive effect of Eu3+ on Ca2+ and Cu2+ binding 

to Gohy-573 HA could be achieved (data not shown). However, to have an accurate description of 

the actual competitive processes, we have determined (Table 1) the specific Gohy-573 HA NICA-

Donnan parameters for Ca2+, Cu2+, and Eu3+, and proton parameters were taken form ref (17). The 

best-fitted ISE data result in an increase in log +2Cu,i
K~ for both types of sites and to decrease log 

+3Eu,1
K~  for the carboxylic type of sites compared to the generic values in (14). The Ca2+ ISE 

experiments could be described without changing the generic parameter values, since binding 

occurred mostly in the Donnan phase (non-specific binding) for this low ionic strength. 

The specific parameters can be used to simulate the speciation of each cation in the Gohy-573 HA 

(Figure 5) for the experimental conditions applied in the TRLFS measurements. The calculations 

were done for two ionic strengths in case of Eu3+ (1 mM and 0.1 M), for one ionic strength in case 

of Cu2+ (1 mM), and to 0.1 M for Ca2+. For Cu2+ and Eu3+, binding occurs mostly at the carboxylic 

type of sites. Thomason et al. have investigated the binding of Eu3+ to aquatic humic substances 

using lanthanide ion probe spectroscopy (25). The results, which refer to pH 3.5, showed that at the 

lowest europium loadings approximately four humic ligands atoms where involved in metal binding. 
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At higher loadings, fewer ligand atoms were involved. The authors consider a series of mono-, bi-, 

tri-, and tetra-dendate binding sites, probably due to carboxylate groups. In the NICA-Donnan 

model, the ratio between the non ideality parameter for metal and proton (nM/nH ) per type of sites is 

equivalent to the experimental value of the proton-metal exchange ratio (12), i.e., the number of 

protons expelled for each metal bound to HA. The values of n1,Eu/n1,H = 0.75 and n2,Eu/n2,H = 0.55 

suggest that Eu3+ binds most likely in bidentate form. This conclusion is supported by the study of 

Shin et al. (26) where two contributions were fitted after excitation in the 5D0→7F0 band suggesting 

that humic and fulvic acids have two different chemical environments for the binding of Eu3+. These 

two environments were proposed as phthalate like sites but could also be salicylate. Cabaniss (27) 

measured synchronous fluorescence spectra of humic extracts and noted that the quenching of the 

intrinsic fluorescence by Co2+, Cu2+, and Pb2+ were similar at pH 5 and 7.5 suggesting that these 

metal ions may bind to the same type of sites. 

The fitting of the Ca2+ data (Figure 1) is poor. It is important to give a reasonable description of 

the binding due to the nonspecific interaction and because the Donnan model was proved to be 

relevant to account for ionic strength effect for HA (28). The most likely reason is a poor knowledge 

of the actual ionic strength as at very low background electrolyte concentration a small 

underestimation strongly influences the model outputs. The pH was fixed by adding small amount 

of KOH and HNO3; this increases the ionic strength of the solution (calculation not shown here). 

The ionic strength being higher than expected, i.e., 1.5 mM, a more accurate description of the Ca2+ 

binding is obtained (Figure 1). 

Predicting Ca2+/Eu3+ and Cu2+/Eu3+ TRLFS Data. One of the purposes of modeling is the 

prediction of metal ion speciation in solution in the presence of competing cations. The direct 

measurements of all free metal ion concentrations can be difficult and time-consuming. 

Consequently, it is important to check the ability of the NICA-Donnan model to predict the metal 

ion speciation in a competitive environment. The free Eu3+ concentrations were determined in 

TRLFS experiments as a function of the total Ca2+ or Cu2+ concentration and were used to validate 
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the NICA-Donnan parameters (Figure 3, Table 1). Figure 4 presents the free Eu3+ in solution 

measured by TRLFS vs the free Eu3+ calculated by the NICA-Donnan model. Both are in good 

agreement as the data points cluster along the one to one line meaning that the increasing 

competitive effects with the increase of the total Cu2+ or Ca2+ concentration are accurately 

predicted. The model however overestimates the free Eu3+ in solution for total Cu2+ concentration 

higher than 0.08 mM (Figure 3 and Figure 4). This could be induced by the lack of data points at 

higher pH values that are needed to adjust log 2K~  corresponding to phenolic type of sites site for 

both cations. Here, generic log +3Eu,2
K~  for phenolic type of sites were used (14) without any further 

adjustment, whereas log +2Cu,2
K~ was adjusted. From the estimation (29), for high Cu2+ concentration 

the proportion of phenolic type of sites should be as important as for the carboxylic ones under our 

conditions. An underestimation of the log +2Cu,2
K~ could result, because of a stronger Cu2+ 

competitive binding, in an increased calculated concentration of free Eu3+ in solution. Further works 

in order to obtain data obtained at higher pH under different metal to ligand ratio and Cu2+ 

concentrations are needed to test this hypothesis. 

For Ca2+ competitive experiments, the model describes very well the experimental data even when 

the ionic strength is controlled by the Ca2+ salt added in the system (0.1 M < I < 0.3 M) (Figure 3 

and Figure 4), mainly because the interaction of Ca2+ occurs through electrostatic effects. The 

agreement between experimental and calculated speciation therefore validates the NICA-Donnan 

parameters used for the simulation of competitive binding.  

Implications on the Mobility of REE and Actinides (III). Eu3+, which could be considered as 

analog for other Ln3+ and An3+ ions, is strongly bound to Gohy-573 HA. Its mobility maybe 

determined by the colloidal transport, in particularly by NOM as evidenced in ref (30). Ln3+/An3+-

NOM colloids should be less affected in terms of Ln3+/An3+ release in case of a transport through a 

Ca2+-rich aquifer (calcareous soil or solution, saline solution) since no desorption is expected 

because of the lack of competition between (Ln3+/An)3+ and Ca2+. Nevertheless, variation of colloid 
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stability and particularly of humic colloid size (31, 32) with Ca2+ and Mg2+ concentration would 

then be a limiting factor of humic colloid-borne migration of europium. Nevertheless, Ln3+/An3+ 

fate can be affected in presence of trace elements with high affinity for carboxylic type of sites, e.g., 

Pb2+ and Zn2+, and also by Cu2+ under low pH conditions (14). In such cases significant amounts of 

Ln3+/An3+ can be released in solution as free metal and be more available for biouptake. An even 

stronger effect can be expected in case Al3+ or Fe3+ are present in solution since the trivalent cations 

would compete for the same sites (11, 16). Further work is needed in order to refine the analysis at 

higher pHs where the phenolic type of sites should be more influent and where side reactions 

leading to the formation of either Eu(OH)n
3-n or Eu(CO3)n

3-2n will take place. 
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Table 1. Parameters Derived Using the NICA-Donnan Modela 

 n1 log 1K~  n2 log 2K~  

H+  0.8 4.11 0.65 8.92 

Cu2+ 0.6 2.85 0.34 7 

Ca2+ 0.78b -1.37c 0.75 c -0.43 c 

Eu3+ 0.6 1.8 0.36 c 3.43 c 
a The intrinsic heterogeneity parameters p for Gohy-573 HA are p1 = 0.8 and p2 = 0.41 and site 
density Q1 = 2.63 mol kg-1 and Q2 = 3.08 mol kg-1 (17), b Specific parameters for Gohy-573 (17), 
c Generic parameters (14). 



 

15

 

Figure 1. Cu2+ and Ca2+ binding isotherms to Gohy-573 HA at pH 5.5 with a salt concentration of 

I = 1 mM KNO3. The Cu2+ and Ca2+ binding isotherms to Gohy-573 HA were measured with Cu2+ 

and Ca2+ ISE, respectively. Cu2+ binding isotherms correspond to a total amount of 60 mg/L 

Gohy-573 HA with a 10 ≤ [Cu]Total (µM) ≤ 75. Ca2+ binding isotherms correspond to a total amount 

of 200 mg /L Gohy-573 HA with 9 ≤ [Ca]Total (µM) ≤ 200. All data points are used to obtain NICA-

Donnan parameters given in Table 1 corresponding to the fitted model line for an ionic strength of 1 

or 1.5 mM KNO3.  
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Figure 2. Eu3+/Cu2+ competitive binding to Gohy-573 HA (a) and Eu3+/Ca2+ competitive binding to 

Gohy-573 HA (b) at pH 5.5 with a salt concentration of I = 1 mM KNO3. The Cu2+ and Ca2+ 

binding to Gohy-573 HA were followed with Cu2+ and Ca2+ ISE, respectively. Eu3+/Cu2+ 

competitive experiments correspond to a total amount of 60 mg/L Gohy-573 HA with [Cu]Total = 20 

µM and 3 ≤ [Eu]Total (µM) ≤ 60. Eu3+/Ca2+ competitive experiments correspond to a total amount of 

200 mg/L Gohy-573 HA with a [Ca]Total = 30 µM and with 1 ≤ [Eu]Total (µM) ≤ 50. All data points 

are used to obtain NICA–Donnan parameters given in Table 1 corresponding to the fitted model 

line. 
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Figure 3. Eu3+/Cu2+ competitive binding to Gohy-573 HA (20 mg/L) at pH 5.5 with a salt 

concentration of I = 1 mM and with a [Eu]Total = 7 µM and 1 µM ≤ [Cu]Total ≤ 0.3 mM (a). 

Eu3+/Ca2+ competitive binding to Gohy-573 HA (15 mg/L) at pH 5.5 with an ionic strength 

of I = 0.1 M and 0.1 M < I < 0.3 M with [Eu]Total = 5 µM and 1 µM ≤ [Ca]Total ≤ 0.1 M (b). 

The Eu binding to Gohy-573 HA was measured with TRLFS. The solid and dashed lines 

represent the NICA-Donnan prediction calculated with parameters of Table 1. Error bars 

correspond to a 10% error on TRLFS experiments.  
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Figure 4. Measured free Eu3+ concentration versus predicted model values for Eu3+/Cu2+ and 

Eu3+/Ca2+ competitive binding experiments on Gohy-573 HA. Error bars correspond to a 10% 

uncertainty on TRLFS experiments.  
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Figure 5. Eu3+, Ca2+, and Cu2+ individual calculated speciation. The calculations are made with a 

Gohy-573 HA concentration of 20 mg/L and a salt concentration of 1mM for [Eu]Total = 7 µM (a) 

and for [Cu]Total = 1 µM (b). The calculations are made with a Gohy-573 HA concentration of 15 

mg/L and a salt concentration of 0.1 M for [Eu]Total = 5 µM (c) and for [Cu]Total = 1 mM (d). The 

specific binding sites ( ) ( ) correspond to the carboxylic type of sites and phenolic type of sites, 

respectively. ( ) corresponds to the metal ion located in the humic Donnan phase. 
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