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Summary. The coherence of actinide(IV) complexation by
humic substances (HS) is reviewed and new data are pro-
posed. In a first attempt, the values of independent data from
literature on Th(IV), U(IV), and Pu(IV) are collected, se-
lected, and compiled. The data obtained follow the “classical”
trend of increasing conditional formation “constants” with
pH, led both by the increasing ionisation of HS and by the
extensive hydrolysis of the tetravalent actinides. Even though
a fair agreement is evident, the experimental uncertainties do
not permit a full analogy between the actinides(IV) to be
ascertained. In a second attempt, the experiments from which
the original data are available were reinterpreted using only
one hydrolysis constant set for U(IV) as an example, consider-
ing that all actinides(IV) have analogous humic complexation
behaviour. Hence, the obtained evolution of conditional forma-
tion “constants” is much more coherent and the uncertainties
do not permit to distinguish an actinide(IV) from one another.
The obtained data are then applied to independent laboratory
and in situ experiments in order to delimit the domain of pos-
sible applicability. This exercise demonstrates the treatment of
data through analogy in the case of actinides(IV) and would
permit to limit and orientate the number of necessary, but dif-
ficult, experiment with redox sensitive elements like U, Np, or
Pu. It also demonstrates that complexation-only mechanisms
may not be sufficient to understand field observations.

Introduction

The extent of tetravalent actinides, or An(IV), complexation
by humic substances has puzzled scientists for decades. In
natural systems, An(IV) are often associated with natural or-
ganic matter in general and with humic substances (HS [1])
in particular [2–4]. Moreover, Pa(V), Np(V), Pu(V) and
Pu(VI) are reduced to Pa(IV), Np(IV) and Pu(III)-Pu(IV) by
HS [5–10]. Up to now, no reduction of uranium(VI) to ura-
nium(IV) by humic substances has been evidenced [11, 12],
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except when mediated by bacteria [13, 14]. On the con-
trary, reoxidation of U(IV) to U(VI) in the presence of HS
was observed when the redox conditions are not fully con-
trolled [14]. Nonetheless, the association of U(IV) with HS
is suspected in certain groundwaters [15, 16].

It is possible to compare the aqueous chemistry of the dif-
ferent An(IV) through analogy [17–19]. These analogies are
often justified as long as relativistic effects are not taking
place [20]. For instance, the similarity in the migration be-
haviour of Pu(IV) and Th(IV) in the presence of HS has been
confirmed [21, 22].

Complementary to data obtained in the late seventies and
early eighties [23–25], more data were recently obtained
on Th(IV) [26–30], U(IV) [31, 32], and Pu(IV) [33]. Trans-
port experiments of U(IV) were also recently obtained [34],
evidencing high interaction with HS. Nevertheless, there
still maybe a problem with the possible treatment through
analogy due to the low numbers of data available. The in-
herent difficulties of working with An(IV) in general and
with redox sensitive actinides in particular, often prevent
the obtaining of reliable data. Hence, with due justification,
if the majority of the data could be more “simply” ob-
tained with Th(IV) and transferred with a reasonable level of
confidence, to the more “difficult” elements namely U(IV),
Np(IV) and Pu(IV), this would solve a lot of potential and
real problems, and point out the importance of side reaction
problems like redox in a first approximation.

The main problem concerning descriptions of humic
complexation is the apparent increasing complexation
strength with pH. This phenomenon is related to the increas-
ing ionisation of functional groups, namely “carboxylic”
and “phenolic”, with increasing pH. This increasing com-
plexation strength has been modelled using either global
varying complexation coefficients [28], varying the num-
ber of sites [35], differential equilibrium function [36], and
multi-pKa approaches, or continuous description, including
heterogeneity parameters and electrostatics [37, 38]. The lat-
ter types of models could be seen as more representative of
the heterogeneous aggregate structure of HS [39]. Neverthe-
less, more operational types of description have been widely
applied to actinides and a large number of data are avail-
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able in the literature for Am(III), Cm(III), Np(V), Th(IV)
and U(VI). The parameters that describe the humic complex-
ation can only be considered as averaged empirical values
considering the intrinsic heterogeneity of the humic sub-
stances [40–42].

The aims of this work are to compare the different data
available on tetravalent actinides and to draw out some gen-
eral complexing properties in order to increase the confi-
dence in complexation parameters estimated by analogy for
redox sensitive actinides in their +IV redox state. New data
obtained in ultrafiltration are compared to these data and will
complement the data basis. Then these data sets are applied
to laboratory and field observations.

Experimental

Material

Purified Aldrich humic acid (AHA) is used in a proto-
nated form. Characteristics of this HA are described else-
where [28, 43]. The proton exchange capacity (PEC) for
AHA was determined in [43] by potentiometric titration
(WHA = 5.4 meq/g).

The initial thorium solution (228Th in 2 M HNO3) is ob-
tained from Amersham. This solution is diluted in order
to obtain a 1.09×10−9 M stock solution in 0.9 M NaClO4

and 0.2 M HNO3. All other chemicals are reagent grade and
Milli-Q water is used.

Experimental

The pH measurement were done with a TACUSSEL pH-
meter (PHM 220 MeterLab) equipped with a combined
TACUSSEL electrode (Radiometer type XC 161, modi-
fied NaClO4 0.1 M, NaCl 10−2 M), using HClO4 (0.1 M) or
freshly prepared NaOH (0.1 M). The combined electrode
was calibrated against commercial pH buffers (pH = 4, 7, 9).

The separation of free Th(IV) from the humate com-
plexes was done by ultrafiltration at pH around 7, 8, and 9
using Amicon MPS YC-05 units. As a problem in the reten-
tion of HA at 0.1 M ionic strength was identified in a pre-
vious study [44], the efficiency of HA separation was tested
with solutions of 50 mg/L of AHA prepared at the desired
pH and ionic strength. The rejection of AHA, measured in
spectrophotometry (Shimadzu UV-2100), was always higher
than 96% at 0.01 and 97% at 0.001 M, between pH 3 and 9.
In order to minimize both the effect of ionic strength on the
complexation of humics [45], and on the filtration efficiency,
ionic strength of 0.01 M NaClO4 was chosen.

The initial solutions were prepared diluting AHA into
0.01 M NaClO4 at the desired pH under careful argon
sweeping in order to minimize the CO2(g) contamina-
tion and the formation of hydroxocarbonatothorate(IV) and
carbonatothorate(IV) complexes [46, 47]. Enough Th(IV)
stock solution is added to obtain a final concentration of
1.15×10−12 M, in order to minimize the presence of eigen-
colloids [48] and the pH is readjusted under careful argon
sweeping. The solution is then closed and placed under
agitation for 24 h. Under these conditions, carbonate con-
centration has been shown to be less than 5×10−5 M [49].
Three to four 1 mL aliquots were placed in Amicon YC-05

units for 1 h, and 0.5 mL aliquots were sampled for activ-
ity measurement by liquid scintillation counting (A1), in
order to get rid of Th(IV) sorption on tube walls as in pre-
vious studies [19, 28]. This is also the case here as around
10%–25% of Th(IV) is sorbed on tube walls or filter (data
not shown). The units were emptied, filled with another
1 mL aliquot under argon sweeping, and centrifuged (1 h at
5700 rpm). A final 0.5 mL aliquot of the filtrate is then sam-
pled for activity measurements (A2) by liquid scintillation
counting.

The distribution coefficient is calculated as:

D = [Th]filtrate

[Th]solution

= A1

A2

−1

Treatment of data

Only the complexing properties of HS will be considered
here, since their reducing properties have not totally been
clarified.

Modelling of inorganic and humic substances
complexation of An(IV) for this exercise

As this work is a demonstration exercise, we will use the
simplest models possible. Humic acids will be considered as
homogeneous with no acido-basic properties. Hence, stabil-
ity parameters will be purely conditional and closely related
to pH. The formation of a metal-HS complex MHS can thus
be written:

An+HS�AnHS HAβ(An) = [AnHS]
[An]total[HS] , (1)

where [An]total is the total concentration of An(IV) in so-
lution, [HS] is the concentration of humic sites determined
either by titration or Ca(CH3CO2)2 and Ba(OH)2.

The values of free [An4+] depend on the thermodynamic
formation constants of the different complexes formed
through side reactions. The major problems with An(IV) are
their extensive hydrolysis, low solubility, and colloid forma-
tion [47, 48, 50–52]. In this exercise, we will use the Davies
equation because the specific interaction theory (SIT [47])
parameters are not available to calculate the activity coeffi-
cient and formation constant value for some media used (e.g.
Na2S2O4).

The extent of hydrolysis of the metal M, or the proportion
of free metal, can then be calculated using:

[An]total = [An4+]f

(
1+

4∑
n=1

∗βn

[H+]
)

[An]total = [An4+]f

(
1+

4∑
n=1

βn[OH−]n

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

[An]total = [An4+]fαAn(IV) (2)

where α is the Ringböm, or side reaction, coefficient: the
higher α, the lower [An4+]f. It is then evident that log HAβ

for An(IV)–HS interactions are intimately linked to hydroly-
sis constants, and cannot be used without proper corrections.
Hence, log HAβ (An4+) can be calculated from the raw data.
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Otherwise, the log HAβ (An) values calculated by the authors
can thus be corrected to:

An4+ +HS�AnHS HAβ(An4+) = [AnHS]
[An4+]f[HS] (3)

Combining Eq. (1) and Eq. (2), then it comes:

log HAβ(An4+) ≈ log HAβ(An)+ log αAn(IV) (4)

using the appropriate hydrolysis constants for αAn(IV).
Acid-base as well as metal complexation properties of

HS have been shown to vary with ionic strength [45, 53, 54].
The metal complexation properties for trivalent actinides
seem to be more influenced when I ≤ 0.3 mol/L, than for
higher ionic strengths [45, 54], mostly due to the Debye
length collapse. Moreover, the extent of this dependence
is rather minimal and a generic data independent of ionic
strength was proposed in the case of An(III) [45]. The same
behaviour can be expected for tetravalent actinides. Hence-
forth, no quantification of the influence of ionic strength on
the behaviour of HS will be used in this exercise.

Charge neutralization model

The charge neutralisation model (CNM) has been shown to
be useful for actinide-humic interaction studies. Its concept
is fully described elsewhere [35], henceforth we will not
enter into the details of the modelling devoted to trace con-
centration conditions. The log β1.n.Z−N values can be obtained
to represent the influence of hydrolysis on the complexation
of metals by humics:

Mz+ +nOH− +HA(Z−N)�M(OH)nHA(Z−N)

Mz+ +nH2O+HA(Z−N)�M(OH)nHA(Z−N)+nH+

}

(5)

with the related constants:

β1.n.Z−N = [M(OH)nHA(Z−N)][H+]n

[Mz+]f[OH−]n[HA(Z−N)]f

∗β1.n.Z−N = [M(OH)nHA(Z−N)]
[Mz+]f[HA(Z−N)]f

⎫⎪⎪⎬
⎪⎪⎭

(6)

where z is the charge of the metal, [HA(Z−N)]f and [Mz+]f

are respectively the concentrations of free humic sites and
Mz+ in solution. The total concentration of humic sites avail-
able to complex and “neutralize” a metal ion Mz+ can be
written as:

[HA(Z−N)]T (eq/L) = (HA)(g/L)×PEC(eq/g)

Z−N
(7)

Table 1. Complexation study of Th(IV) with Aldrich humic acid at varying pH in 0.01 M NaClO4 by ultrafiltration.
The loading capacity of AHA was estimated from [56] for log ∗β1.4.I calculation. Th(OH)4HA(I) was hypothesized
to be the major complex. Global interaction parameter log HAβ and CNM constant are linked to hydrolysis in [52].

pHa A1 A2 R log Dmes log HAβ log ∗β1.4.I

7.04 6802± 86 58±37 0.991±0.005 2.07±0.28 15.0 −12.3
8.04 6885±158 43±32 0.994±0.005 2.21±0.33 19.1 −12.4
9.26 6878± 71 74±50 0.995±0.006 1.96±0.29 24.0 −13.0

−12.6±0.4

where (HA) is the concentration of HA in g/L and PEC
is the proton exchange capacity (eq/g) determined by titra-
tion. The free humic site concentration [HA(Z−N)]f is de-
fined as the difference between the maximum concentra-
tion of humic sites available for the metal LC(Z−N) ×
[HA(Z−N)]t, where LC(Z−N) is the loading capacity for
Mz+ accompanied by n H2O or OH−, and the actual concen-
tration of humic sites that are involved in the complexation
[M(OH)nHA(Z−N)].

[HA(Z−N)]f = LC(Z−N)×[HA(Z−N)]t

−[M(OH)nHA(Z−N)] (8)

In addition to the original definition, it should be added that
when a neutral species is bound to HA, then in Eq. (7) if
n → z, then [HA(0)] → ∞. Hence, the boundary condition
is when n = z, then [HA(0)] = [HA(I)] [19].

The transformation of log HAβ from the preceding para-
graph to log β1.n.Z−N is straightforward when only one hy-
drolysis complex needs to be accounted for:

β1.n.Z−N =
HAβ(Mz+)

[OH−]nLC(Z−N)

∗β1.n.Z−N =
HAβ(Mz+)[H+]n

LC(Z−N)

⎫⎪⎪⎬
⎪⎪⎭

(9)

where LC(Z−N) is the loading capacity of the metal for
HA, reflecting the increasing ionisation of the humic sub-
stances and the limited number of available sites. Otherwise,
a non linear least square regression would be necessary and
LC(Z−N) and log β1.n.z−n would be directly linked.

One must also point out that the M(OH)nHA(Z−N)
species are mostly presupposed, or result from a fit, and
are difficult to evidence. CNM surely suffers from severe
drawbacks [55] including a lack of an explicit site balance
between all the [HA(Z−N)] sites for the same metal, e.g.
An(OH)nHA(Z−N), mostly for pH value at half reaction
for hydrolysis where [M(OH)n

z−n] ≈ [M(OH)n+1
z−(n+1)]; the

lack of “heterogeneity parameters” could make it difficult to
use in competition studies with e.g. alkaline earth or cop-
per [38, 53]. Nevertheless, it has been proven to be helpful
as an operational model for trace metal concentration.

Proposition of complementary data

The mean results from 4 replicates obtained in ultrafil-
tration are monitored in Table 1. As the activities in the
filtrate are weak, this evidences the already well known
high interaction between Th(IV) and HA. Considering that
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Table 2. Formation constants used in this study referring to [51, 52], extrapolated using Davies equation a.

Reaction log K ◦
w log Kw log Kw log Kw

0.010 m 0.101 m 0.202 m

H2O�H+ + OH− −14 −13.9 −13.8 −13.7
γ+ 1.000 0.902 0.781 0.746

U [51] Th [52]

logβ◦ log β log β log β log β◦ logβ log β

0.010 m 0.101 m 0.202 m 0.010 m 0.101 m

An4+ + H2O�AnOH3+ + H+ −0.4 −0.7 −1.0 −1.2 −2.2 −2.5 −2.8
An4+ + 2H2O�An(OH)2

2+ + 2H+ −1.1 −1.5 −2.2 −2.4 −6.6 −7.0 −7.7
An4+ + 3H2O�An(OH)3

+ + 3H+ −4.7 −5.2 −6.0 −6.2 −11.4 −11.9 −12.7
An4+ + 4H2O�An(OH)4(aq)+ 4H+ −10.0 −10.5 −11.3 −11.5 −17.0 −17.5 −18.3

AnO2
2+ + 0.5H2(g)�AnO2

+ + H+ 1.48 1.35 1.16 1.19
AnO2

2+ + 4H+ + H2(g)�An4+ + 2H2O + 2H+ 9.04 9.40 9.90 10.06

AnO2(am, hyd)+ 2H2O�An4+ + 4OH− −54.5 −53.6 −52.4 −52.0 −47.8 −45.6
AnO2(am, hyd)+ 4H+�An4+ + 2H2O 1.5 2.0 2.8 3.0 8.2 9.5
AnO2(cr) + 4H+�An4+ + 2H2O −4.85 −4.31 −3.56 −3.32

AnO2
2+ + H2O�AnO2OH+ + H+ −5.25 −5.34 −5.47 −5.50

AnO2
2+ + 2H2O�AnO2(OH)2(aq) + 2H+ −12.15 −12.24 −12.36 −12.40

AnO2
2+ + 3H2O�AnO2(OH)3

− + 3H+ −20.25 −20.25 −20.25 −20.25
AnO2

2+ + CO3
2−�AnO2CO3(aq) 9.94 9.58 9.08 8.92

AnO2
2+ + 2CO3

2−�AnO2(CO3)2
2− 16.61 16.25 15.75 15.59

AnO2
2+ + 3CO3

2−�AnO2(CO3)3
4− 21.84 21.84 21.84 21.84

2AnO2
2+ + 3H2O + CO3

2− � (AnO2)2CO3(OH−)3
− + 3H+ −0.86 −1.22 −1.72 −1.88

AnO3 ·2H2O(cr)+ 2H+�UO2
2+ + 3H2O 4.81 5.3

a: Following the recommendation in [47, p. 719], H+ issued from the hydrogen oxidation are not taken into account in ∆z2, and are thus written
in italic.

only Th(OH)4(aq) exists under these conditions, only the
Th(OH)4HA(I) species was taken into account as in [19],
and log ∗β1.4.I using the CNM can be calculated at each pH
using:

D = [Th]filtrate

[Th]solution

≡
∗β1.4.I[HA(I)][H+]−4

αTH(IV)

(10)

were HA(I) is calculated from [56, Eq. (14)], αTh(IV) from the
hydrolysis constants in Table 2 at ionic strength 0.01 mol/
kgw.

Using the hydrolysis data from [52], the mean value ob-
tained from the three pH’s in Table 1 leads to log ∗β1.4.I =
−12.6±0.4 (log β1.4.I = 43.1±1.6) with 95% confidence in-
terval. This value is in agreement with previously obtained
data on comparable systems, where log β1.4.I = 41.6 ± 0.6
was obtained in [19] with SIT and hydrolysis in [51], which
can be recalculated to log β1.4.I = 42.1±0.6 using the Davies
equation and [52].

The transformation to global conditional constant is done
by using Eq. (9) and will permit comparison of these values
with literature data.

Compilation of data

Up to now there is not a lot of data on the quantification
of An(IV) complexation by humic substances in the liter-
ature [19, 23, 24, 26, 28–30, 32, 33, 57]. We proposed here-
after to review these data and compile them if possible.

Li et al. have proposed a log HAβ(U(IV)) = 6.98 at pH 6
for the strong sites on humic acids, which was apparently
not corrected for U(IV) hydrolysis [24]. As the control of the
chemistry of U(IV) is not reported, the study should be con-
sidered with care. Moreover, total concentration of U(IV) in
solution is between 0.1 and 10 mg/L1 for a total humic acid
concentration of 20 mg/L. The lower U(IV) concentration
is 133 times higher than total inorganic solubility of UO2 at
this pH, i.e. 3.2×10−9 molU/kgw using thermodynamic data
in [47]. Using the results of a preceding calculation exer-
cise [19], the solubility of amorphous ThO2(am) would be
enhanced at pH 6 by a factor of ca. 60 in the presence of
humic acid. As a comparison, the solubility enhancement
observed for UO2 in the presence of HA was a factor of ca. 2
when 6.5 ≤ pH ≤ 9 [32]. For lower uranium concentrations,
the results could thus be used for comparison, but with great
care.

The study of Zuyi and Huanxin is not reliable as it suffers
from a mass balance problem [Table 1 in 57], and the raw re-
sults from Murphy et al. in [26] on Suwannee River Humic
acid (SRHA) are only available in [27].

Nash and Choppin determined complexation constants
for Th(IV) at different pH values with different humic and
fulvic acid samples, i.e. a lacustrine (Lake Bradford, Tal-
lahassee, FL, USA), a soil (Joliet, IL, USA), and a com-
mercial sample (Aldrich Chemical Co.) [23, 58]. They used

1 4.2×10−7 ≤ [U]total ≤ 4.2×10−5 mol/L.
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Table 3. Generic formation parameters for humic complexes proposed for humic complex-
ation in the framework of this study and [19, 35 and references therein].

Equilibrium log HAβ

Th U

−3.8 (BCHA)
An4+ + 4H2O + HA(I)�An(OH)4HA(I) + 4H+ −12.1±1.9 −5.2
AnO2

+ + HA(I)�AnO2HA(I) 4.6 [7]
AnO2

2+ + HA(II)�AnO2HA(II) 6.2 [11]
AnO2

2+ + H2O + HA(I)�AnO2OHHA(I) + H+ 1.1 [78]

a solvent extraction technique in acetate medium and the
Schubert method [59]. The authors noted a “linear” evo-
lution of the partition coefficient (D) without humic acid,
between pH 3.5 and 4 with a slope of +3, which they at-
tributed to Th(CH3CO2)

3+. At pH 4.5–5, a deviation from
linearity in the value of D was observed, which was at-
tributed to eigencolloid formation [Fig. 21, in 58], which
could be the formation of ThO2 colloids as noted in [48].
The authors assumed that under these pH conditions, and in
the presence of a large excess of humic substances, the for-
mation of these colloids would be hindered. This can also
be assumed from the calculation results [19]. Under these
pH conditions, D0 values were not the actual experimental
values but the ones extrapolated from the line with slope
+3 between pH 3.5 and 4. The only raw data available are
for the Aldrich sample at pH ≈ 4. The other data will be
treated using Eq. (7). The total concentration of Th(IV) in
solution is not reported, so an estimation of solubility is
not possible.

In [25], measurements were made from a Pu(IV)-citrate
stock solution where the final oxidation state was controlled.
The technique was comparable to the one used in [58] but
the D0 values were approximated from Th(IV) through anal-
ogy. The log HAβ = 12.4 relative to hydrolysis constants for
Pu(OH)n

4−n – log ∗β◦
4 = −9.5 and log ∗β◦

5 = −15 – was
estimated. Even if the raw data are available in the docu-
ment, the D0 value cannot be used as stressed by the author.
The value is only taken for comparison and treated through
Eq. (7).

Reiller et al. determined conditional formation constants
between pH 6.5 and 8 using the Schubert method in compe-
tition between HA and SiO2 [28]. Total thorium concentra-
tion was always lower than 10−10 mol/L so no precipitation
of ThO2 or colloid formation was anticipated. The determin-
ation of the constants was either from pH isotherms or from
humic acid isotherms. Only the points above pH 6.5 can be
used in the pH isotherm in [28] in order to reduce the in-
terference from HA sorption on SiO2. The data from pH
isotherms will be estimated using Eq. (7), because it would
need a total calculation of the Th-SiO2 system, which is not
the goal of this study.

Szabó et al. worked in a wider pH range using silica
grafted humic acids [29, 30, 33]. The isotherms were con-
structed varying the ratio An(IV), i.e. Th and Pu, to the
number of available humic sites. The modification induced
by grafting was quantified and the complexation proper-
ties of HA was not altered [60, 61]. Sorption of An(IV)
onto tube walls has been taken into account and total con-
centration is always under the solubility limit. Pu(IV) was

added as Pu(IV) citrate, and the total citrate concentra-
tion added did not control the speciation [62]. The data at
pH < 3 were discarded because HA are not supposed to be
soluble.

Recently, Warwick et al. published conditional stabil-
ity constants obtained from uranium concentration enhance-
ment from UO2 by AHA, and from Boom Clay humic acid,
or BCHA (Belgium) [32]. The stability of U(IV) was “fixed”
by adding sodium dithionite (Na2S2O4), also used to hinder
oxidation of Np(IV) [63]. In this work, the inevitable sorp-
tion of humic acids to UO2 was not taken into account. The
UO2 surface zero point of charge has been determined as
being between 5–5.5 [64]. The sorption was thus likely to
be higher at pH 6.5–8 than for SiO2 [28], but no data are
available.

The authors did not correct the water protolysis for ionic
strength in [32]. Henceforth, all thermodynamic constants
have been re-determined from experimental data. The re-
calculated solubility constants from [32, Table 4] presented
in Table 4, i.e. log Ksp(0.202 m) = −51.1±0.8, is more in
agreement with the value extrapolated from [51] in Table 2,
and no eigencolloids formation were anticipated.

The results on uranium concentration enhancement by
humics are reinterpreted and presented in Table 5 for BCHA
from [Table 5 in 32], and for AHA from [Tables 6, 7, and
8 in 32]. The constants log HAβ accounting for the solubility
of UO2(am, hyd) recommended in [47], which is consistent
with hydrolysis data in Table 2 [51], are also reported in
Table 5. These latter values will be use hereafter.

The compiled data are represented together on Fig. 1. For
Th(IV), the data were not corrected for hydrolysis in the
same way: data from [23, 58] were reported as they are [65]
because they mainly depend on acetate complexation [66];

Table 4. Data for measurement of solubility product of UO2(am) and
recalculation from [32, Table 4].

pH [OH−] α log Ksp

10.17 1.96×10−4 4.28×1028 −51.3
8.90 1.05×10−5 3.56×1023 −51.2

10.45 3.74×10−4 5.64×1029 −50.6
8.18 2.01×10−6 4.70×1020 −51.2
7.04 1.45×10−7 1.32×1016 −50.8
6.97 1.24×10−7 6.97×1015 −51.2
8.20 2.10×10−6 5.65×1020 −51.5

Mean −51.1
SD 0.3

95% conf. int. 0.8
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Fig. 1. Compilation of data for the An(IV)-HA sys-
tems; for Th(IV), [23], [24], [26] referring
to hydrolysis in [65], � and [28], and [29,
30], this study referring to hydrolysis in [52];
for uranium(IV), and U(IV) [32] referring to
hydrolysis in [51]; for Pu(IV) + LBHA [25],
� Pu(IV) on SiO2-HA [33] referring to hydrolysis

in [47].

Table 5. Conditional formation constants for U(IV)-HA system recalculated from [Tables 5
to 8 in 32].

pH log HAβ log HAβ logβ1.4.I
a log ∗β1.4.I

a

from solubility from solubility
recalculated in [51], see
in Table 4 Table 2

BCHA

Mean: 7.81 25.6 26.5 51.4 −3.5
S.D.: 0.02 0.2 0.2 0.3 0.3
Mean: 8.15 26.3 27.5 51.0 −4.0
S.D.: 0.04 0.5 0.5 0.5 0.5
Mean: 6.90 21.4 22.2 51.1 −3.9
S.D.: 0.10 0.7 0.7 0.2 0.2

Grand mean 51.2 −3.8
s.d. 0.4 0.4

AHA

Mean: 8.52 26.6 27.6 49.5 −5.5
S.D.: 0.23 1.0 1.0 0.5 0.5

7.45 22.4 23.3 49.8 −5.2
0.24 1.3 1.2 0.4 0.4
6.43 18.3 19.3 50.1 −4.9
0.24 0.9 0.9 0.3 0.3

Grand mean 49.8 −5.2
s.d. 0.5 0.5

a: LC calculated using log LC(I) = 0.26 pH−2.72 [56, Eq. 14].

the other Th(IV) were recalculated referring to [52]. For
Pu(IV) and U(IV) the hydrolysis constants from [47] were
used.

The classic increase in the metal-humic “formation con-
stants” has been obtained throughout the pH range. The
uncertainties are either calculated from the mean of differ-
ent determinations when raw data are available, i.e. t0.05 ×
σ , or estimated as ±1.5 when the data are not available.
The different log HAβ (An4+) values cannot be rigorously
assumed as equal, with the exception of some values, e.g.
pH ≈ 4, 7 and 7.5. Nevertheless, the values are in reasonable
agreement.

Values determined in ultrafiltration at 0.01 mol/kgw in
NaClO4 in this study are also in agreement with the Th(IV)
data.

More generally, the data on Th(IV) are more consistent
with each other, with the exception of data from [23, 58] for
a reason we will discuss later.

Reinterpretation of data

Conditional stability constants

The only data that can be reinterpreted with a reasonable
level of confidence are the ones that are documented in the
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Fig. 2. Comparison of the log β(An4+) values obtained for different actinides corrected for U(IV) hydrolysis [51]: U-Aldrich HA, and U-Boom
Clay HA [32]; � Th-SiO2-Aldrich HA, Schubert, and Th-SiO2-Aldrich HA, pH isotherm [28]; Th-SiO2 grafted HA [29, 30], [30]; � Pu-
SiO2 grafted HA [33]; Th-Aldrich HA, Lake Bradford HA, and IHA [23]; Th-SRHA [26]; Th-Aldrich HA (this study); Pu Lake
Bradford HA [25]; × U-HA [24].

original articles or PhD theses. It means that only the data
for Aldrich HA in [23, 58], and the data from [19, 28, 29, 32],
and the data proposed here can be used for these calcu-
lations. For the other data, estimation can be proposed
assuming that:

log HAβ(An4+) = log HAβ(Th4+)+ log
αAn(IV)

αTh(IV)

(11)

Should one particular species dominate the speciation, as it
is the case for An(OH)4(aq) above pH 7, then the preceding
equation can be written as:

log β(An4+) = log β(Th4+)+ log
βAn(IV)

βTh(IV)

(12)

As in a previous exercise [19], these conditional constants
are only estimates and should be used with caution as guide-
lines for further studies.

All the data on Th(IV) [28–30], U(IV) [32], and
Pu(IV) [33] were treated using the Davies equation and the
data for the hydrolysis of U(IV) in [51]. The correlation hy-
pothesised in Fig. 1, is now evident in Fig. 2. It can be seen
that all the data are now more coherent with each other for
the three different An(IV). A linear relationship has been
obtained using a classical linear regression, using only the
log HAβ from which the raw data are available between pH 3
and 9.3:

log HAβ(An4+) = (3.26±0.10)pH + (0.14±0.67) (13)

Using this kind of correlation, a log HAβ value can be given
with a 95% uncertainty of ±1.96 (r2 = 0.9726) in the pH
range. It is worthy to notice that other values, estimated
using Eq. (11), are in agreement with the regression. No
weighted regressions were used because different kinds of
uncertainties are represented in Fig. 2: either from fits or

truly experimental ones. This kind of correlation can be
sufficient for operational model, as for performance assess-
ment, but not for a detailed understanding of the complexa-
tion processes including competition [67, 68].

Charge neutralization model

The log β1.n.Z−N values across a pH range can be ob-
tained for the individual sets of data by non-linear least
square regression. The Th(IV) isotherms from [29, 30]
were treated in a comparable manner as [19]. As there
is no dominant Th(IV) species between pH 3 and 6.5,
the Th(OH)nHA(Z−N) species were chosen arbitrarily, i.e.
ThHA(IV) and ThOHHA(III), Th(OH)3HA(I) and the al-
ready assumed Th(OH)4HA(I) [19]. The best fits were ad-
justed at each pH minimising the number of needed species.
The uncertainties were estimated using the SolverAid Mi-
crosoft Excel macro [69]. The values of LC(Z−N) were
taken as LC(III) for ThHA(IV) and ThOHHA(III) [19] and
as LC(I) for Th(OH)3HA(I), and Th(OH)4HA(I) from [56].
Hence the data at pH < 3 were not used because LC(III)
becomes negative [35].

On Fig. 3 is represented the log ∗β1.n.Z−N values; the equi-
libria and constants reported in Table 6. From these con-
stants, log ∗β1.4.I = −11.4 ± 0.4 (log β1.4.I = 43.6 ± 1.5) for
Th(OH)4HA(I) is in reasonable agreement both with the
data proposed in this study and with a previous determin-
ation of log β1.4.I = 41.6±0.6 in [19] on a narrower pH range
with SIT and [51], which corresponds to log β1.4.I = 42.1±
0.6 using the Davies equation and [52].

From the evolution in Fig. 3, the ionic strength does not
seem to be a critical parameter. Nevertheless, one must not
forget that activity variation was accounted for in [H+] cal-
culation. Combining the data gives a grand mean generic
value of log ∗β1.4.I = −12.1±1.9 (Table 3).
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Fig. 3. Value of log ∗β1.n.Z−N for the Th(IV) HA grafted SiO2 from [29, 30], black symbols, compared to the Th(IV) speciation [52]: plain line
Th4+, dashed line ThOH3+, dotted line Th(OH)2

2+, dot-dash Th(OH)3
+, dash-dot-dot Th(OH)4(aq); diamond ThHA(IV), square Th(OH)2HA(II),

and triangles Th(OH)4HA(I); open symbols this study, grey symbols [19] adapted to hydrolysis in [52].

Table 6. Formation constants for the Th(IV)-GraftedHA system re-
calculated from [29, 30] in the pH range 3–9. Uncertainties of mean
log ∗β1.n.Z−N are calculated from the propagation of error of fitting un-
certainties at each pH in Fig. 3.

Equilibrium log ∗β1.n.Z−N
a

Th4+ + HA(IV)�ThHA(IV) 9.6±1.5
Th4+ + H2O + HA(III)�ThOHHA(III) 5.4±1.7
Th4+ + 3H2O + HA(I)�Th(OH)3HA(I) + 2H+ −3.6±1.2
Th4+ + 4H2O + HA(I)�Th(OH)4HA(I) + 4H+ −11.4±2.1

a: n → z, then N−Z → 1, and [HA(0)] → [HA(I)], see text.

The value of log β1.IV = 9.5±1.5 for ThHA(IV) is sig-
nificantly lower that the estimated value in [19] from the
data in [23, 58], i.e. log(β1.IV ×LC) = 11.7±0.3. This may
be due to the hydrolysis of Th(IV) at pH 3 and 4, which
was hindered by CH3COOH complexation in [23, 58]. These
values may also not be compared directly as the data
in [23, 58] are mostly linked to acetate complexation con-
stants in [66], and the data calculated in this study are
linked to hydrolysis data in [52]. Moreover, acetate data
from [66], obtained in 1 M NaClO4 were corrected to 0.1 M
NaClO4 in [23, 58] using a modified Debye–Hückel ex-
pression [70, 71] that differs from the Davies equation,
which is not valid at 1 M. Considering the differences
in the techniques, extrapolation models, and complexa-
tion data sets, these data are in fair agreement. This new
value may be more representative of the model used for
non-ideality.

The large uncertainty for log ∗β1.1.III is due to the lack
of data in pH range were this species can be considered as
dominant.

Using Eq. (13), when An(OH)4(aq) is the only species
present, i.e. when pH ≥ 7 according to [51], then log ∗β1.4.I =
−5.2 ± 0.4 (log β1.4.I = 49.8 ± 3.6) can be calculated with
95% confidence interval for U(OH)4HA(I) (Table 3). These
uncertainties and differences come both from combining

data on different elements, at different ionic strengths, and
from different humic substrates.

For the sake of consistency in the following exercise on
independent data, the constant for BCHA and AHA ob-
tained in [32] can be calculated relative to [47]. When only
BCHA data are used, log ∗β1.4.I = −3.8±1.1 (Table 3), cor-
responding to the formation of the complex U(OH)4AH(I).
In the case of AHA, log ∗β1.4.I = −5.2 ± 1.3 using a 95%
confidence interval is obtained. Even if the confidence inter-
vals overlap, the differences in humic extracts are evident.
These data can be compared with the one that was pro-
posed in [19] originally relative to hydrolysis data in [72],
i.e. log β1.4.I = 54.4, and corrected relative to hydrolysis data
in [47], i.e. log β1.4.I = 49.1 or log ∗β1.4.I = −6.1, which is in
good agreement with the AHA data. It is to be noted that
in the Boom clay water conditions, i.e., pH 8.2, hydroly-
sis data in [47] and in [51] result in the only presence of
U(OH)4(aq).2

In conclusion, even if the analogy treatment is justi-
fied when it comes to estimating humic “complexation con-
stant”, it should not prevent from direct acquisition of data to
minimize uncertainties.

Comparison with independent data

Uranium(IV) laboratory data

An independent set of data was obtained by the Belgian
SCK-CEN on the increase of available uranium concen-
tration from UO2 in various water compositions [31, 73].
In the study of Cachoir et al., real interstitial water from
the Mol formation (RIC), synthetic clay water (SCW), syn-
thetic clay water with humic acid (SCWHA), and synthetic
clay water with humic acid but with low carbonate content
(SCWHA/C) were used [31]. The authors intended to keep
the Eh of their solutions as low as possible by adding Na2S.

2 log α = 20.76 in both cases as log β4 are identical.
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Fig. 4. Evolution of mean log β1.4.I for U(OH)4HA(I)
complex with Aldrich (AHA) and Boom Clay
(BCHA) humic acid from data in [32] (Table 5).

The kinetics of the dissolution was followed for a period of
ca. one year.

The authors added around 40 mg/L of Na2S to so-
lutions that already contained 20 mg/L of SO4

2−, which
leads to [S2−] = 5.13×10−4 molS/L and [SO4

2−] = 2.08 ×
10−4 molS/L. The authors did not note an increase in SO4

2−

concentration, which means that either S(–II) was not ox-
idized to S(VI), or it may have been oxidized to another
oxidation state of sulphur. Should there have been a coex-
istence of S(–II)/S(VI), the redox couple would lead finally
to a minimum potential value of Eh = −288.8 mV/SHE at
20 ◦C. The authors reported a maximum measured value of
−150 mV, pointing out that it is difficult to assess a redox
potential under these conditions.

Knowing the complexity of the water compositions,
the speciation of uranium can be calculated using
PHREEQC [74]. As some ∆f H ◦ values are missing in [47],
the most critical being UO2(am, hyd) and UO2(OH)3

−, we
will consider the difference between 20 and 25 ◦C negli-
gible, as an increase in solubility of ca. 20% is awaited
for UO2(cr). All the calculations done afterwards were per-
formed at 25 ◦C.

Nevertheless, as it was noted earlier, the formation “con-
stants” of humic complexes are closely related to the ionic
strength of their determinations. These “constants” must be
decoupled form the ionic strength extrapolation performed
in PHREEQC, using either the Davies (Eq. (4)) or the
Debye–Hückel equation (Eq. (14)):

− log γ = Az2
√

I

1+ Ba0
i

√
I

−bi I (14)

In order to “fix” the humic “constants” to their values and
hinder the ionic strength correction, a0

i was fixed to 1014 and
bi was fixed to 0 [74, page 156]. As in these experiments
Boom clay humic acids were used, only the log ∗β1.4.I =
−3.8±0.8 for U(OH)4HA(I) determined using data in [32]
will be used in the following calculations (Table 3).

The solubility of An(IV) is not an easy task to tackle. For
most of the studies, log(solubility) values are between −9 to
−8, when for crystalline forms log S are ca. −14 [75]. The
development of a hydration layer at the surface of the MO2

oxides, as in the case of ZrO2 seems to be inevitable, even
when the solid is produced via a hydrothermal route [76, 77]
in neutral media [75]. The formation of colloids was also
shown in the case of Th(IV) [48].

Cachoir et al. characterised their uranium oxide samples
after leaching in RIC, SCW, and SCWHA as mixtures of
UO2 and U4O9 [31]. The final uranium concentrations in so-
lution at 20 ◦C were between 3×10−8 and 5×10−8 molU/L
for RIC, SCW, and SCWHA, which is an order of magnitude
above the UO2(am) solubility. In the case of SCWHA/C, the
[U]max increased up to 1.5×10−6 molU/L which represents
30 times the initial concentration.

Using the log ∗β◦
n in [47] for hydrolysis and log ∗β1.4.I =

−3.8 for U(OH)4HA(I), and other constants in Table 3 for
UO2

+, using analogy with NpO2
+ [56], and UO2

2+ [11, 78],
speciation calculations can be done under the conditions
given in [31, Table 1] for SCWHA and SCWHA/C.

In the case of SCWHA/C, if the calculation is done from
the solubility of UO2(am, hyd) in [47] at E = −150 mV
and −288.8 mV, [U]max = 3.96×10−8 molu/kgw, 85.5%
being U(VI) species, and 3.16−9 molu/kgw, 99.7% being
U(IV) species, should be obtained respectively at 25 ◦C,
with U4O9(cr) oversaturated (Fig. 5). The fact that the [U]max

value at −150 mV is in line with the observed value for
RCI, SCW, and SCWHA is noteworthy, even if the authors
carefully worked with a cristalline UO2.

The calculation of the humic complexation can be
done considering that the total number of humic sites is
[BCHA] = 2.9 meq/g×177 mg/L = 5.13×10−4 eq/L. The
proportion of accessible sites at pH = 8.2 is estimated
from [7, 35]:

LC(I) = 100.26.pH−2.72 = 0.255
LC(II) = 1

}
(15)

Hence, [BCHA(I)] = 1.33×10−4 eq/L, and [BCHA(II)] =
2.54×10−4 eq/L.

The calculated [U]max is increased to 6.5×10−7 and
6.4×10−7 molU/L respectively for the two Eh values. This
represents an increase by a factor of ca. 17 and 200 respec-
tively. This increase is either the half or 6 times the experi-
mental one i.e. 30. The agreement between experiment and
modelling is reasonable (Fig. 5).

The formation of UO2 amorphous eigencolloids as in the
case of ThO2 [48] or nano-phase entrapment in HA as in the
case of iron [79], can also be taken into account.

The hypothesis concerning the complexation of U(VI) by
humics under these conditions is unlikely for different rea-
sons. Firstly, under these conditions, the U(VI) species are
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Fig. 5. Evolution of the available uranium concen-
tration from UO2(am,hyd) to UO3:2H2O vs. EH at
pH 8.2, under the conditions of the SCWHA/C [31],
considering the chemistry in [47]: plain line without
HA, dashed line with HA, dotted line uncertainties;

approximate value of final uranium concentration
in RIC, SCW, and SCWHA in [31]; approximate
final uranium concentration in SCWHA/C in [31];

data from [73]; value from BCHA log ∗β1.4.I =
−3.8 (Table 3).

anionic3 and will be repelled by the negative potential exist-
ing at the “surface” of humic particles unless redox reaction
occurs [44, 80]. Secondly, it has undoubtedly been shown
that the carbonate system competes effectively with the hu-
mic complexation of uranium(VI): for log p(CO2) ≥ −3.5,
no humic complexes of U(VI) could be obtained at pH ≥
8 [15, 68, 81, 82]. In the Boom clay water, log p(CO2) ≈
−2.3 (total inorganic carbon 900 mg/L [31]), hence no
U(VI) humic complexation could be anticipated. Further-
more, Glaus et al. only evidenced a weak mixed complex be-
tween UO2

2+, CO3
2−, and HA [83]. Finally, in all our calcu-

lations, neither UO2HA(II) nor UO2OHHA(I) attained more
than 0.5% of the total uranium speciation. Noteworthy is the
fact that using data in Table 3, an hypothetic UO2HA(I), i.e.,
an UO2

+ humic complex, even minor should be more im-
portant than both UO2HA(II) and UO2OHHA(I) in the two
hypotheses.

In both cases, if U4O9(cr) is allowed to precipitate,
[U]max should be lowered to 9.2×10−14 molU/kgw and
2.4×10−13 molU/kgw respectively without HA. The pres-
ence of HA would lead to [U]max values of 3.4×10−12 molU/

kgw and 5.1×10−11 molU/kgw. This is not in agreement with
any of the measured values. As for ThO2(cr) or ZrO2, even
in the case of crystalline UO2, the solubility is controlled by
the formation of an amorphous layer [75–77]

For SCW and SCWHA, the uranium concentration
changes in [Fig. 3 in 31] vs. time are remarkable. After
a first increase up to 5×10−7 molU/L after 75 days, the
uranium concentration decreased around 5×10−8 molU/L
after 200 days. If a calculation is done from the solubil-
ity of UO2(am, hyd) in [47] at Eh = −150 mV, a maximum
value of [U] = 1.45×10−3 molU/kgw should be obtained at
25 ◦C, 98.6% UO2(CO3)3

4− with U4O9(cr) oversaturated. If

3 mainly (UO2)2CO3(OH)3
−, UO2(OH)3

−, and UO2(CO3)3
4−.

U4O9(cr) is allowed to precipitate afterwards, the equilibrium
uranium concentration decrease to 3.0×10−8 molU/kgw

at 25 ◦C, 99% UO2(CO3)3
4− as in [31], with a very low

U(OH)4HA(I) concentration, i.e. 3.3×10−12 molU/kgw,
which is in agreement with the experimental uranium con-
centration. The interpretation is not straightforward, but the
precipitation of the U(VI) dissolved in carbonate form, and
not as uranium(IV) hydroxide, as U4O9(cr) seems likely.

When the Eh = −288.8 mV, the equilibrium concen-
tration of uranium would be 8.9×10−8 molU/kgw with
UO2(am, hyd) at 25 ◦C; 95.2% UO2(CO3)4

4−, and 3.9%
U(OH)4(aq). In the presence of HA, the final calculated con-
centration is 7.2×10−7 molU/kgw, 88.4% of U(OH)4HA(I),
and is in agreement with the “transient state” between 50
and 100 days, viz. 5×10−7 mol/L. Inasmuch, as the fi-
nal uranium concentration, viz. ≤ 5×10−8 mol/L, is not in
agreement with the calculated solubility, this hypothesis can
only explain part of the data.

Another possibility would be an increase in U(IV) con-
centration in solution due to carbonate complexes similar to
hydroxocarbonatothorate(IV) [46, 84]. These complexes can
be postulated for U(IV) but up to now cannot be accounted
for in the present calculation for the sake of data consis-
tency relative to other uranium thermodynamic data. As an
example, under these conditions, an increase of ThO2(am)

solubility from 1.5×10−9 mol/kgw in aqueous solution to
1×10−7 mol/kgw is awaited in the water RIC given in [Ta-
bles 1 in 31] using thermodynamic data in [46, 52]. This
could also partly explain the initial increase in solubility for
RIC, SCW and SCWHA.

Should U4O9(cr) control the solubility of the sam-
ples, the equilibrium uranium concentration without HA
would be 8.1×10−12 molU/kg at 25 ◦C, and to [U]max =
5.9×10−11 molU/kgw with HA, and is not in agreement with
the data.
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Hence, these data do not permit a thorough understand-
ing of the decrease in uranium concentration in the carbon-
ated reducing waters. The only plausible explanation would
be a UO2(am, hyd) control of the solubility of the samples
through the formation of a hydrated amorphous layer at the
surface of the crystalline sample. The presence of carbon-
ate in the solution would permit the solubilisation through
the formation of U(VI) carbonate complexes, that can pre-
cipitate as U4O9(cr) afterwards. The existence of hydroxo-
carbonatouranate(IV) cannot be excluded.

In the presence of humic substances and high concen-
tration of carbonate, the formation of humic complexes of
U(VI) is suppressed and the formation of uranium(IV) hu-
mic complexes is unlikely, but nevertheless delays the for-
mation of U4O9(cr). One can also think that the eventual for-
mation of negative hydroxocarbonatouranate(IV), and car-
bonatouranate(IV), would also hinder the formation of hu-
mic complexes. Lastly, under low carbonate conditions, the
formation of uranium(IV) humic complexes is possible and
hinders the formation of U4O9(cr). The stabilization of ura-
nium hydroxide colloids, as for Th(IV) [48], or nanophases
as for Fe, is also likely when sorbed on humic substances as
for iron oxides [79, 85–88], that could lead to an enhance-
ment in mobility [89].

Another point is the redox capacities of HA, especially
the possibility of UO2 oxidation if the reducing conditions
are not strictly controlled [14]. This argument is also ques-
tionable regarding these experiments because it has been
shown in [14, Fig. 5b] that the reoxidation of UO2, synthe-
sised in the absence of humics, is comparable in Milli Q
water, in 0.03 M NaHCO3, and with two different HA sam-
ples. Furthermore, the final concentration obtained in RIC,
SCW, and SCWHA [31], are in agreement with a fairly good
redox control.

It seems that humic substances can complex U(IV) at low
carbonate concentration, but do not seem efficient to effec-
tively dissolve reduced uranium phases in the presence of
carbonate in groundwaters in the long term. Nevertheless, in
transient state the role of humics in the reoxidation of UO2 is
evident.

An increase of uranium concentration was also observed
for amorphous UO2 in Boom Clay water [73]. The original
data [Table 3 in 73] are also in reasonable agreement with
the calculation in Fig. 5. Nevertheless, the quantitative de-
scription is underestimated for most of the point. One must
not forget that the determination in [32] was done in enhanc-
ing the uranium concentration with HA and that sorption of
HA to UO2, which is not easy to account for, was not taken
into account. All the preceding arguments can be repeated
here.

Uranium(IV) field data

The strong affinity of uranium for natural organic colloids
was also evidenced in the Gorleben groundwaters [15, 16].
The authors stated that accounting only for U(VI) humic
complexation cannot represent the repartition of uranium in
humic colloids, regarding to the high concentration of car-
bonate, and that U(IV) humic complexation “would explain
the propensity of uranium binding to humic colloids ...”.

Using our laboratory data and the composition of the
groundwater from Gorleben site (Gohy-532) given in [12],
no humic complexation could be awaited as uranium speci-
ation would largely be dominated by UO2(CO3)n

2−2n com-
plexes: this calculation is not in agreement with the experi-
mental results obtained in [15, 16].

Some hypotheses can then be proposed. Firstly, the re-
dox potentials proposed in [15] are underestimated has re-
ported in [90]. But the carbonate concentration and pH
values should then still lead to the stabilisation of tricarbon-
atouranyl(VI) complex in the uncertainty range proposed.

Secondly, the uranium humic colloids are formed by
a more complicated path than direct complexation in the
formation. This hypothesis is more likely in view of the
complexity of water fluxes and HS origin from the Gorleben
area [91]. It is reported that the formation of these HS is
due partly to the humus horizon with recharge water, and
mainly from the oxidation of sedimentary organic carbon by
microbial activity [92]. Humic substances can enhance both
the biological reduction of U(VI) to U(IV), and the reox-
idation of U(IV) to U(VI) [13, 14]. Nonetheless, stabiliza-
tion of U(IV)-humic complexes demand a strict anaerobic
condition, otherwise the stabilisation of U(VI) as carbonate
complexes would be favoured [14]. Knowing the slow dis-
sociation kinetics of An(IV) humic complexes [16, 93, 94],
should the uranium pool in the Gorleben groundwater be as-
sociated to humics in the colloidal fraction, it is possible to
propose that it comes from a bioreduction mechanism, may
be during the bio-oxidation of the sedimentary organic car-
bon, and not from a direct complexation.

Conclusions

The treatment of humic complexation of tetravalent ac-
tinides has been shown to be useful in estimating humic
complexation constants. Indeed, it permits to visualise the
good correlation of the experimental data when consistent
hydrolysis constants sets are taken into account. A first es-
timation of the available tetravalent actinide concentration
in the presence of humic acids can be obtained through this
treatment. Nevertheless, for accurate determination direct
and specific experiments are still needed. The comparison
with field and laboratory data also evidences the possible ef-
fect of redox processes that are difficult to account for the
moment being.
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