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Abstract: 

 

The integral ∫∞
0

.).('' dfffµ  of the imaginary permeability times frequency associated to 

magnetic materials has very remarkable properties. A generalization of Snoek’s law is that 

this quantity is bounded by the square of saturation magnetization times a constant. While 

previous results have been obtained in the case of non conductive materials, this work is a 

generalization to ferromagnetic materials and ferromagnetic-based composites with 

significant skin effect. The effect of truncating the summation to finite upper frequencies is 

investigated, and estimates associated to the finite summation are given. It is established that 

in practice, the integral does not dependent of the damping model under consideration. 

Numerical experiments are performed in the exactly solvable case of ferromagnetic thin films 

with uniform magnetization. The validity of our derivations is confirmed with a good 

precision. Microwave permeability measurements on soft amorphous films are reported. The 

relation between ∫F dfffµ
0

.).(''  and sMπ4  is verified experimentally. The integral is useful to 

quantify the magnitude of the magnetization normal to the microwave measurement field. It 

provides an unprecedented “see-through” ability to investigate the orientation of the 

magnetization in materials with complex magnetization configuration. It may also be used to 

demonstrate the accuracy of microwave measurements systems. For some applications, such 

as electromagnetic compatibility or radar absorbing materials, the relations established here 

provide useful indications for the design of efficient materials, and simple figure of merits to 

compare the properties measured on different materials. 

 

I. INTRODUCTION 

 

The microwave permeability µ of magnetic materials is a quantity of interest on both 

applied and fundamental points of views. High frequency inductors,
1
 magnetic recording 

write heads, broadband skin antenna,
2
 microwave filters,

3,4
 noise suppressors

5
 and Radar 

Absorbing materials
6,7

 require high broadband permeability levels at high frequencies. 

However, it has been known since Snoek
8
 that there are tradeoffs between high permeability 

levels and high frequency operation. In a bulk polycrystalline material, Snoek’s law writes  

 ( ) sF MFµ πγ 4
3

2
1' 00 =−= . (1) 

where µ’F=0 is the low frequency permeability, F0 the resonance frequency, 4πMs the 

saturation magnetization, and OeMHz /32/ ≈= πγγ  the gyromagnetic factor. However, the 

tradeoff depends on the shape of the magnetic domains or particles.
9,10

 For soft thin films with 

uniform uniaxial in-plane anisotropy, it writes  



Crit_skin_LL18.doc p. 2 16/10/2007 

 ( ) ( )22

00 41' sF MFµ πγ=−= . (2) 

These relations are easily established from the gyromagnetic permeability of a saturated 

ellipsoid. However, they no longer hold if the magnetic material is heterogeneous, or in the 

case of composite materials. In addition, they provide no clue on the linewidth of the 

permeability.  

Recently,
10,11

 another expression of the tradeoff between permeability levels and frequency 

has been found. It can be written
12

  

 ( )2

0

4
2

.).('' sA Mkdfffµ πγπ=∫∞ , (3) 

where kA is a numerical constant that has a simple expression. For uniform soft thin films, 

kA=1. For bulk sintered ferrites, kA=1/3. For isotropic composite materials with a volume 

fraction τ of magnetic filler, 3/τ≤Ak . In any cases, 1≤Ak . 

The ratio kA is easily determined from experimental data. It can be used to quantify the 

quality of thin films for microwave applications
12

 and to guide their design.
13

 Eq. (3) has also 

been found useful as an indication for the conception of microwave absorbers.
14

 In this case 

µ’’ is a quantity of direct interest. 

For materials with a permeability that coincides with the gyromagnetic permeability of a 

saturated ellipsoid, the Snoek’s law under the discrete form (Eqs. (1), (2)) may be a more 

straightforward expression of the balance between high permeability levels and high 

frequency operation than Eq. (3).
15

 But in many cases, Snoek’s law under the discrete form 

does not apply, while Eq. (3) still holds. As a consequence it can be considered as a 

generalization of Snoek’s law. Hexagonal ferrites used in microwave applications are not soft 

materials in the sense that their in-plane magnetization can be comparable or larger than the 

saturation magnetization. So Eq. (3) does not apply to hexagonal ferrites, but a more general 

integral relation has been proposed and verified experimentally.
16

  

The purpose of this paper is to provide significant extensions for Eq. (3). It had been 

established for non-conducting materials materials. Since conducting ferromagnetic materials 

are more and more used instead of ferrites, it is important to investigate the case where skin 

effect due to finite conductivity has a significant impact on the permeability. An important 

result obtained in this paper is that the integral quantity is hardly affected by moderate skin 

effect, and slightly decreases when skin effect becomes larger. Another limitation of Eq. (3) 

was about the model used to describe the damping. It had been established assuming a Bloch-

Bloembergen damping term. This paper establishes that it also holds for a Gilbert damping 

term.  

When the integral in the left member of Eq. (3) is determined from experimental 

permeability measurements, it has to be truncated to a finite upper frequency within the 

measurement range. This paper provides estimates of upper integration frequencies that can 

be used with negligible error. It also provides simple estimates for the truncation error. These 

estimates are useful when permeability measurements are performed up to an upper frequency 

that is not significantly larger than the resonance frequency. 

The paper is organized as follows. In part II, the mathematical approach is outlined and 

general results are presented. Analytical details are given in the appendix. In part III, the 

results are formulated for different particular cases, namely thin films, multilayers, and 

composite materials. In part IV, it is checked that the approximations are relevant by 

performing numerical experiments on an exactly solvable case. In part V, our theoretical 

findings are confronted to experimental values of permeabilities measured on thin films. The 

potential applications of our findings are discussed in part VI. 

 

II. THEORETICAL APPROACH 
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The derivation of the estimates for ∫F dfffµ
0

.).('' for conducting magnetic inclusions and 

composites is outlined in this section. Detailed calculations are presented in the appendix.  

 

 A. Permeability of an ellipsoid with uniform magnetization 

 

The susceptibility tensor of an ellipsoid with a uniform magnetization is well known.
17

 

Several models have been proposed for the damping term. The Landau-Gilbert expression 

figuring the adimensional damping parameter α is one of the most popular. The expression of 

the permeability of a uniformly magnetized ellipsoid writes: 

 
( )

22

0 )(
1

ffFFjF

fjFF
µ

yx

yM

G −++
++= α

α
 (4) 

with 

 yx FFF .0 =  (5a) 

 sM MF πγ 4= ; )( intHMNF sxx += γ ; )( intHMNF syy += γ   (5b) 

 ssk MNHH −=int  ; α<<1 (5c) 

 

4πMs is the saturation magnetization of the material, and Nx, Ny, Nz are the demagnetizing 

coefficients of the ellipsoid, and Hk is the external field (or anisotropy field) that saturates the 

ellipsoid along +z. πγγ 2/=  is the gyromagnetic ratio, close to 3 MHz/Oe. F0 is called the 

resonance frequency. The orientation conventions are similar to that in ref [11], the 

permeability given by (5) being in the x direction. In the case of soft magnetic materials that 

are generally considered in microwaves, and for null or moderate external fields, the different 

contributions to the Hk field will be small compared to the saturation magnetization. The 

internal field Hint has to be positive for the magnetization to be stable in the +z direction, as a 

consequence Hint is small also. 

 

 B. Influence of skin effect on the permeability 
 

The permeability of conductive inclusions depends on its conductivity, shape and 

dimensions, and of course of the permeability of the constitutive materials. It has been derived 

by many independent works, and for many shapes. The conductivity of the inclusion can be 

written
6,18,19,20,21

 

 )(. kaAµµ G= , (6) 

where µG is the intrinsic permeability of the material, a is its characteristic size, and k is the 

wavevector inside the inclusion. The function A(ka) acts as a renormalisation quantity. It 

depends implicitly of the permeability µG and of the conductivity σ of the material. The 

expression of A(ka) for different inclusion shapes are listed on Fig. 1. Though they may 

appear dissimilar at first sight, their first order development in ka has the same form 

 
( )

p

ak
kaA

2
.

1)( +=  + higher order terms (7) 

where p is a number that depends on the inclusion shape. It is seen on Fig. 1 that p is larger 

for a sphere (p=10) than for a plate (p=3). This supports the intuitive evidence that skin effect 

is less pronounced on a sphere, where the electromagnetic field can penetrate from all sides, 

than on a plate, where the electromagnetic field can penetrate only from the top and bottom. 
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The cases for cylinders are in-between. This suggests that Eq. (7) can be extended to many 

regular shapes, and is fairly general. 

 

 C. Derivation of the integral bound 

 

The permeability µ(f) is analytical in the lower complex half plane. This is due to causality 

principle. As a consequence, the Cauchy theorem can be applied to the quantity f.µ(f): the 

circulation of this function on a closed contour in the lower half plane is zero. The integration 

contour is sketched on Fig. 2. It goes from the frequencies –F to +F on the real axis, and then 

follows a half circle F.exp(jθ), θ  ranging from 0 to π. 

 0.).(.).( =+ ∫∫
−− C

F

F

dfffµdfffµ . (8) 

The first term can be transformed using the general properties )()( fµfµ =− , where the 

bar corresponds to the conjugate. The second term can be transformed into an integral on the 

angular coordinate θ on the semicircle C
-
. One finds 

 ( )∫∫ = π θθ θ
0

2

0

.).(
2

1
.).('' dFeFeµdfffµ jj

F

. (9) 

The left side of the above equation is the quantity of interest. The right side is a quantity 

that is relatively easy to calculate provided F is large enough, but not too large. This is 

because good approximations on µ are available at high frequencies F. Detailed calculations 

are shown in the appendix. One finds 

 

 [ ]2

0

''( ). . . 1
2

F

y Mµ f f df N F t s e
π≈ − − ±∫ , (10) 

where t and s are small corrective terms, with positive sign. t corresponds to the finite 

truncation; s is related to skin effect. The term e is the error induced by the measurement 

errors and uncertainties Δµ on µ when the integration is performed. 

 ( )
F

F
NNt M

yx += 2
2 απ  (11) 

 

 
F

F
N

p

aµ
s M

y

22

04 σ=  (12) 

 

2

⎟⎟⎠
⎞⎜⎜⎝

⎛Δ≤
My F

F

N

µ
e π . (13) 

The validity of Eqs. (10) to (13) requires that the upper summation frequencies verifies the 

conditions in the first 3 lines of Table I. These are very reasonable conditions, as will be 

evidenced in sections IV and V. Table I also indicates the conditions for the corrective terms 

t, s or e to be negligible. In case they are small but not negligible, they can de determined 

from the analytical expression above. 

 

D. Generalization to magnetic materials with complex magnetization state and 

composites 

Let us consider magnetic matter made of a collection of magnetic domains, with different 

shapes. Each magnetic domain is described as a saturated ellipsoid, with possibly different 

demagnetizing coefficients and internal fields. Let us also allow some non magnetic matter. 

The permeability of this complex matter can be determined through an appropriate 
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homogenization law. In practice, the difficulty is that the homogenization law depends not 

only on the permeability of each domain, but also on the details of their geometries and 

arrangement. If only the permeabilities of the constituents are known, but not the exact 

topology, it is not possible to know precisely the permeability µeff of the homogenized 

medium, but it is nevertheless possible to know some bounds on the complex values of µeff. 

These bounds are called Hashin-Shtrikman and Milton-Bergman bounds.
22,23,24

 If the 

frequency F is large enough, the permeability of each constituent shall be rather close to 

unity, and in this case, the bounds converge to a single value of µeff that is independent on the 

geometry: 

 i

i

iieff µµµ =≈ ∑ .τ , (14) 

where τi designates the volume fraction of each domain labelled i, and  corresponds to a 

volume average. Using this result in Eq. (10), one finds: 

 ( ) ∫∑∫∑∫ == F

i

i

i

jj

i

i

i

F

eff dfffµdFeFeµdfffµ
00

2

0

.).(''.).(
2

1
.).('' τθτ π θθ . (15) 

This result is similar to eq. (20.6) in ref [25]. This is a very important result in the 

homogenization process the integral quantity averages linearly according to the volume 

fraction of the constituents. 

 

 E. Isotropic composites made of ferromagnetic loads in a dielectric matrix 

 

In an isotropic material, one third of the magnetization is along the microwave exciting 

field, and therefore has a unit permeability which does not contribute to the integral (µz=1 is 

indeed a companion Equation of Eq. (4)). The volume fraction of magnetic particles is 

noted τ, and the average of the demagnetizing coefficients of the domains along their 

magnetization is noted //N . //N  is expected to be small compared to unity, since domains 

elongated along the magnetization are pose stable in soft materials. since the magnetization 

tends to align the elongated in soft materials. The demagnetizing coefficient in the elongated 

direction of an ellipsoid is less than 1/3, and is close to zero if the aspect ratio is large. 

Therefore it will be treated as a first order correction. We obtain from Eqs. (10), (15): 

 ( ) ( )2

//

0

''( ). . 4 1
6

F

sµ f f df M N t s e
π τ γ π≈ − − − ±∫ . (16) 

 

One finds 

 ( )
F

F
t Mηαπ += 1

2
 (17) 

where xx NN .2=η  is the average of the product of the demagnetizing coefficients normal 

to the magnetization. It is comprised between 0 and ½.  

It is important to note that s does not depend on the internal fields. This suggests that for a 

multi-domain particle with half radius a and shape parameter p, Eq. (12) is still the 

appropriate expression for s, provided an averaging on Ny is performed. In practical cases, 

there may be a significant dispersion in radius a within the magnetic filler, while its 

conductivity σ remains constant. It follows 

 ( ) ( )
F

F

p

aµ
s M

22

0
1

4 ησ −= . (18) 
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The absolute error due to measurement uncertainty is bounded by 2

2
F

µΔ
, and a majoration 

of the relative error e is : 

 

2

3 ⎟⎟⎠
⎞⎜⎜⎝

⎛Δ≤
MF

Fµ
e τπ . (19) 

 

III. RESULTS 

 

The above equations associated to validity conditions summarized in the three upper lines 

of Table I are very general results. However, it is useful to write them for a few cases of 

particular interest, in order to provide ready-to-use equations.  

 

 A. Application to uniform soft thin films 

 

In the case of a uniaxial thin film magnetized along the y direction with in-plane 

orientation, the demagnetizing coefficient Ny is unity. The hard axis permeability has the 

following properties: 

 ( ) [ ]estMdfffµ s

F ±−−≈∫ 1.4
2

.).(''
2

0

πγπ
, (20) 

with 

 
F

M
t sπγαπ

42= . (21) 

 

 
( )22

0
44

.
sMµ a

s
p F

γ πσ= . (22) 

 

2

4 ⎟⎟⎠
⎞⎜⎜⎝

⎛Δ≤
sM

Fµ
e πγπ . (23) 

 

where 2a it the thickness of the film. It follows in a straightforward manner that : 

 ( )2

0

4
2

.).('' s

F

Mdfffµ πγπ≤∫ . (24) 

in the case measurements errors are neglected. This generalizes previous results
10,11

 to the 

case where significant skin effect is present, provided the summation is performed up to a 

reasonably high frequency. This demonstrates that skin effect cannot increase the factor of 

merit
12

 kA defined in Eq. (3). Since the contribution of skin effect is a first order correction, it 

suggests that some skin effect can be tolerated without significant degradation of kA. This 

confirms that kA is a good figure of merit for the microwave properties of thin films. The 

closer the value of kA to unity, the better the magnetization of the material is used to obtain 

microwave properties. An alternate quantity may be useful in order to exploit experimental 

permeability spectra for thin films.  

 ∫= F

µ dfffµFM
0

.).(''
21

)( πγ  (25) 

The quantity Mµ(F) may be described as the “efficient dynamic magnetization” 

participating to the permeability up to frequency F, for the direction of the permeability 

measurement. For a “perfect film” with kA=1, Mµ(F)=4πMs. In a more general case : 
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 s

F

µ MdfffµFM ππγ 4.).(''
21

)(
0

≤= ∫  (26) 

 

It is also possible to find an estimate of the saturation magnetization from the integral of 

the imaginary permeability 

 ⎟⎠
⎞⎜⎝

⎛ ±++=
22

1)(4
est

FMM µsπ  (27) 

 where s, t and e can be easily computed from Eqs. (21)-(23).  

 

 B. Application to soft films with magnetization dispersion and multilayers 

 

Let us consider a multilayer made of thin films with in-plane magnetization, but with 

possible non uniformities along its thickness. This non uniformity may arise from difference 

of anisotropy between the layers,
26

 from antiferromagnetic coupling,
27

 or exchange coupling, 

provided these fields are much smaller than the saturation magnetization. The non uniformity 

may also arise from unwanted phenomena
28

, or interfacial anisotropies. Let us also allow 

some non uniformity within the film plane, provided the demagnetization coefficient normal 

to the film plane remains close to unity. The angle between a reference direction in the film 

plane and the magnetization is noted φ. Then, neglecting measurement errors, the in-plane 

permeability µφ=0 along this reference direction has the following properties: 

 ( ) [ ]stMdfffµ s

F −−=∫ = 14.sin
2

.).(''
22

0

0 πγφπ
φ . (28) 

It follows that the integral of the imaginary permeability can be a very useful tool to have 

insights on the orientation of the magnetization within multilayers. 

In the case sMπ4 is uniform within the film but the orientation fluctuates, it is possible to 

get some information on the orientation from permeability measurements along the φ=0 and φ=π/2 directions: 

 ∫
∫

=

==
F

F

dfffµ

dfffµ

0

2/

0

0

2

2

.).("

.).("

cos

sin

πφ

φ

φ
φ

. (29) 

Though the permeability spectra along different directions are expected to be much 

influenced by the detailed topology of the magnetization dispersion, the ratio of integrals 

provides a robust evaluation of the angular dispersion. This quantity has already been used in 

order to assess the effect of field annealing on the orientation of the magnetization.
29

 The 

result presented here extends the validity of the method to thicker films. 

Multilayers have also been designed to provide both magnetic softness and high saturation 

magnetization, alternating materials with different saturation magnetization but with the same 

uniaxial in-plane orientation.
26

 Then 

 ( ) [ ]estMdfffµ
n

nsn

F ±−−= ∑∫ = 14
2

.).(''
2

,

0

0 πγτπ
φ . (30) 

where τn is the volume fraction of material with saturation magnetization nsM ,4π . The 

corrective terms can be easily expressed from Eqs. (11)-(13), or neglected in the case the 

summation is performed up to sufficiently high frequency. 
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C. Application to isotropic composite made of a magnetic load in a dielectric matrix 

Microwave composites made of magnetic spherical powder dispersed in a dielectric matrix 

are widely used as microwave materials
30,31,32

 and magnetic absorber.
6,7,14

 In most cases, the 

radius of the particles is significant compared to skin depth. Eq. (16) establishes that  

 ( )2

0

4
6

.).('' s

F

Mdfffµ πγτπ≤∫ . (31) 

This result had already been obtained theoretically for composites made of insulating 

materials such as ferrite powders, and checked experimentally.
11

 Present work further 

establishes that this result is remains largely unaffected by finite frequency summation, and 

by skin effect.  

Eq. (18) (using p=10 for a sphere) provides useful guidelines to choose appropriate 

granulometry <a
2
> of the particles in order to obtain small or negligible loss of dynamic 

permeability in the range of interest. The quantity 

 ( ) ⎥⎦
⎤⎢⎣

⎡= ∫ 2

0

3, 4
6

/.).('' s

F

DA Mdfffµk πγτπ
 (32) 

is an adimentional figure of merit for isotropic composites. The closer to unity, the better is 

the material. Alternatively, it may be preferred to use  

 ∫= F

Dµ dfffµFM
0

3, .).(''
.

61
)( τπγ . (33) 

The quantity Mµ,3D(F) is expressed in Oe. It may be described as the “efficient dynamic 

magnetization” participating to the permeability up to F.  

It is also possible to find an estimate of the saturation magnetization from the integral of 

the imaginary permeability 

 ⎟⎠
⎞⎜⎝

⎛ ±+++=
22

1)(4 //
3,

estN
FMM Dµsπ  (34) 

 

IV. NUMERICAL VALIDATION 

 

The aim of this numerical validation is to provide good confidence that the estimates of the 

corrective terms  -t, –s, are correct. It should also confirm that the terms +S’ and +g that in 

Eq. (A17) can be neglected. It will be performed on conducting thin magnetic films with 

uniform in-plane magnetization. This case is numerically simple, and also quite representative 

of typical measurements on soft ferromagnetic films. The numerical experiments will be 

carried with a precision that can not be attained in real experiments.  

The thin film is described by the following parameters: 4πMs=10 kG, Hk=16 Oe, γ =3 GHz/kOe, α=2%, ρ=130 µOhm.cm, Ny=1. These are common values for thin soft 

ferromagnetic films. The resonance frequency is F0=1.2 GHz. The calculated imaginary 

permeability spectrum is presented on Fig. 3 for thicknesses 2a ranging from 0.1 µm up to 

2 µm. For the smallest thickness, µ’’ is not affected by skin effect, but at 1 and 2 µm, µ’’ is 

strongly affected by skin effect. 

Table II provides relevant lower and upper frequency bounds on the upper integration 

frequency in the case of the 2 µm thick film. It appears that F=6 GHz is in the adequate range. 

The values of ∫F dfffµ
0

.).(''  obtained both numerically and analytically are displayed. The 

corrective terms are evaluated, both numerically and analytically. It appears that the 

corrections g and s’ are extremely small. They will be neglected in the following. The effect 
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of the truncation –t is to underestimate the integral by about 6%, and our analytical estimate 

agrees with the numerical determination.  The skin effect correction -s is -19% according to 

our analytical estimates, which is close to the -23% determined in our numerical experiment. 

In conclusion, the value of the integral predicted using our model is less than 5% away from 

the experimental value, which comforts our approach. 

Another convenient representation associated to the integral of the imaginary permeability 

is the “Efficient dynamic magnetization” Mµ(F) defined by Eq. (25). This quantity is 

represented on Fig. 4. Numerical results are obtained by numerical integration of the 

permeability calculated using Eq. (4). Analytical results are obtained from the saturation 

magnetization using Eq. (27) and the values of s, t and e computed from Eqs. (21)-(23). 

Analytical and numerical results are in excellent agreement, which validates our results. For 

the 0.1 µm thick layer, skin effect is negligible, and the graph illustrates that truncation effects 

decrease when F is increased. However, the adverse effect of summing to high frequencies is 

evidenced by the error bars that increase with frequency. On most permeability measurement 

systems for thin films, errors decrease when the thickness of the material increases, because 

there is more magnetic material in the cell. To account for that effect, the typical error Δµ has 

been decreased from 10 to 2 when the thickness increases from 2a=0.1 µm to 2a =1 µm, and 

then further to Δµ=1 when 2a =2 µm. On the thicker films, it is remarkable to see that the 

integral provides the value of the saturation magnetization within 10% if F>3.5 GHz for the 

1 µm thick film, and if F>8 GHz for the 2 µm thick film. Behind the profound changes on the 

magnetic losses due to skin effect that are evidenced on fig. 3, it appears that the integral 

quantity ∫ dfffµ .).(''  is nearly an invariant.  

 

V. EXPERIMENTAL VALIDATION 

 

We have sputter-deposited amorphous CoZr thin films onto continuously transported 

12 µm polyethylene teraphtalate substrate. The base pressure inside the chamber before 

deposition was better than 1.10
-6

 mbar. During the process, the Ar pressure was fixed at 

5.0
-3 

mbar. The residual magnetron field induces a uniaxial anisotropy parallel to the 

transportation direction. Four samples with various thicknesses, 0.3, 1.3, 1.7 and 2.1 µm, were 

fabricated. The layer thickness was tuned reducing the chilled roll speed and keeping the DC 

generator power constant. The saturation magnetization 4πMs has been measured using a 

Vibrating Sample Magnetometer, and was found to be 11.3 kG ± 0.5 kG. The permeability 

has been measured using a thin film permeameter described elsewhere.
33

 The typical error Δµ 

has been estimated around 20 for the thinnest film, and to 2 for the thicker ones. 

The imaginary permeability measured on the 4 films is represented on Fig. 5. The thinnest 

film has a highly resonant permeability, and exhibits a secondary peak at higher frequency. 

This peak could be attributed to some inhomogeneity and the excitation of a higher frequency 

mode.
28

 The thicker film exhibits a permeability with a very damped behaviour, and 

imaginary permeability levels down by a factor up to 4. The “Efficient dynamic 

magnetization” ∫= F

µ dfffµFM
0

.).(''
21

)( πγ  associated to these measurements is represented 

on Fig. 6. As expected, this quantity is close to the saturation magnetization at high frequency. 

A better estimates of the saturation magnetization can be obtained using Eq. (27) with the 

corrections s and t computed from Eqs (21)-(22). These refined estimates are also shown on 

the graph, with their associated error bars. It can be seen that all the ranges of the estimates 

are comprised within the experimental error of the measured 4πMs. Larger measurement 
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uncertainty for the thin film permeability evidenced on Fig. 5 is responsible for a larger 

uncertainty on the integral quantity. It proves that the integral relation on thicker films may be 

very useful to obtain more precise experimental data. It is remarkable that despite the strong 

difference in the 4 spectra presented on Fig. 5, all the estimates derived using Eq. (27) 

coincides within the experimental errors.  

  

VI. DISCUSSION 

 

The fact that the integral depends on much fewer magnetic parameters than µ’’ is 

appealing for the study of unsaturated materials. In particular, it allows the retrieval of 

information in composites and multilayer materials.  

In the case of multilayers, Eq. (28) shows that the integral provides indication on the 

distribution of magnetization within the sample thickness. The microwave field is indeed a 

probe of the magnetization normal to it, and the integral ∫F dfffµ
0

.).('' is an appropriate 

measure to quantify it. The corrections associated to integration up to finite frequencies are 

easily determined.  

One may wonder whether it would not be easier first to determine the intrinsic 

permeability from measured permeabilities with skin effect, and after to determine the integral 

of the imaginary intrinsic permeability. Though this procedure is possible, it should be 

underlined that in the case the magnetic particles are made of different layers and/or domains 

with different permeabilities, this procedure is no longer valid. In contrast, the estimate of s 

for the skin effect correction on the integral is independent on the detailed magnetic 

parameters.  It depends only of the a
2σ product for the particle, and as a consequence it is a 

much more robust parameter. In the case of composites made of ferromagnetic powders, there 

is often a significant distribution in size of the particles. As a consequence the intrinsic 

permeability determined by the inversion of Eq. (1) taking an averaged value of a may have a 

limited validity, while the integral quantities can be exploited. In this case the averaged value 

of the corrective term s is directly related to < a
2
>, as expressed by Eq. (18). 

The relation s

F

Mdfffµ πγπ 4.).(''
2

0

≈∫  may be useful to assess or to demonstrate the 

measurement precision of thin film permeamaters. In most cases, the uncertainty on the right 

member is essentially due to the gyromagnetic ratioγ , which is generally considered to be 

comprised between 2.8 and 3 GHz/kOe, and to some extent to the measurement precision of 

the saturation magnetization.  

In some applications, f.µ’’(f) is a quantity of direct interest. This is the case when magnetic 

losses are wanted for microwave attenuation, either for microwave filtering, electromagnetic 

compatibility or for Radar Absorbing Materials. The first order approximation of the 

reflection or transmission losses are in f.µ’’(f). It has been shown that in the thin absorber 

limit, the performance of magnetic absorber is bounded by the integral.
11

 As a consequence, it 

is an important result that moderate skin effect keeps the integral losses unaffected, though 

their frequency distribution is much affected. For a somewhat larger skin effect, the correction 

factor –s may become significant. This leads to a decrease of the integrated losses.  

 

VII. CONCLUSION 
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The integral ∫F dfffµ
0

.).(''  is closely related to the saturation magnetization and the 

distribution of magnetization in soft magnetic materials and composites. While some 

properties of this quantity integrated up to infinite frequencies had already been outlined, this 

work provides practical results to deal with summation performed up to finite frequencies. It 

also extends previous results to the case where skin effect significantly alters the microwave 

response frequency. It may be viewed as a generalization of Snoek’s law, since it expresses 

the tradeoffs between high permeability levels and high operation frequency. 

The relations proposed in this work are useful guidelines for the conception of microwave 

materials. The integral quantity can be easily determined experimentally on many materials. 

Simple figure of merits deduced from this integral may be used to compare microwave 

materials.  

It has been shown that this integral could also provide very straightforward information 

concerning the orientation and magnitude of the magnetization in thin films and multilayers. 

The microwave field acts as a “see through” probe of the magnetization transverse to the 

excitation. The integral on the imaginary permeability turn it into quantitative information. 

 

VIII. APPENDIX 

 

The dependence of the fields with time is assumed to be exp(+jωt), which is consistent 

with permeabilities that take the form µ’-jµ’’, µ’’>0. According to Eq. (9), a central issue is to 

estimate the quantity  

 ( )∫π θθ θ
0

2
.).(

2

1
dFeFeµ jj   

for a frequency F much larger than the resonance frequency F0. It is convenient to 

introduce the reduced frequency 

 
0F

Fe jθν =  (A1) 

Then 

 ( ) ∫∫ = ππ θθ θνπχ
νπχθ

0

2

0

2

00

0

2
..

4

)(
4

2

1
.).(

2

1
d

µ
FdFeFeµ jj  (A2) 

 

It is convenient to express the permeability given by Eq. (4) as a function of the reduced 

frequency ν: 

 ( )νανβν
πχ

'1
.21

4
1

2

0 j
j

µG ++−+= , (A3) 

where ν=f/F0 is a normalised frequency, 4πχ0 is the initial susceptibility,  

 
2

0

0

.
4

F

FF

F

F yM

x

M ==πχ ; (A4a) 

 
0

2
F

FF yx += αβ  ; 
yF

F0' αα = . (A4b) 

 

This holds provided the internal fields are small 

 sk MHH π4, int <<  (A4c) 

 



Crit_skin_LL18.doc p. 12 16/10/2007 

It should be noted that when the Bloch-Blombergen damping term is used instead of the 

Gilbert damping term, the expression of the permeability has the same form as Eq. (A3), with α’=0 and β=1/T, where T is the characteristic damping time. The development in 1/ν of the 

susceptibility writes : 

 

 ( )νανν
β

νπχ
νπχ

'1
12

1
1

4

)(4
1

22

0

j
jG +⎥⎦

⎤⎢⎣
⎡ −−−= −

  

 ⎟⎠
⎞⎜⎝

⎛ ++−≈ ν
βναν

'2
'1

1
2

j
j  (A5) 

with 

 
0

2
'2

F

FF yx += αβ . (A6) 

The terms in α’.β have been neglected in the above expression because the damping 

parameter is small and terms in α2
 are negligible. 

It is then necessary to obtain an appropriate development of the factor A(ka) that accounts 

for the skin effect. The wavevector inside the ferromagnetic inclusion writes : 

 cµk /. ωε= , (A7) 

where ω=2πf is the pulsation corresponding to the frequency f, c the celerity of light, and ε 

the permittivity of the inclusion  

 
0.εω
σε j−= , (A8) 

where ε0 is the dielectric constant of void and σ the conductivity. When skin effect is 

present but not overwhelming, it is possible to use the low order development of A(ka) 

according to Eq. (7). In the case the upper integration frequency F is significantly larger than 

the gyromagnetic resonance frequency but not too large so that 

 σπ 2

0

0
2

1

aµ
FF <<<< , (A9) 

then 

 

 ( ))(41..1)( νπχνν BjbA +−≈ , (A10) 

 

with  

 
p

aFµ
b

σπ 2

002= . (A11) 

The set of assumption on 0/ FF=ν  writes  

 )./(11 pb<<<< ν , (A12) 

The permeability in the presence of skin effect can be written 

 

 [ ] ννπχνννπχν .)(4...21).(41)( jbjbjbµ B −−−+≈ . (A13) 

 

Taking into account that the damping parameter b is much less than unity, and keeping 

only the most significant terms leads to 
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νναν
βνν

πχβν
πχν .'

'
22

4
'41.

4
1)( 0

2

0 jbjjjbbµ −⎥⎦
⎤⎢⎣

⎡ ++⎟⎠
⎞⎜⎝

⎛ −++−≈ . (A14) 

The integration of µ(ν).ν on the semi-circle C
-
 can be expressed as the linear combination 

of integrals of νn
 with different powers n. These integrals are easily calculated using: 

 ∫∫ =
−

π θ θνθν
0

.
2

1
.

2

1
ded jnn

C

n . (A15) 

One finds 

( ) 2

00

0

0

0
0

0

.
2

3
'

2'4
24

2
1..

2
.).('' F

F

bF

F

F

F

F

F

F

F

F
bFFdfffµ yM

F

⎟⎟⎠
⎞⎜⎜⎝

⎛+⎥⎦
⎤⎢⎣

⎡ +−⎟⎟⎠
⎞⎜⎜⎝

⎛ +−≈∫ αππ
βπχπ

π
. (A16) 

Eq. (12) can be written under the following form 

 ( ) [ ] '1.4
2

.).(''
2

0

SgtsMNdfffµ sy

F ++−−≈∫ πγπ
, (A17) 

where s, S’, t and g are small corrective terms, with positive sign. s and S’ are related to 

skin effect; t corresponds to the finite truncation; g corresponds to a small contribution that 

occurs in the case the Gilbert damping term is considered, but that is zero in the case the 

Bloch-Bloembergen damping model is considered. Each of these terms will  be discussed in 

the following sections. 

 

 A. Gilbert damping correction 

Previous work
11

 had been conducted assuming a Bloch-Bloembergen damping. In the case 

the damping is described according to the Landau-Gilbert model, the integral up to infinite 

frequency diverges. The corrective terms in Eq. (13) writes: 

 
Myy FN

F

F

F

F

F
g απαπαπ

22
'

2

0

=== . (A18) 

The case where Ny is null or small is of no interest, since the dominant factor in the 

expression of the integral is proportional to Ny. As the upper integration bound F is expected 

to be lower than FM, and because α is small (a few percents down to a fraction of percent are 

generally observed values), g<<1. This establishes that in practical case, the theoretical results 

obtained on ∫F dfffµ
0

.).(''  are independent on the damping term under consideration. 

 

 B. Skin effect correction 

Let us examine in more detail the corrective terms associated to skin effect in Eq. 13. The 

term S’ is independent of the magnetization of the sample.  

 2

0

.
2

3
' F

F

bF
S ⎟⎟⎠

⎞⎜⎜⎝
⎛= . (A19) 

It corresponds to the well-known fact that conductive particles may exhibit non unit 

permeability because of eddy currents. Though the integral of the imaginary permeability 

times frequency diverges at infinity, it should be noted that if the integral is performed only 

up to a frequency F that is not too large, according to Eq. (A9), then S’<<F
2
. In the case of 

ferromagnetic materials, it is convenient to express S’ as a perturbation of the main term in 

Eq. (A17): 

 '.
2

' 2 sFNS My

π= . (A20) 

The expression for s’ is: 
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2
2 3

0

2

0

63
' . .

y M M

µ abF F F
s

N F F p F

σ
π

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ . (A21) 

 

s’ is negligible provided (A19) is met and F<<FM. Let us now examine the s corrective 

term in 13, 

 
F

F
N

p

aµ

F

F

F

F
bs M

y

22

0

0

0
0

4
24

2 σπχπ ≈⎟⎟⎠
⎞⎜⎜⎝

⎛ += . (A22) 

It is straightforward that s is positive. It means that skin effect tends to decrease the value 

of the integral.  

 

 C. Finite frequency summation correction 

Stopping the integration to some finite upper frequency affects the value of the integral, 

even if no skin effect is present. The t term in Eq. (A17) accounts for this truncation effect. It 

writes: 

 ( )
F

F
NN

F

F
t M

yx +≈= 2
2'4 0 αππ

β
. (A23) 

This correction factor is much less than unity provided 

 ( )sM MFF πγαα 4=>> . (A24) 

Even for a very large saturation magnetization material such as CoFe with 4πMs=24k Oe,  

for a typical value  of α=2%, Eq. (A24) requires that the upper integration frequency is such 

that F>>1.4 GHz, which is an easily met condition. 

 

 D. Effect of experimental measurements errors 

When using the integral is computed from experimental permeability data, the error on the 

sum increases when the upper integration bound is extended. An error term has to be added to 

the right member of Eq. (A17). In order to be able to compare directly the error ±e to the other 

terms –s and –t, it is convenient to write this additional term as 

 eFN My .
2

2π
.  

It is straightforward to show that 

 

2

⎟⎟⎠
⎞⎜⎜⎝

⎛Δ≤
My F

F

N

µ
e π , (A25) 

where Δµ is the maximum error on the measured permeability. The relative error is small 

provided 

 ( ) µMF s Δ<< /4πγ . (A26) 
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Figure Caption 

 

 
 

FIG. 1. Various inclusions shapes, with the associated functions A(ka) used for the 

renormalization of the permeability in the presence of skin effect; k is the wavevector inside 

of the inclusion, and a is its radius (or half thickness in the case of a plate). The expression of 

the 2
nd

 order approximation of A(ka) is also given.  
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FIG. 2. Sketch of a closed integration contour in the complex frequency plane. 

 

 

 

 
 

FIG. 3 Imaginary permeability µ’’ computed for films with thickness 2a ranging from 

0.1 µm to 2 µm, using Landau-Gilbert model and taking into account skin effect. 
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FIG 4. Efficient dynamic magnetization ∫= F

µ dfffµFM
0

.).(''
21

)( πγ as a function of the 

upper integration frequency for the calculated permeabilities represented on Fig. 3, obtained 

either by numerical integration (symbols), or from the analytical estimates (lines). The error 

bars that would arise from typical measurements errors on the permeability are also 

represented. The dashed line is the saturation magnetization. 
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FIG. 5. Imaginary permeability µ’’ measured on CoZr amorphous thin films with different 

thicknesses. 
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FIG. 6. Efficient dynamic magnetization ∫= F

µ dfffµFM
0

.).(''
21

)( πγ as a function of the 

upper integration frequency associated to the measured permeabilities represented on Fig. 5, 

and comparison with the value of the saturation magnetization (dashed line with error bars). 

Values of the saturation magnetization extrapolated from Mµ(F) using the analytical estimates 

are also represented, with appropriate error bars. 
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Table Caption 

 

 

Lower bound Upper bound Eq. Comment 

F0<<F 

 

 

12

0 )2( −<< σπ aµF  

 

 

(A9) 

 

(A4c)

Required for the validity of the whole 

approach 

sk MHH π4, int << also required  

 F <<FM/ α. (A18) Effect of gilbert damping +g is small 

 F <<FM (A21) Skin effect term s’ is small 

FpFaµ M <</4 22

0 σ   (A22) Skin effect term -s is small 

α.FM<<F  (A24) Effect of truncation -t is small 

 µFF M Δ<< /  (A25) Impact ±e of experimental errors  is small 

Table I. Guidelines for choosing the upper integration frequency F on ∫F dfffµ
0

.).('' , as a 

function of the gyromagnetic resonance frequency F0, sM MF πγ 4= , and other parameters. 

 

 

 

 

Lower bound Upper bound Parameter Eq. Analytical 

Value 

Numerical 

value 

F0=1.2 GHz 
2 1

0(2 ) 165 GHzµ aπ σ − =
 

∫F dfffµ
0

.).(''  1.05 10
3
 GHz

2
 0.99 10

3
 GHz

2
 

 FM/ α.=1500 GHz +g (A18) 0.3% 0.4% 

 FM=30 GHz +s’ (A21) 0.05% <<0.1% 

2 2

04
1.2 GHzMµ a F

p

σ =   -s (22) -19% -23% 

α.FM=0.6 GHz  -t (21) -6.4% -6.5% 

 / 30 GHzMF µΔ =  ±e (23) ±1.3%  

 

Table II. Numerical estimation of the lower and upper frequency bounds for F associated to 

Table I in the case of a 2µm thick film; for F=6 GHz, values of the different corrective terms 

accounting for the relative difference between 
0

''( ). .

F

µ f f df∫  and ( )2
4

2
sMπγπ

 obtained both 

analytically and numerically.  
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