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Abstract. We consider the two-photon double ionization (DI) of helium and
analyze electron dynamics on the attosecond timescale. We first re-examine
the interaction of helium with an ultrashort XUV pulse and study how the
electronic correlations affect the electron angular and energy distributions in the
direct, sequential and transient regimes of frequency and time duration. We then
consider pump–probe processes with the aim of extracting indirect information
on the pump pulse. In addition, our calculations show clear evidence for the
existence under certain conditions of direct two-color DI processes.
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1. Introduction

The generation of high-order harmonics of a strong infrared laser field appears to be the most
efficient process to generate single attosecond (as) XUV pulses [1].With the use of carrier-
envelope phase stabilization and few-cycle laser systems, it is now possible to produce XUV
pulses whose duration is shorter than 250 as [2]. The production of such pulses provides
new routes to time-domain studies of multi-electron dynamics in atoms and molecules. The
feasibility of such studies has been demonstrated by the pioneer experiment of Drescher
et al [3] who studied in real time the relaxation of krypton M-shell vacancies. In this experiment,
it is actually the coupling of a bound state to various continua that is explored in the time-domain
with attosecond resolution. The characteristic timescales which are given by the corresponding
transition linewidths, are usually of the order of a femtosecond.

In the present contribution, we consider the interaction of He with ultrashort XUV pulses
and focus on the two-photon double ionization (TPDI) process. This process has recently
become the subject of intense theoretical interest (see [4] and other references therein) as well as
the target of new experiments with high-order harmonic generation [5] and free-electron laser
source (FLASH) in Hamburg [6,7]. TPDI total cross-sections have been measured [5,6] for
the case of direct TPDI of He. The measure of the momentum distribution of the recoil ion in a
cold target recoil ion momentum spectroscopy (COLTRIMS) experiment provides information
on the energy sharing and the direction of emission of the two ejected electrons in Ne TPDI [7].
Here, it is the electron correlation in the ground state of He which is explored in the time
domain. In order to define a characteristic time scale associated with the electron correlation in
a given bound state, we introduce what we call the dielectronic interaction energyEint, defined
as the difference between the ‘exact’ energy of this state of He and the corresponding energy
of a ‘model helium’ in which both electrons are independent. For the He ground stateEint is
about 1.1 au. Note that we use the term ‘dielectronic interaction energy’ rather than ‘correlation
energy’ employed in previous papers to avoid possible confusion. Indeed, the correlation energy
often refers to the difference between the exact and the Hartree–Fock energy. For the He ground
state, this correlation energy is much less thanEint. Eint actually represents the total amount
of energy that both electrons can exchange during the ionization process. The characteristic
timescaleτ associated with the electron correlation in a given bound state is then defined as
2π/Eint. For He in its ground state, this characteristic timescale is of the order of 140 as.
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For long pulses, the TPDI process may be direct or sequential. For photon energies larger
than 2 au, it is possible for the two electrons to escape sequentially, i.e. each electron absorbs
a single photon and escapes one after the other. In this sequential regime, there is no need for
electron correlation and it is the first ejected electron that carries the dielectronic interaction
energyEint [8]. In other words, the residual ion has time to relax into the ground state of
He+ before the second ionization. For photon energies below 2 au and above the TPDI threshold
(1.45 au), the sequential process is energetically forbidden and both electrons must share the
dielectronic interaction energy to escape. Probing the electron correlation amounts therefore to
analyzing how this dielectronic interaction energy is partitioned between the electrons. Direct
and sequential processes may be distinguished by the fact that the probability of direct TPDI is
proportional to the time duration of the pulse, whereas in the sequential regime, the probability
of TPDI is proportional to the square of the pulse duration. In a previous publication [9], we
have shown that there is a third regime called transient which is neither direct nor sequential.
In this mode the dependence of the probability of TPDI on the pulse duration is not linear or
quadratic. This regime manifests itself when the pulse duration becomes extremely short, i.e. of
the order of the characteristic timescaleτ . In particular, we have studied, for photon energies
above 2 au, how the electron energy distributions and the ion yield for TPDI of He in its ground
state change for ultrashort pulse duration. Note that in the sequential regime, the process of
TPDI may be viewed as a pump–probe process within a single pulse: the first photon ionizes He
while the second one ‘probes’ the initial photoionization process. In the present contribution,
we study the TPDI of He1S by two (not necessarily ultrashort) XUV pulses. We analyze both
the electron energy distribution and the ion yield as a function of the time delay between the
pulses. In particular, we show that some time delays lead to dynamical effects similar to what is
expected when He interacts with a single attosecond pulse.

The present contribution is organized as follows. In the first section, we give a short account
of our theoretical approach. In the next two sections, we briefly review the main features of
the direct and sequential TPDI process and then consider the third regime in more detail. In
particular, we elucidate the actual role of the electron correlations by analyzing the electron
energy and angular distributions. In the fourth section, we consider the interaction of He with
two XUV pulses and discuss the atomic response in detail. We conclude in section 5. Unless
stated, atomic units are used throughout this paper.

2. Theoretical approach

Our theoretical approach is based on the solution of the time-dependent Schrödinger equation
(TDSE):
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]
9( Er 1, Er 2, t), (1)

where r1 and r2 are the radial coordinates of both electrons andr12 = | Er 1 − Er 2| is the
interelectronic distance.DG(t) describes the dipole interaction of the system with the oscillating
field either in the length gauge (G ≡ L) or in the velocity gauge (G ≡ V):

DL(t)= EE(t) · ( Er 1 + Er 2), (2)

DV(t)= −i EA(t) · ( E51 + E52). (3)
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EA(t) denotes the vector potential andEE(t)= ẑE0 f (t) sin(ωt +φ) the electric field which
oscillates at the frequencyω with a phaseφ and which is assumed to be linearly polarized
along thez-axis. f (t) is the pulse envelope given by:

f (t)= cos2(t/τ), |t |6 π
τ

2
,

= 0, |t |> π
τ

2
. (4)

In this expression,πτ represents the total duration of the pulse expressed as an integer number
of optical periods, we have:

EA
(
π
τ

2

)
= −

∫ π(τ/2)

−π(τ/2)
dt EE(t)= 0, (5)

for any pulse duration and phase. This means that even for few-cycle pulses, there is no static
field component. This prevents possible problems related to the gauge invariance [10]. In
addition, it is easy to show that the spectral width of such a pulse, defined as the FWHM of
the square of the Fourier transform ofEE(t), is given by 1.44ω/n where the integern is the total
number of optical cycles within the pulse.

Our method to solve the TDSE (equation (1)) has been described in great detail in [11].
Here, we only present a short summary. We first expand the full wavepacket of the system
9( Er 1, Er 2, t) in terms of its field-free eigenstates. The wavefunctions associated with these
eigenstates are calculated within a spectral method that consists in diagonalizing the atomic
Hamiltonian in a basis of products of one-electron square integrable functions of the radial
coordinatesr1 and r2 and bipolar harmonics of the electron angular coordinates. The square
integrable functions are either Coulomb Sturmian functions or B-splines. The Coulomb
Sturmian functionsSk

n,`(r ) for a given angular momentum̀ and radial indexn are defined
by:

Sκn,`(r )=Nκ
n,` r `+1e−κr L2`+1

n−`−1(2κr ), (6)

whereNκ
n,` is a normalization constant andL2`+1

n−`−1(2κr ) a Laguerre polynomial. The wavevector
κ plays the role of a scaling factor [12] while the indexn varies betweeǹ + 1 andN + ` where
N is the number of Coulomb Sturmian functions per electron for a given`. It is important to
stress that these functions, which form a complete and discrete basis, are solutions of the Sturm–
Liouville eigenvalue problem associated with the radial stationary Schrödinger equation for an
hydrogenoid system. The B-splines functions [13]Bk

n(r ) of orderk are piecewise polynomials
of degreek − 1. The indexn varies from 1 toNb where Nb is the number of B-splines per
electron. TheNb B-spline functions are spanned, along the radial axis, in a box defined from
r = 0 to Rmax. The B-spline sequence is chosen in such a way thatBk

1(0)= Bk
Nb
(Rmax) in order

to satisfy the correct boundary conditions within the box. The full wavepacket which initially
coincides with the initial state of He is then propagated in time by means of an explicit fifth
order embedded formula of Runge–Kutta type.

Once the initial wavepacket has been propagated in time until the end of the interaction
with the pulse, we have to calculate both the single and the double ionization (DI) probabilities.
This problem remains a real challenge for all theoretical approaches. On the one hand, the
single and double continua of He may be degenerate in energy and, on the other hand, the
positive energy eigenstates of the Hamiltonian of He contain necessarily both single and double
continuum components since our basis has a finite size and does not describe the electron pair
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in the asymptotic region. In addition, these asymptotic conditions for complete break up are
not known. In order to calculate the total probability for DI, we subtract the total probability
for single escape from the all-inclusive probability for breakup which in turn is obtained from
the final wavepacket without reference to the boundary conditions. To calculate the total and
partial probabilities for single escape, we use the Jacobi-matrix method [14] to generate in
the Coulomb Sturmian basis a multichannel scattering wavefunction that describes accurately
the single continuum of He while incorporating the correct asymptotic conditions. Projecting
the final wavepacket9(t) at the end of the pulse on this function provides a tool to disentangle
the single-ionization and DI components denoted by9si(t) and9di(t) respectively. In order
to calculate the electron energy and angular distribution for double-escape, we project the
DI component9di(t) on the wavefunction8 which describes two ‘non-interacting electrons’
moving in the field of an unscreened He nucleus.8 is in fact a product of two one-electron
Coulomb wavefunctions with effective charge 2. Because8 is only an approximate final-state
wavefunction for two asymptotically free electrons and is not orthogonal to the ‘exact’ single-
ionization and bound-state-channel wavefunctions, it is essential to isolate the double-escape
wavepacket9di(t) before projecting on to8. However, as soon as the two-photon single-
ionization component becomes small compared to the DI, i.e. for higher frequencies in the
sequential regime, this procedure of subtraction is no longer essential and the projection of
the final wavepacket on the function8 is sufficient. We have checked that our estimates for the
single- and double-electron escape probabilities are converged with respect to the basis size and
are gauge independent.

In order to probe how electron correlations in the ground state of He affect the double-
escape process, we have developed a simple model in which electron correlations enter only in
the ground state of He. This model is based on the lowest order time-dependent perturbation
theory. This is justified since in the high frequency and low intensity regime considered here,
the ponderomotive shift of the electrons is negligible compared to the photon energy. For TPDI,
the probability amplitude reads:

U (2)
= −

∑
α

〈9f|z1 + z2|9α〉〈9α|z1 + z2|9i〉G(E0, ω, φ, Ei, Eα, Ef), (7)

where the functionG is given by:

G(E0, ω, φ, Ei, Eα, Ef)=

∫ T/2

−T/2
dτ1E0 f (τ1) sin(ωτ1 +φ)eiωfα τ1

×

∫ τ1

−T/2
dτ2E0 f (τ2) sin(ωτ2 +φ)eiωαiτ2. (8)

In this expression,T represents the optical period andωfα = Ef − Eα and ωαi = Eα − Ei

with Ei, Eα and Ef the initial, the intermediate and the final state energy, respectively. The
wavefunction of the initial state9i is written as follows:

9i( Er 1, Er 2)=

∑
l ,ν,n

φl ,l
ν,nAF l ,l

ν,n(r1, r2)3
0,0
l ,l (�1, �2), (9)

where the coefficientsφl ,l
ν,n are calculated by diagonalizing the atomic Hamiltonian of He.

A is the antisymmetrization operator and30,0
l ,l (�1, �2) the bipolar harmonics of the angular

coordinates of both electrons. The radial functionF l ,l
ν,n(r1, r2) is written as a product of two

hydrogenic bound states of principal quantum numberν andn respectively:

F l ,l
ν,n(r1, r2)= ψν,l (r1)ψn,l (r2). (10)
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Let us stress that the above expression (9) for9i is not correct because this expansion does
not contain continuum states. However, it contains some radial and angular correlation. In this
calculation of9i( Er 1, Er 2), we have included 4 pairs(`, `) of the electron angular momenta ((0, 0),
(1, 1), (2, 2) and (3, 3)) and taken bothν andn varying from 1 +̀ to 4 +`. Upon these conditions,
the ground state energy is−2.84 au. The intermediate states9α and the final state9f can
be defined in good approximation as an antisymmetrized product of bound or/and Coulomb
states because the TPDI process is dominated by transition channels that require no interaction
between the electrons in the sequential regime [8]. We have tested this model by comparing
the results with those obtained by the approach described at the beginning of this section.
The agreement is good both qualitatively and quantitatively. In addition, this model also gives
reasonable results in the direct regime.

3. Electron correlations in TPDI

3.1. Direct regime

By using our spectral method together with Jacobi-matrix calculations, we have shown
recently [15] that in the range of photon energies from 39.5 to 54.4 eV, the dominant TPDI
process is a back-to-back electron ejection along the field polarization axis at equal energies.
This results from the absorption of two photons by the electron pair in the presence of
a dynamically screened nucleus. Very close to the 39.5 eV threshold, each electron must
maximally screen the other in order to overcome the Coulomb attraction from the nucleus. As
the photon energy rises from 39.5 to 54.4 eV, dynamical screening becomes less critical and each
electron can escape partially independently of the other. As a result, the phase space available
to the electrons increases and consequently, the rate for double escape rises. The role of the
dynamical screening manifests itself in the electron energy distributions. Close to the 39.5 eV
threshold and up to a photon energy of about 48 eV, the distribution exhibits a maximum at
the equal energy sharing while above 48 eV, this distribution becomes more U-shaped. This
dynamical screening [16] is a direct consequence of the radial correlations whereas the strongly
favored back-to-back emission is a consequence of the angular correlations. In addition, the
symmetry of the initial or final state also plays an important role regarding the pertinence of
the above mechanism. Indeed, such a mechanism is not dominant in the one-photon DI of He
because the final state has a node when both electrons are emitted back-to-back at exactly the
same energy.

3.2. Sequential and transient regimes

For photon energies larger than 54.4 eV (2 au), TPDI of He is either direct or sequential. In
the case of the direct process, the electrons share the excess energyEex leading to a relatively
uniform electron energy distribution while the sequential process leads to an energy distribution
that exhibits two peaks of energiesE1 and E2, resulting from the ionization of He+ and He,
respectively. Figure1 shows the schematic diagram of these processes; in figure1(a), the direct
path is represented by dashed arrows, it leads to excitation-ionization and DI channels where
the electrons share the excess energyEex. The sequential path, also represented in figure1(a),
produces electrons with energiesE1 andE2 (E1 + E2 = Eex). The direct and sequential processes
are entangled, we will discuss their relative importance. The associated electron spectrum is
represented in figure1(b). The peaksE1 and E2 are separated in energy byEint, i.e. the total

New Journal of Physics 10 (2008) 025017 (http://www.njp.org/)

http://www.njp.org/


7

He(1s
2
)

He
+
(1s)

He
++

Ip
+

Ip
++

E1

E2

Eex

E1
E2 Eex

(a) (b)

Figure 1. A schematic diagram of the TPDI process. Figure1(a) represents the
direct and sequential pathways. Figure1(b) represents the region corresponding
to direct ionization, ranging from the energy 0 up to the excess energyEex. The
figure also shows two peaks corresponding to sequential ionization, located at
the positionsE1 and E2 (with Eex = E1 + E2). The normalization of direct and
sequential yields is arbitrary.

dielectronic interaction energy in He(1s2) (about 1.1 au). It has been pointed out that, by contrast
to one-photon DI, TPDI occurs without correlations. Nevertheless let us stress that, in the model
of non-interacting electrons, the electron spectrum shows a single peak (E1 = E2) for ω > 2 au,
while the direct process is energetically forbidden forω < 2 au. Therefore it isa priori obvious
that the dielectronic interaction plays a crucial role in TPDI, but it is different from its role in
the one-photon DI case [17].

Before considering the transient regime of the ultrashort pulse durations, we recall a
previous study where the role of the electron correlations has been discussed within the
lowest order perturbation theory [8]. In this approach, the He ground state is represented by
1s2, i.e. a product of two hydrogenic orbitals 1s. The other states are the single continuum
state He(1skp) and double continuum He(kpk′p), also represented by hydrogenic orbitals (all
orbitals are calculated withZ = 2). In this approximation the energyE0

1s2 of the ground state
would then be given by 2E0

1s+ 〈1s2
|1/r12|1s2

〉 whereE0
1s is the hydrogenic energy of 1s and

〈1s2
|1/r12|1s2

〉 the electron interaction energy. This model includes the resonant transitions
underlying the sequential process; one-photon ionization of He(1s2) followed by the ionization
of He+(1s). Here it is important to emphasize that the zeroth order perturbation theory in
1/r12 approximation is different from the fully electron independent model where the ground
state energy is 2E0

1s. Within zeroth order perturbation theory, the unique role of the electron
interaction energy is to shift the ground state upward. Using the formalism of the resolvent
operatorG(z) and a square pulse of lengthT , we apply the standard method where the evolution
operatorUFI(T) is obtained as the inverse Laplace transform ofGFI(z). Details are given in [8]
where the lower level is the He(2s2) autoionizing state with lifetime 1/0while the upper one is
the He+(2s) threshold. Setting0 = 0 and replacing the 2s orbital by 1s a parallel treatment
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Figure 2. Electron energy spectrum calculated within the zeroth order
perturbation theory in 1/r12 for a photon energy of 2.2 au and for two pulse
durations (see the insert).

applies here. We have shown in [8] that, forT = ∞, it is possible to derive an analytical
expression for the photoelectron energy spectrum, it reads:

|Uk,k′(T → ∞)|2 ∝
|〈kp|µ|1s〉〈k′p|µ|1s〉|

2

[(Ek + Ek′ − Eex)2 + (1/4)γ2
He][(Ek − E1)2 + (1/4)γ2

He+]
, (11)

where γHe and γHe+ are the photoionization widths of He and He+, respectively.〈kp|µ|1s〉

represents the dipole coupling between the 1s orbital and thekp continuum.Ek and Ek′ are
the energies of the ejected electrons. We recognize in equation (11) the channel where each
electron absorbs one photon. It is clear that the dipoles are different from zero, whether we
use hydrogenic orbitals or not. The electron spectrum associated with equation (11) shows two
peaks whose effective widths are the result of a convolution (see figure 2 in [8]). We have
also evaluatedUFI(T) for finite values ofT ; figure 2 shows the electron spectrum associated
with TPDI for T = 8.5 au andT = 17 au and for a photon energy of 2.2 au. The ionization
threshold has been arbitrarily placed at 0.903 au above the He fundamental state. The spectrum
is dominated by two peaks placed at the expected positionsE1 = 0.2 au andE2 = 1.3 au; by
contrast with equation (11) their width is given by the laser bandwidth, which is much larger
than the photoionization widths. AtT = 8.5 au, we note that the peaks slightly move towards
each other. Regarding the TPDI rate, we have checked that it varies likeT2, in agreement with
sequential DI. While the sequential TPDI is expected to dominate for long pulse durations,
it is interesting to compare the present model with a more sophisticated calculation for short
pulses in the transient regime; this is investigated below with our spectral method using B-spline
functions.

In previous work [18,19] we have shown that, forh̄ω > 2 au and pulse durationsT of the
order of 2π/Eint or less, TPDI occurs while both electrons strongly interact and the concept of
sequential ionization loses its pertinence. In the latter case, the DI rate [9] and the electron
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energy spectrum [20,21] differ significantly from the long pulse regime. Note that in the
transient regime, i.e. for very short pulses, the field bandwidth is of the order of the field
frequency so that the notion of photon loses its meaning. In fact, for pulse durations of the
order of or less than 2π/Eint, hereafter called the dielectronic interaction time, we enter the
transient regime. Note that this dielectronic interaction time, which is of the order of 140 as for
the helium ground state, can be longer for other elements, such as for instance beryllium where
it is about 500 as [21].

We report here on TPDI electron energy and angular distributions calculated by using our
spectral method based on the B-spline functions. The results have been obtained by projecting
the final wavepacket at the end of the pulse on a product of Coulomb functions with effective
charge 2. As indicated before, this procedure is justified for average field frequencies larger
than 2 au. The calculations have been performed at various intensities. Channels populated
through the absorption of three photons have been included in TDSE calculations. We have
checked that they play a negligible role. It is worth noting that, in the case of neon, sequential
three-photon DI has been shown to compete with direct TPDI at rather low intensities
[6, 7]. This might be due to the presence of a resonant transition in Ne+. The present context is
different but we have carefully checked that, for both direct and sequential two-electron ejection
regimes, two-photon absorption dominates up to the maximum intensity used in this work
(i.e. 1014 W cm−2). In all cases, we have also checked that ionization is well below the saturation
regime. Within this context the final doubly ionized channels have symmetries1Se and1De and
the intermediate one (populated from the He(1s2) state) has the symmetry1Po. For the1Se

states, we have included the following electron angular momentum pairs (`1, `2): (0, 0), (1, 1),
(2, 2) and (3, 3); the energy of the ground state is−2.903 au. For the1Po states, we have taken
into account the pairs (0, 1), (1, 2) and (2, 3) and for the1De states, the pairs (0, 2), (1, 1), (1, 3),
(2, 2) and (3, 3). For the He ground state, (0, 0) is the dominant electron angular momentum
pair. Therefore, the one-photon transition to (0, 1) plays a major role and the (0, 0), (1, 1) and
(0, 2) pairs dominate in the final double continuum, as we will see below. The1Fo channel,
populated through three-photon absorption, is also included in the calculations but, as explained
above, it plays a minor role. Note that the main constraint regarding our B-spline basis is the
size of the box, that has to be large enough to avoid the bouncing back of the wavefunction on
the boundaries, here atRmax = 30 au. Figure3 shows the total and partial densities of probability
and the dominant angular contributions, in the insertL, l1 andl2 refer to respectively the total
angular momentum and to angular components of the final double continuum state, represented
by a product of two Coulomb functions. The DI density of probability reads [20]:

d2PL ,M
l1,l2

dEkdEk′

= |〈A(ψ l1
Ek
(r1)ψ

l2
Ek′
(r2)Y L ,M

l1,l2 (1,2))|9(r1, r2, T/2)〉|
2, (12)

whereA is the antisymmetrization operator, the Coulomb wavefunctionsψ l
E are calculated with

Z = 2 and normalized on energy scale. The energy distribution is calculated by integrating the
DI density of probability overEk′ and summing over all(`1, `2) angular components [20]. We
present the electron energy spectrum for TPDI of He for a photon energy of 2.2 au (60 eV)
and various pulse durations. As expected, at a pulse duration of 34 au (822 as), sequential
ionization dominates and the density of probability (full thin line) shows two peaks, close to the
expected positionsE1 andE2 (see figure1), the peak widths being roughly given by the laser-
bandwidth (about 0.37 au). The figure shows the dominant partial contributions associated with
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Figure 3. Electron energy spectrum for TPDI of helium in its ground state
with h̄ω = 2.2 au. The total pulse duration is 34 au (822 as). The other laser
parameters are indicated in the figure. The arrows indicate the expected
position of the peaks in the sequential process (see figure1). The figure
shows the total density of probability and the density of probability calculated
for selected angular components of the final state (we only show the three
dominant contributions, see the insert). The thick curve represents the density
of probability calculated for a total pulse duration of 17 au (411 as). It has been
magnified by a factor of 10.

(`1, `2) pairs. As expected in the context of the sequential ionization, the contributions from
the (1, 1) component dominates. The figure also shows (thick line) the density of probability
for a pulse duration ofT = 17 au (411 as). We note that the peaks are closer than in the
previous case; they have moved towards each other. The pulse FWHM (205 as) is now of
the order of the dielectronic interaction time defined above for helium (140 as). Therefore
there is not enough time for the electron interaction energyEint to be transferred to the
first ejected electron before the escape of the second electron. As a consequence the peak
E2 is found at a lower energy, while the energyE1 increases. Here, it is worth noting
that the peak shift is much more pronounced than in the case of the sequential process
(see figure2). Therefore the shifts cannot be attributed to field bandwidth broadening. As
a matter of fact, this effect should be observed for shorter wavelengths. This is illustrated
in figure 4 which reports energy distributions for a photon energy of 3.2 au and pulse
durations close to the previous case. For the longer pulse durations, the peaks are close to
the expected positionsE1 and E2 (see the figure). AtT ≈ 16 au the peaks shift towards each
other, their separation in energy is about 0.6 au, in close agreement with the case reported
in figure 3. Incidentally, we note that, although one-photon absorption takes the system
above the DI threshold, the1Po double continuum (populated through one-photon DI) plays
a minor role in TPDI at this wavelength. This is fully coherent with our analysis above
since the one-photon DI channel involves correlations beyond the zeroth order perturbation
theory in 1/r12.
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and electron energies (see the insert) withh̄ω = 2.2 au. One of the electrons is
emitted along thez-axis (θk = 0) with the energyEk, the other electron is emitted
with the energyEk′ . The curves are normalized to unity atθk′ = 180◦.

Figure 5 shows the TPDI angular distribution calculated for various energies and pulse
durations. This distributionDk,k ′ has been calculated by projecting, at the end of the pulse,
the total wavefunction on to a product of Coulomb functions (calculated withZ = 2 and fixed
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wavevectorsk andk ′) representing the final state. The distribution reads:

Dk,k ′ = |〈A(ψ−

k (r1)ψ
−

k′ (r2))|9(r1, r2, T/2)〉|
2. (13)

The final state is normalized on energy scale and it has ‘ingoing’ boundary conditions with
Ek = k2/2 andEk′ = k

′2/2. The wavefunctionsψ−

k (r1) andψ−

k′ (r2) are developed on to partial
waves with angular momentà1 and `2 [22]. The field having linear polarization and the
polarization vector being aligned along thez-axis, the problem has cylindrical symmetry around
z. For T = 822 as, this distribution has been calculated at the peak maxima (Ek = 0.247 au and
Ek′ = 1.208 au, see figure3, thin line) and atEk = Ek′ = 0.75 au. In all cases one electron has
a fixed energyEk and is emitted in the directionθk = 0, the other electron being emitted with
the energyEk′. At the peak maxima (thin full line) the angular distribution shows maxima at
0 and 180◦, this agrees with a sequential emission of electrons with`= 1 angular momentum.
By contrast with the direct process, most of the electrons are emitted at different times and
the electron–electron interaction is dominated by the screening. The situation is different when
Ek = Ek′ = 0.75 au. The angular distribution has the character of direct DI (the electrons are
emitted in opposite directions). In the latter case the electron repulsion plays a major role
in the double electron ejection process since both electrons are emitted within a fraction
of a femtosecond. Therefore, as predicted in earlier work [8], the DI in the energy region
located in between the ‘sequential’ peaks has the signature of the direct process. Figure5 also
shows the angular distribution for the caseT = 411 as at the position of the peaks maxima
(Ek = 0.35 au andEk′ = 1.036 au, see figure3, thick line). It is clear that the electrons are
preferentially emitted in opposite directions, as in the case of direct DI. This is a further
confirmation of our analysis: the shift of the peaks is not simply due to the peak broadening
as the pulse duration shortens (although its effect is non-negligible), but it is related to the
electron interaction dynamics. The experimental observation of the shift of the peaks remains,
for the time being, extremely difficult at least in helium. However, as noted in the introduction,
the measure of the momentum distribution of the recoil He2+ ion in COLTRIMS experiment
is probably the best way to observe the effect. In the long pulse regime, the electrons being
ejected with different energies and back-to-back or similar direction emission, the recoil ion
momentum distribution should show maxima at positions different from zero. On the other
hand, in the limit of ultra short pulse, the electrons tend to be emitted with roughly similar
energies into opposite directions, the observed pattern should show a clear maximum at zero
momentum.

4. Pump–probe processes

We now consider the interaction of helium with two XUV pulses. The results presented in this
section for TPDI of He in its ground state have been obtained with the simple model described
above and based on the lowest order time-dependent perturbation theory (see equation (7)).
It is convenient to describe the total electric field as a sum of two pulsed fields shifted in time
and characterized by different frequencies, phases and duration:

EE = [E1 f1(t) sin(ω1t +φ1)+ E2 f2(t − D) sin(ω2(t − D)+φ2)] ẑ, (14)
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where

f j (t)= cos2
(
π

Tj
t

)
, |t |6

Tj

2
,

= 0, |t |>
Tj

2
, j = 1,2. (15)

Hereafter and for the sake of simplicity, we choose to label all the parameters associated with
pulsep j with the index j, j = 1,2. T1 andT2 are the durations ofp1 and p2 respectively while
D is the time delay between the two pulses.D is defined as the distance between the maxima of
p2 andp1. ThereforeD is equal to 0 when the maxima of the two pulses coincide.ω j , E j , f j (t)
andφ j ( j = 1, 2) denote, for each pulse, the photon frequency, the field amplitude, the envelope
and the initial phase respectively. Let us denote the initial and final interaction times byTi and
T f , respectively. They are defined as follows:

Ti = min

(
−

T1

2
,−

T2

2
+ D

)
, Tf = max

(
T1

2
,

T2

2
+ D

)
. (16)

To probe the dynamics of the system, we ‘play’ with the delay time betweenp1 and p2. By
changing the value ofD, we can adjust the duration of the overlap between the two pulses
whereas by changing the sign ofD, we change the time order of these pulses. Figure6 displays
the electric field of the two pulses for different values of the time delay. In the present case, the
expression ofG in equation (8) becomes:

G(E1, E2, ω1, ω2, φ1, φ2, D, Ei , Eα, Ef)=∫ Tf

Ti

dt{E1 f1(t) sin(ω1t +φ1)+ E2 f2(t − D) sin(ω2(t − D)+φ2)}e
i(ωfα )t

×

∫ t

Ti

dτ{E1 f1(τ ) sin(ω1τ +φ1)+ E2 f2(τ − D) sin(ω2(τ − D)+φ2)}e
i(ωαi)τ .

(17)

In all the results presented in this section the frequencies of the two XUV pulses are fixed:
ω1 = 1.3 au andω2 = 2.1 au. In figure7, we show the electron energy distribution for TPDI
of helium in its ground state by the two XUV pulses for different values of the time delay
D between the pulses. The total duration of each pulse isT1 = 12 optical cycles (1.4 fs) and
T2 = 14 optical cycles (1 fs). The peak intensities of the pulsesp1 and p2 are equal to 1014 and
1013 W cm−2. For long and positive values of the time delayD, there is no overlap between
the two pulsesp1 and p2. The system interacts first withp1 leading to a single ionization peak
at E1 = 0.4 au. The second pulsep2 with a frequency 2.1 au can ionize the residual ion which
was left in its ground state after the first photon absorption. Consequently, the TPDI process
is necessarily sequential and the first outgoing electron carries all the dielectronic interaction
energy as in a single pulse event [8]. When the time delay becomes shorter, the two pulses begin
to overlap. In that case, a new process becomes possible, namely the successive absorption of
photons of 2.1 and 1.3 au. However, this new two-color process is only possible if the residual
ion has no time to relax before the absorption of the photon of 1.3 au. In other words, this
process must be direct in order to occur. In this case both electrons share the dielectronic
interaction energy. This leads to the shift of the two peaks observed in figure7 for D = 1.61 au
and D = −3.22 au. For long and negative values of the time delay and a non zero overlap
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Figure 6. Electric field associated with the pulsesp1 and p2. Three values
((a)–(c)) of the time delayD between the two pulses are considered. The
pulse characteristics are:I1 = 1014 W cm−2, ω1 = 1.3 au,T1 = 12 cycles,I2 =

1013 W cm−2, ω2 = 2.1 au, andT2 = 14 cycles. The red curve corresponds to
E1(t) and the blue one toE2(t).

between the two pulses, this new direct two-color process becomes progressively the dominant
one leading to a single peak aroundE1 = E2 = 7 eV in the electron energy distribution (see the
full green curve in figure7). For long and negative time delays, without overlap between the
pulses, the system interacts first with the pulsep2. Because the interaction ofp1 with He cannot
lead to TPDI, the electron energy distribution exhibits two very small peaks atE1 = 2.7 eV and
E2 = 33 eV.

In figure8, we show the TPDI probability as a function of the duration of the pulsep2 in a
situation where the time delayD is fixed and equal to−150 au. We also fix the pulse duration
of p1 to 24 optical cycles (2.8 fs) while the duration ofp2 varies from 10 au (242 as) up to 70 au
(1.7 fs). Therefore the pulsep2 always interacts with He before the pulsep1 and there is no
overlap between the two pulses. The peak intensities of pulsesp1 and p2 are equal to 5× 1013

and 1013 W cm−2, respectively. The blue curve in figure8 hasbeen obtained when the pulsep1

is switched off. In this case, and for long pulse durationsT2, the DI process is mainly sequential
and the DI probability varies likeT2

2 . The red curve has been obtained with the two pulses.
The first pulsep2 ionizes the system while the second one (p1 in this case) ‘probes’ the initial
photoionization process. For short values ofT2 (the duration ofp2), the residual ion is left in
a linear superposition of He+ eigenstates (i.e. in an unrelaxed ion state) after the first electron
ejection. The second pulsep1 with frequencyω1 can then ionize the ‘unrelaxed’ residual ion.
This explains why the TPDI probability is much larger in the presence of the pulsep1 even if
they do not overlap. Note that a linear superposition of states can only relax in the presence of
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Figure 7. Electron energy distribution for TPDI of helium in its ground state
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14 cycles. Various time delaysD between the two pulses are considered; they are
indicated in the figure.

an external field. When the duration ofp2 becomes larger, the residual ion has time to relax into
its ground state. As a result, the pulsep1 cannot ionize the He+ from its ground state and the
only process which can occur is the TPDI process with the pulsep2. This is why the two curves
coincide for large values ofT2.

In figure 9, we present the TPDI probability as a function of the time delay between the
pulses. The peak intensities are the same as in the previous case (figure8). The pulse duration
T2 is fixed and equal to 16 optical cycles (≈1.2 fs) and the duration ofp1 takes two different
values: 24 optical cycles, i.e. 2.8 fs (red curve) and 48 optical cycles (blue curve). For large
negative values of the time delay, it is only the pulsep2 that contributes since its duration
is large enough to allow the complete relaxation of the residual ion into its ground state. Once
both pulses overlap completely, it is the sequential absorption of a photon of 1.3 au and a photon
of 2.1 au which is by far the dominant process. In the latter context the DI probability depends
on the number of He+ ions due to the absorption by He of the first photon of 1.3 aubefore
the interaction withp2. In fact this number of He+ ions is directly proportional to the intensity
profile of p1 integrated fromTi = −T1/2 up toD. This explains the quasi linear behavior of the
DI probability aroundD = 0. As a matter of fact, the dependence onD will be exactly linear in
the case of square pulses. For long positive time delaysD, when both pulses no longer overlap,
the TPDI probability becomes a constant as expected; in this case, the integration of the intensity
profile of pulsep1 is performed over its total duration. Note that if the duration of pulsep1 is
multiplied by a factor 2 (see the blue curve) the TPDI probability is also multiplied by a factor 2.
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Figure 8. TPDI probability as a function of the pulse durationT2. The red curve
is obtained when the two pulses are present. The pulse parameters are:I1 =
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The time delay between the two pulses is−150 au. The blue curve represents the
DI probability when only the pulsep2 is present.

On the basis of the above discussion we could write the TPDI probability as follows:

Pdi = αT2
2 +βT1T2, (18)

whereα andβ arequantities that depend on the time delayD. In this expression, the first term
αT2

2 is the main contribution when the time delay is lower than−T2/2− T1/2. But when|D| ≈ 0
or D > 0, it becomes negligible compared to the second termβT1T2 which is associated with the
sequential two-color process. However, because this latter process is in fact the combination of
two single ionization events, it is easy to show that the TPDI probability is actually proportional
to the energy carried by each pulse rather than to the pulse durationsT1 andT2. As a result, the
measure of this probability does not provide direct information on the duration of the shortest
pulse (p2 in the present case).

5. Conclusion

In this contribution, we have considered the TPDI of He in its ground state and have focused
our analysis on the electron dynamics on the attosecond timescale. We first treated the case
of the interaction of He with a single pulse and studied how the electron correlations affect
the electron energy and angular distributions. In the direct regime, the angular correlations
favor a back-to-back emission along the polarization axis whereas dynamical screening,
i.e. the radial correlations, leads to an equal energy sharing. In the sequential regime, the electron
energy distribution exhibits two peaks separated by the dielectronic interaction energy. When
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the energy sharing corresponds to one of the peaks, both electrons are either emitted in the same
direction or back-to-back along the polarization axis. At equal energy sharing, the back-to-back
emission dominates. In the transient regime, when the pulse duration becomes of the order of
the dielectronic interaction time, the two peaks observed in the sequential regime move towards
each other and the back-to-back emission becomes the dominant process as in the direct regime.
In the second part of this contribution, we have considered the interaction of He with two XUV
pulses of different frequency, intensity and duration. By using relatively long pulses and by
playing with the time delay between the pulses, we show that a similar dynamical effect in
the electron energy distribution, i.e. the shift of the peaks towards each other until they merge
completely, can be observed. Furthermore, in the case where one of the pulses is long with a
photon energy much lower than 2 au and the other one is ultrashort with a frequency higher than
2 au, the DI probability as a function of the ultrashort pulse duration exhibits a clear signature of
the relaxation time of He+. This is true provided that helium interacts with the ultrashort pulse
first. This provides an upper bound of the relaxation time of He+ and indirectly some information
on the duration of the shortest pulse. Finally, we studied the TPDI as a function of the time delay
between the two pulses which have the same frequency as before but a much longer duration.
Note that, in the context of extreme ultraviolet, techniques based on the outcome of the two-
photon processes in He have already been used to extract information on the duration of sub-
femtosecond pulses [23,24]. However, in the present case, the fact that the dominant (two-color)
process is sequential prevents such information being extracted, since in a real experiment it is
the energy of the pulse rather than its actual peak intensity which is measured.
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