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Protein point mutations are an essential component of the evolutionary and experimental analysis of protein structure
and function. While many manually curated databases attempt to index point mutations, most experimentally
generated point mutations and the biological impacts of the changes are described in the peer-reviewed published
literature. We describe an application, Mutation GraB (Graph Bigram), that identifies, extracts, and verifies point
mutations from biomedical literature. The principal problem of point mutation extraction is to link the point mutation
with its associated protein and organism of origin. Our algorithm uses a graph-based bigram traversal to identify these
relevant associations and exploits the Swiss-Prot protein database to verify this information. The graph bigram
method is different from other models for point mutation extraction in that it incorporates frequency and positional
data of all terms in an article to drive the point mutation–protein association. Our method was tested on 589 articles
describing point mutations from the G protein–coupled receptor (GPCR), tyrosine kinase, and ion channel protein
families. We evaluated our graph bigram metric against a word-proximity metric for term association on datasets of
full-text literature in these three different protein families. Our testing shows that the graph bigram metric achieves a
higher F-measure for the GPCRs (0.79 versus 0.76), protein tyrosine kinases (0.72 versus 0.69), and ion channel
transporters (0.76 versus 0.74). Importantly, in situations where more than one protein can be assigned to a point
mutation and disambiguation is required, the graph bigram metric achieves a precision of 0.84 compared with the
word distance metric precision of 0.73. We believe the graph bigram search metric to be a significant improvement
over previous search metrics for point mutation extraction and to be applicable to text-mining application requiring
the association of words.
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Introduction

With the advent of ultra high–throughput screening and
high-density array technology, the biological community has
come to appreciate the value of unbiased surveys of complex
biological systems. Bioinformatics tools have become an
integral part of the analysis of these extensive datasets. When
complex data is collected centrally, the analysis can be
straightforward. When data is collected in a distributed
fashion, investigators must agree on a centralized data-
deposition strategy or we must develop tools to interrogate
the published literature and extract relevant information.
Manually curated online databases have developed to meet
this need, but they are difficult to maintain and scale.
Accordingly, the biological text-mining field has evolved to
identify and extract information from the literature for
database storage and access. Two types of tasks predominate
in biological text mining: the extraction of gene and protein
names [1–4] and the extraction of interactions between
proteins [5–7]. The BioCreAtIvE challenge was [8] focused on
name extraction [9] with the additional task of functional
annotation [10]. Other text-mining applications focus on
hypothesis generation [11], probing protein subcellular
localization [12], and pathway discovery [13].

Recent work has also focused on the extraction of protein
point mutations from biomedical literature [14–18]. Protein
point mutations, the substitution of a wild-type amino acid

with an alternate one, can be important to our understanding
of protein function, evolutionary relationships, and genetic
disorders. From a functional perspective, researchers intro-
duce point mutations into proteins to assay the importance
of a particular residue to protein function. Evolution relies
upon mutations or polymorphisms in DNA, a mechanism for
creating diversity in protein sequences. While the term
‘‘mutation’’ is used to imply deleterious changes, and ‘‘poly-
morphism’’ means a difference within species, for text-
mining purposes we refer to a ‘‘point mutation’’ as a
substitution of a different amino acid for the reference
amino acid. dbSNP [19] and the Human Gene Mutation
Database [20] are two of many databases that catalog point
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mutations and their downstream effects. These databases are
manually curated, which limits the speed of input into the
database and the breadth of information represented, but
does aid in the incorporation of complex information that is
difficult for text-mining tools to parse.

The task of point mutation extraction can be decomposed
into two subtasks. First, it is necessary to identify the protein
and mutation terms discussed within an article. After these
entities are identified, an association must be made between
the point mutation and its correct protein of origin. This
problem is trivial when a paper discusses a single protein but
increasingly complex when multiple proteins are present. In
our evaluation of Mutation Graph Bigram (Mutation GraB),
we downloaded 589 full-text PDF articles related to the
GPCR, tyrosine kinase, and ion channel protein families from
PubMed-provided links. Using our dictionary-based protein
term identification method, we counted 350 articles out of
the total 589 that contained a point mutation that could have
belonged to multiple proteins. A few methods for point
mutation extraction have been developed. Rebholz-Schuh-
mann et al. [14] describe a method called MEMA that scans
Medline abstracts for mutations. Baker and Witte [16–18]
describe a method called Mutation Miner that integrates
point mutation extraction into a protein structure visual-
ization application. Our own group has presented MuteXt
[15], a point mutation extraction method applied to G
protein–coupled receptor (GPCR) and nuclear hormone
receptor literature. MEMA and MuteXt use a straightforward
dictionary search to identify protein/gene names and a word
proximity distance measurement to disambiguate between
multiple protein terms. Both methods, while providing a
simple and successful method for point mutation extraction,
were limited in two areas. First, the word distance measure-
ment is not always correct in disambiguating between protein
terms. Second, MEMA was evaluated on a set of abstracts,
which are intrinsically more limited than the full-text article.
In our literature set, the abstracts contained only 15% of the
point mutations found in the full text. The point mutations
were also validated against OMIM [21], which only contains

disease-related point mutations. MuteXt was trained and
evaluated on GPCR and intranuclear hormone receptor
literature and contained customizations in the algorithm
for dealing with problematic protein naming and amino acid
numbering cases.
Mutation Miner approaches the problem differently. This

method identifies and relates proteins, organisms, and point
mutations using NLP analysis at a sentence level. An entity
pair is assigned if both entities match noun phrase patterns.
This method would work well if all point mutations were
described in conjunction with associated proteins and
organisms at the sentence level, which we have observed is
not always the case. Mutation Miner also incorporates protein
sequence information, but for use in annotating protein 3-D
structures with mutation information instead of point
mutation validation. Our method improves on MEMA,
MuteXt, and Mutation Miner by using a novel graph bigram
metric that incorporates frequency and location of terms to
disambiguate between proteins and searches full-text infor-
mation. Like MuteXt, Mutation GraB utilizes the Swiss-Prot
protein database [22] for sequence validation, which intrinsi-
cally contains more sequence variation than OMIM. We
addressed the utility of our application by standardizing the
algorithm for all protein families and by evaluating our
method on three different protein family literature sets
covering 589 articles. More detailed comparisons with MEMA
and Mutation Miner are described in the Discussion section.

Protein Term Identification
For our task of associating point mutations to protein

terms, it is not sufficient to minimally tag a protein name in
the literature; we must also find its correct gene identifier in a
corresponding database. The BioCreAtIvE challenge ad-
dressed this problem with the 1B subtask of identifying a
protein/gene mentioned in the text and annotating it with its
correct gene identifier. Solutions for this challenge ranged
from rule-based methods [23] to machine-learning ap-
proaches [24] to a combination of both. Unfortunately, some
of these methods may not be applicable to our point
mutation extraction task. The participants in the BioCreA-
tIve challenge were provided a large set of annotated
sentences categorized under three different organisms;
human, yeast, and fly. Some solutions for the subtask 1B
consisted of learning the training data for each organism,
then applying the learned functions to a test set also divided
by organism. This approach is suboptimal for our task for two
reasons. First, because point mutations are frequently
analyzed at a protein family and superfamily level, methods
trained on protein names from organism-specific lexicons
would not be well-suited for analysis across many species.
Second, our goal is to create a broadly applicable method-
ology for point mutation extraction that can be utilized on
any categorization of proteins (i.e., family, class, fold, etc.).
Machine-learning approaches benefit from large detailed
annotated training sets. In our experience, the manual labor
involved in annotating the amount of text necessary to learn
protein family–specific nomenclature on the scale presented
by BioCreAtIve is likely to undermine the benefits of
automated point mutation extraction.
Methods relying solely on rule-based features for protein-

name identification generally perform at a lower precision
and recall than methods incorporating machine learning.

PLoS Computational Biology | www.ploscompbiol.org February 2007 | Volume 3 | Issue 2 | e160185

Author Summary

In biological research, new information is often presented in the
form of peer-reviewed published journal articles. Despite the best
efforts of electronic database curators, a majority of this information
is still found only in textual form, and thus excluded from direct
computational analysis. One such type of information that is
abundant in scientific literature is protein point mutations. We seek
to extract protein point mutation examples from the literature and
to associate them with a unique protein name and species of origin
in a standardized protein database. To do this, we have created an
application that searches for and retrieves full-text articles from
publishers, identifies point mutation terms, protein name terms, and
organism name terms within the articles. We describe Mutation
GraB, an application that utilizes a graph shortest-distance search in
concert with word bigram analysis that is used to find significant
associations between these terms in the text. This graph bigram
search metric was found to be reasonably effective at identifying
correct protein point mutation pairs and represents a good
compromise between accuracy and broad applicability. The
application can be applied to a large set of journal literature from
a protein family to generate a database of point mutations.

Text-Mining Mutations Using Graph Association



However, since rule-based methods do not necessarily require
annotated training data, they are advantageous when such
data is unavailable or difficult to acquire. Our approach to
protein term identification is similar to other rule-based
approaches [2,23,25]. We first create a dictionary using the
names and synonyms of proteins in a protein family; the
protein names are retrieved from their respective Swiss-Prot
and Entrezgene entries. The terms in the dictionary are then
searched for in the journal literature. Depending on the
character length and composition of these terms, we search
by different regular expressions with varying levels of
specificity. A further description of this is detailed in the
Methods section.

Point Mutation Identification
Point mutations are represented in a variety of ways in the

literature, but all consist of three distinct parts: a wild-type
amino acid, a sequence position, and a mutant amino acid. A
typical representation of a point mutation is A123T, denoting
a change from alanine to threonine at position 123 of a
protein using the single letter abbreviation for the amino
acids. Variations on this shorthand form include A123 ! T,
A(123)T, and A-123-T, and the three-letter amino acid
abbreviations Ala123Thr, Ala123 ! Thr, Ala(123)Thr, and
Ala-123-Thr. Aside from those frequent representations,
point mutations are also represented grammatically such as
‘‘position 123 was mutated from an alanine to a threonine’’ or
‘‘positions 100–110 were mutated to proline.’’ In our
literature sets, however, ,1% of all true positive point
mutations were grammatical, so we chose to focus on the
single-letter and three-letter abbreviation variants of point
mutations instead.

Point Mutation–Protein Association
The task of associating point mutations to proteins is

unique and has no true corollaries from other text-mining
applications. Protein–protein interactions are explicit binary
relationships that usually occur locally within a sentence or
two. A point mutation usually has a one-to-one relationship
with a protein; however, this relationship is often implicit
over the length of the whole text. For example, a journal
article may present a protein term in the abstract and the
introduction sections while describing point mutations to
that protein in the methods and discussion sections. It is
implied that the point mutations discussed in the latter
sections refer to the protein term in the former sections.
When more than one protein is discussed in the text, a
method is required to choose the correct protein or species.

Previous methods have used a simple and effective word
distance metric for protein term disambiguation; a point
mutation is assigned to its nearest occurring protein term.
Our graph bigram method improves on this approach by
accounting for all occurrences of the point mutation and
protein terms throughout the length of the text instead of
measuring one local relationship. This method uses the t test
to measure the significance of bigrams in the text, then
employs a graph shortest-distance search to traverse signifi-
cant bigrams to associate a point mutation with its correct
protein term. An example of a graph generated from an ion
channel transporter article (PMID 11553787) is shown in
Figure 1. While this graph is too complex to provide any
algorithmic examples, we can see that nodes found closer to

the center grouping in the graph are involved in more
bigrams than the peripheral nodes. In general, paths that
traverse the central grouping of nodes will be shorter and
more significant than paths taken around peripheral nodes.

Mutation GraB Approach
Our approach to point mutation extraction consists of the

following steps. 1) Target a protein family of interest and
retrieve full-text articles discussing point mutations within
the protein family. 2) Identify protein and organism terms
within the articles using a dictionary generated from protein
databases (creating an implicit link between the protein term
and database identifier). 3) Identify point mutation terms
using a set of regular expressions. 4) For each point mutation,
generate a set of possible associated proteins by comparing
the wild-type amino acid with that contained in the protein
sequence. If this set contains several possible proteins, use the
graph bigram method to disambiguate and to find the correct
association.
The process flow of Mutation GraB is shown in Figure 2. In

our execution and evaluation of Mutation GraB, we wanted to
focus on three different aspects of point mutation extraction.
First, we wanted to gauge the feasibility of systematically
extracting point mutations from the literature in a fully
automated fashion. Our initial testing and previous methods
showed that automated point mutation extraction is a wholly
viable endeavor, with the main challenges of identifying
protein terms and associating them to the proper point
mutation. Second, and most important, we wanted to assess
different search methodologies available to extract point
mutations and to devise a superior search metric for
extraction. We hypothesize that a search metric that
integrates the relative position of the words and frequency
data into its heuristic will outperform a metric that solely
relies on positional information. Last, we wanted to create an
application that could be used extensively on all protein
family literature to create a database of point mutations.
Therein, Mutation GraB is a self-contained application where
most, if not all, the information used is gathered from
database sources and not expert-user opinion.

Results

We evaluated the effectiveness of Mutation GraB by using it
to extract point mutations from literature describing three
different protein families: tyrosine protein kinases, GPCRs,
and transmembrane ion channels. Since most studies of
protein structure and function focus at the protein family
level, and different protein families have specific and differ-
entiating nomenclatures, this approach is representative of
real-life usage and tests the flexibility of Mutation GraB for
distinct protein families. Each of the protein family literature
sets were split into two groups, a ‘‘development’’ set and a
‘‘validation’’ set of articles. We selected the articles for each
set randomly from the all the articles downloaded for each
protein family. The development set was used to optimize
Mutation GraB performance, while the validation set was
used to confirm the performance on the development set.
The number of articles in each protein family literature set
and the number of true positive mutations manually
identified is listed in Table 1, and the Swiss-Prot entry,
protein name dictionary, and organism dictionary sizes are
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Figure 1. An Energy-Minimized Graph Generated from the Full-Text Article PMID 11553787

The blue ellipses represent protein term nodes, green ellipses represent point mutation nodes, and orange ellipses represent organism nodes. The gray
triangles represent regular words. The connecting edges show terms or words represented by the nodes that are present as a bigram in the text. For
this article, a total of 1,052 terms are contained in 2,287 bigrams.
doi:10.1371/journal.pcbi.0030016.g001
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listed in Table 2. Throughout our efforts, these datasets were
kept entirely distinct so that the validation set represents a
true measure of the generality of the algorithm optimized on
the development set. Within each protein family literature
set, we ran Mutation GraB twice, once using the graph bigram
association metric and the second time using the word
distance metric. Performance for each search metric can be
compared within each protein family literature set.

Evaluation Methods
Mutation GraB was scored against manually annotated

‘‘gold standard’’ sets for each protein family (Datasets S1–S6).
Point mutations that Mutation GraB and manual curation
assigned to the same protein are considered true positive (TP)
classifications. Point mutations that Mutation GraB assigned
to a protein but were manually classified discordantly are
counted as false positive (FP) mutations. In addition, point
mutations that were manually classified as TP, but assigned to
the wrong protein by Mutation GraB are also ruled as FP
mutations. Point mutations that Mutation GraB missed but
manual curation assigned are labeled false negative (FN)
mutations.

We chose to evaluate Mutation GraB in two different ways.

First, we compared the traditional text-mining measurements
of precision, recall, and balanced F-measure between the
graph bigram and word distance metrics within the develop-
ment, validation, and complete protein literature sets.
Precision is calculated as P ¼ TP / (TP þ FP), recall is
calculated as R¼TP / (TPþ FN), and the balanced F-measure
is computed as 2*P*R / (P þ R). Second, and more
significantly, we examined the precision of each search
metric on point mutations versus the number of possible
protein associations (PPA) for each point mutation. Since the
main purpose of the search metric is to disambiguate
multiple proteins for each point mutation, the more robust
metric will have a higher precision at higher PPA.

G Protein–Coupled Receptors
For GPCRs, we took advantage of the manually curated

tGRAP database [26] to identify journal literature that
describes GPCR point mutations. The tGRAP database subset
contains a total of 5,451 point mutations, 1,495 GPCRs, and
914 article citations. We retrieved 386 of these citations as
PDF documents and annotated 95 articles as a development
set and 100 articles as the validation set. The Swiss-Prot
database [22] contained 2,249 entries that correspond to
GPCR proteins. From these Swiss-Prot entries and their
existing corresponding Entrezgene [27] entries, a standard
protein name dictionary of 4,910 terms, an organism
dictionary of 560 terms, and a protein name permutation
dictionary of 25,329 terms were generated. A permutation
dictionary is generated by taking protein name terms of three
words or greater and changing the order of the words. We
observed that the use of both standard and permutation
dictionaries was helpful in identifying a greater number of
protein names than the use of the standard dictionary alone.
We describe the generation of the permutation dictionary in
detail within the Methods section.
The performance of the word distance and graph bigram

metrics for the development and validation sets are shown in
Table 3. In the development set (Dataset S1), the graph
bigram metric achieved an F-measure of 0.76, while the word
distance metric achieved an F-measure of 0.70. Examining the
point mutation counts between the two metrics, we saw that
the graph bigram metric was able to identify 636 true positive
mutations versus 565 for the word distance metric. In the
validation set (Dataset S2), the graph bigram metric and word
distance metric achieved F-measures of 0.83 and 0.81 with
true positive mutation counts of 684 and 652, respectively.
Combining the two sets, the graph bigram metric out-
performed the word distance metric with an F-measure of
0.79 to 0.76.
Figure 3A–3C graphs the precision of both search metrics

measured at different PPA levels for all three protein family
literature sets. The precision is measured for the develop-
ment and validation sets together. We cannot calculate the
recall for this analysis because false negative point mutations
belong to a protein not represented in the possible
associations. The yellow bars represent the number of point
mutations counted at each level of PPA. For the GPCR
literature set shown in Figure 3A, there was a large spread of
PPA for point mutations. While 651 point mutations only had
one PPA, 844 point mutations had multiple possibilities, and
the average number of associations per point mutation was
2.19. Figure 3A shows that the graph bigram metric achieved

Figure 2. A General Overview of the Process Flow of Mutation GraB

doi:10.1371/journal.pcbi.0030016.g002
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a higher precision at all levels of PPA greater than one for the
GPCR literature sets.

Protein Tyrosine Kinases
We were able to retrieve 554 PDF articles from the PubMed

protein tyrosine kinase query ‘‘tyrosine kinase[mh] AND
point mutation[mh] AND full text[sb]’’. We annotated 99 of
these articles for use as our development set and 98 articles as
our validation set. Searching the Swiss-Prot database for
protein tyrosine kinases yielded 430 different entries. The
protein tyrosine kinase standard dictionary contained 1,577
terms, and the organism dictionary contained 108 terms. Our
initial tests indicated that the use of a permutation dictionary
would hurt performance for this protein family as many
protein names have several elements in common with other
family members.

Table 4 summarizes our results for the protein tyrosine
kinase literature sets. The articles as a whole contained fewer
TP and more TN point mutations than the GPCR literature
sets, affecting performance by decreasing precision for both
graph bigram and word distance metrics. Performance on the
development set (Dataset S3) for the graph bigram and word
distance metric were closer together, with F-measures of 0.74
and 0.70, respectively. The validation set (Dataset S4) yielded
even closer results with F-measures of 0.68 for the graph
bigram metric and 0.67 for the word distance metric. This
small difference is largely due to the few number of true
positive mutations in the validation set, with the graph bigram
metric identifying 133 to the 130 identified by the word
distance metric. Overall, the graph bigram metric outper-
formed the word distance metric (F-measure 0.72 versus 0.69).

The protein tyrosine kinase analysis in Figure 3B shows a
smaller distribution of PPA than the GPCR literature set with
266 single PPA, 266 multiple PPA, and a 1.85 PPA average.
However, as with the GPCR literature set, the graph bigram
metric achieved a higher precision at all PPA greater than

one. The greatest difference in precision was for point
mutations with four or more PPA where the graph bigram
metric had more than a 0.21 increase than the word distance
metric.

Ion Channel Transporters
The ion channel articles were identified with the PubMed

query ‘‘ion channel[mh] AND point mutation[mh] AND full
text[sb]’’, and 311 PDF articles were downloaded and
converted to text. We used 100 of these articles as the
development set and 98 articles as the validation set. A total of
1,095 ion channel proteins were identified using the Swiss-
Prot ‘‘Ion Channel’’ and ‘‘Transporter’’ keyword identifiers,
and 3,089 protein names were extracted from the associated
Swiss-Prot and Entrezgene entries. As with the protein
tyrosine kinase literature set, the use of the permutation
dictionary did not identify a greater number of protein
names, so only the standard protein name dictionary was used.
The organism dictionary contained 143 organism names.
Table 5 shows the results of the graph bigram and word

distance metrics on the development (Dataset S5) and
validation (Dataset S6) sets. Consistent with the GPCR and
tyrosine kinase literature sets, the graph bigram metric had a
greater performance gain in the development set (F-measure
of 0.70 to 0.68) than in the validation set (F-measure of 0.80
versus 0.79). The graph bigram metric outperformed the
word distance metric for both datasets, and overall the graph
bigram metric achieved a higher F-measure of 0.76 to 0.74,
extracting 624 TP mutations to 604 TP mutations for the
word distance metric. The ion channel literature sets yielded
the smallest performance difference between the two differ-
ent search metrics.
Figure 3C shows that the ion channel literature set has the

fewest PPA per point mutation out of the three protein
families. We counted 487 point mutations with only one PPA,
while only 224 point mutations had multiple PPA. The
average PPA per point mutation is also the smallest at 1.53.
The precision difference measured across different PPA
levels is less pronounced in the ion channel transporter
literature set, with the word distance metric outperforming
the graph bigram metric with a precision of 0.71 to 0.69 on
point mutations with three PPA. At two PPA and four or
more PPA, the graph bigram metric still achieves a higher
precision than the word distance metric.

Discussion

We have introduced Mutation GraB, an application for
identifying and extracting point mutations from biomedical
literature. Our goal with Mutation GraB was to create a

Table 1. Protein Family Literature Sets

Protein

Family

Total

Articles

True Positive

Mutations

Development Validation Development Validation

GPCR 95 99 962 902

Protein tyrosine

kinase

100 98 334 153

Ion channel

transporter

99 98 446 514

doi:10.1371/journal.pcbi.0030016.t001

Table 2. Protein Family and Dictionary Information

Protein

Family

Swiss-Prot

Entries

Protein Name

Dictionary Terms

Organism Name

Dictionary Terms

Permutation

Dictionary Size

GPCR 2,249 4,910 560 25,329

Protein tyrosine kinase 430 1,577 108 N/A

Ion channel transporter 1,095 108 143 N/A

doi:10.1371/journal.pcbi.0030016.t002
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general-purpose application that could have consistent
performance without relying on protein family custom-
ization. Across these representative protein families, custom-
ization was not required to achieve consistently accurate
performance in both development and validation sets. This
suggests that Mutation GraB should be useful for identifying
point mutations in most if not all protein families. Mutation
GraB performance is contingent on a number of factors,
including the identification of protein names, organism
names, and point mutation terms in the text, and the
disambiguation of multiple proteins when present. We chose
a rule-based approach for protein name identification that
has been shown to be successful in other tests, and the search
for organism names is accomplished with straightforward
pattern matching. Our main performance goal, however, was
to devise a disambiguation metric that outperforms current
methods at choosing the correct protein from a selection of
several possible choices.

Comparison with MEMA
MEMA and Mutation GraB were created and tested in a

different fashion that makes a direct comparison trouble-
some. MEMA was tested on 16,728 abstracts across many
protein families with the precision and recall estimated from
a random set of 100, while we have chosen to use full-text
articles from selected families and provide the precision and
recall for all 589 articles. The point mutations extracted by
MEMA were associated with proteins contained in HUGO
and validated with mutations in OMIM, while Mutation GraB
utilizes the Swiss-Prot and Entrezgene databases for protein
identification and sequence validation. MEMA also extracted
DNA mutations from their set of abstracts, and while the
current version Mutation GraB can identify both DNA and
protein point mutations, we only validate protein point
mutations. Additionally, MEMA identifies a wider set of
mutation types, including some that are described grammati-
cally. Table 6 shows the performance of Mutation GraB
against that of MEMA on the set of 100 abstracts with these
caveats.

The row ‘‘Cited mutation’’ refers to the identification of
the point mutation terms in the text, while the row
‘‘Contained mutation–gene pairs’’ refers to the identification
and association of the mutation to its protein of origin. The
different counts are because of the absence of DNA
mutations in the Mutation GraB analysis. Also, our manual
analysis of the abstracts found a few mentions of mutated
amino acid positions without specifying a mutant amino acid.
These mentions were not included in our counts. The
precision and recall for identifying ‘‘cited mutation’’ are

essentially the same for both MEMA and Mutation GraB.
Considering that Mutation GraB does not identify any
grammar mutations while MEMA does, this is somewhat
surprising. In comparing the identification of ‘‘contained
mutation–gene pairs,’’ however, Mutation GraB achieves a
much higher recall (77.3% versus 35.2%) but a lower
precision (85.2% versus 93.4%) than published results for
MEMA. As Mutation GraB validates the mutation–protein
pairs by comparing with Swiss-Prot sequences, these associ-
ations are more significant and may contribute to a lower
number of total mutation–gene pairs found in the text.
Mutation GraB’s disambiguation metric and sequence vali-
dation steps help decrease the number of incorrect associa-
tions, thereby increasing the recall significantly.
In addition to the increase in recall, we believe Mutation

GraB to be an improvement over MEMA for other reasons.
One, while abstracts are more readily available than full-text
articles, full-text articles are far more informative with regard
to point mutations. MEMA extracted 24,351 point mutations
mentions from 16,728 abstracts for an average of 1.45 point
mutations per abstract. The 589 articles that Mutation GraB
was evaluated against contained 3,216 unique point muta-
tions, resulting in an average of 5.45 point mutations per
article. Because Mutation GraB only counts unique point
mutations per article, the total number of point mutation
terms identified is actually significantly higher. We found that
a full-text article contains approximately seven times more
point mutation mentions than the abstract alone. With this in
mind, our processing of 589 full-text articles would be
equivalent to a larger quantity of abstracts.
Second, validation against OMIM will only compare point

mutations that are disease-related, while sequence validation
against Swiss-Prot compares all point mutations that differ
from the wild-type amino acid. Since Swiss-Prot is updated
more frequently and contains more genes/proteins than
OMIM, Mutation GraB can validate a greater number of
point mutations than MEMA. Finally, out of the 100 abstracts
MEMA analyzed, only 35 contained multiple gene/protein
mentions. From our set of full-text articles, 81 contained
point mutations belonging to multiple proteins, and we
counted multiple gene/protein mentions in 562 out of 589
articles (95%). As a result, the protein disambiguation
capability of Mutation GraB was tested more rigorously than
MEMA.

Comparison with Mutation Miner
Mutation Miner differs in many respects to Mutation GraB.

Foremost, their use of NLP on a sentence level differs from
the statistical approach of Mutation GraB. When searching
for a protein of origin, Mutation Miner uses the protein and
organism terms to query Entrezgene for a unique protein
entry to retrieve sequence information. They show this
solution to be suboptimal, because multiple proteins may
be retrieved from the query and sometimes the target protein
is not the first protein returned. Also, Mutation Miner uses
the protein sequence information not to validate extracted
point mutations, but instead to produce multiple sequence
alignments of targeted proteins to provide mutation anno-
tations to 3-D structure displays.
The authors of Mutation Miner tested their methods on 19

abstract and full-text articles on the xylanase protein family.
We sought to run Mutation GraB on the same 19 full-text

Table 3. Mutation GraB Performance on the GPCR Literature Sets

Evaluation

Metric

Development Set Validation Set All Articles

Word Graph Word Graph Word Graph

TP mutations 565 636 652 684 1,217 1,320

Precision 0.77 0.86 0.82 0.86 0.80 0.86

Recall 0.65 0.68 0.80 0.80 0.72 0.74

F-measure 0.70 0.76 0.81 0.83 0.76 0.79

doi:10.1371/journal.pcbi.0030016.t003
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articles to generate a performance comparison, but ran into
some obstacles. Instead of measuring the precision and recall
for the correct association of a protein–organism pair with
each point mutation, Baker and Witte et al. compute
precision and recall for the identification of protein–
organism pairs and the identification of point mutations
separately. Since Mutation GraB identifies protein–organism
pairs based on sequence validation against the point
mutation, we cannot produce a comparable evaluation.
Additionally, we were only able to retrieve 16 full-text articles
from the list. One PDF was copy-protected, while two others
did not have the full text available from PubMed. In those
instances, the abstract was used. Also, the authors of Mutation
Miner have counted a total of 54 point mutations in their 19
articles, while we have manually identified 111 point
mutations. This discrepancy may affect the precision and
recall of Mutation GraB since we are extracting twice as many
point mutations.
Table 7 shows the PMID of the articles tested, format of the

text, proteins described, point mutations identified, and
numbers of point mutations counted by us (Number PM) and
Baker and Witte et al. (MM Number PM). For a majority of the
articles, we manually identified more point mutations in the
text. Table 8 shows the precison, recall, and F-measure
achieved by Mutation Miner in extracting protein–organism
pairs and identifying point mutations for these articles. It also
shows performance for Mutation GraB on the same article
set, save for the three abstracts used. We can see that
Mutation GraB is better at identifying point mutations than
Mutation Miner, with an F-measure of 0.94 versus 0.90, even
though we tested on a larger set of point mutations. Mutation
GraB also extracted point mutation–protein–organism trip-
lets at a higher accuracy than Mutation Miner extracted
protein–organism pairs alone, with an F-measure of 0.87
versus 0.61. Judging by the low recall of Mutation Miner in
extracting protein–organism pairs, analysis at the sentence
level misses a majority of the protein–organism associations.

Protein Name Identification
A critical component of point mutation extraction is

identifying the protein names for association with the point
mutation terms. Since we do not have the luxury of large
annotated training sets for our protein families, which are
commonly used in more sophisticated methods for protein
name recognition and normalization, we relied on a rule-
based method. Our rule-based method was patterned after
other quantified methods [23,25] and should provide similar
performance characteristics. In our set of 589 journal articles,
true positive point mutations were represented by 519
proteins and we were able to identify 446 of these proteins
for a precision of 0.86. Reasons for missing some of the
protein names can be broadly grouped into two categories:
(1) difference in name representation from Swiss-Prot or
Entrezgene and (2) formatting changes as a result of PDF-to-
text conversion.
An example of the first category is the identification of the

Scn4a protein (Swiss-Prot AC: P15390), whose synonyms are
‘‘Mu-1’’, ‘‘microI’’, ‘‘Voltage-gated sodium channel alpha

Figure 3. Examining the Precision of the Graph Bigram and Word

Distance Metrics across Different Levels of Possible Protein Associations

for the GPCR (A), Protein Tyrosine Kinase (B), and Ion Channel

Transporter (C) Literature Sets

This data is for the cumulative development and validation sets
combined. The yellow bars show the number of point mutations
counted at each PPA. The solid blue line represents the precision

measured for these point mutations using the graph bigram metric, and
the dotted red line is measured using the word distance metric.
doi:10.1371/journal.pcbi.0030016.g003
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subunit Nav1.4’’, ‘‘Nav1.4’’, ‘‘Sodium channel protein type IV
alpha subunit’’, ‘‘NCHVS’’, and ‘‘Sodium channel protein,
skeletal muscle alpha-subunit’’, as given by Swiss-Prot and
Entrezgene. In the ion channel article PMID 10653790, this
same protein is represented by the term ‘‘NaCh’’, presumably
as an abbreviation for ‘‘sodium channel’’. However, the term
‘‘NaCh’’ is not remotely close to any of the provided
synonyms given for the Scn4a protein. Another example is
the identification of the protein Q98146 in the GPCR article
PMID 10842179. The only synonym given for this protein is
‘‘G-protein coupled receptor homolog 74’’, and the repre-
sentation used in the article is ORF74. In both of these
instances, our dictionary-based search could not have
possibly identified the protein terms in the article with the
synonyms at hand.

The PDF-to-text conversion of journal articles also often
generates unintended changes with regard to protein names.
One such consequence is the modification of superscript and
subscript formatting present in some PDF files.

Another effect of the PDF-to-text conversion is the
mishandling of Greek characters. The pdftotext utility
replaces Greek characters with their Unicode representation,
and unless the characters are represented in Unicode within
the PDF, the conversion removes them. Many protein names,
especially in the GPCR family, rely on these designations for
differentiation from other similar proteins. While the
Unicode representation is found in some PDF files, fre-
quently other font or image representations are used to
denote Greek characters. When the non-Unicode Greek
characters are removed from these names, they are either
skipped or misidentified for other terms. The ion channel
article PMID 10097182 describes the a, b, and c ENaC
proteins (Swiss-Prot ACs P37089, P37090, and P3791). During
the PDF-to-text conversion, these characters were stripped,

making it impossible to identify which ENaC proteins are
being discussed.
A number of overlooked protein names in the GPCR

literature set could be recovered using the permutation
dictionary, however. For historical reasons, GPCRs were
originally named by physiologists studying features, then by
pharmacologists focused on tissue specificity, and finally by
the genomics community based on sequence homology. Some
GPCRs have been renamed on more than one occasion, and
the order of naming elements is often permutated. These
factors are less relevant to the ion channel and tyrosine
kinase literature; thus, the use of a permutation dictionary
increased the recall by identifying some full-length protein
terms, but this benefit was limited to the GPCR family. One
example where the permutation dictionary was useful is the
‘‘Parathyroid Cell calcium-sensing receptor’’ (Swiss-Prot AC
P41180). Protein symbols for this term include ‘‘CaSR’’,
‘‘Gprc2a’’, ‘‘Pcar1’’, and ‘‘FHH’’; a wide variety of legacy
naming. Unfortunately, authors frequently use the term
‘‘calcium sensing receptor’’ to describe this protein. While
that term is less specific than the original full name, it is
specific enough to identify that single Swiss-Prot entry from
the set of GPCR entries. A permutation dictionary helped
recover this term while other protein entity recognition
methods would probably have not. Owing to the proliferation
of GPCRs in the olfactory tissues, the permutation dictionary
also contained a large number of nonsensical permutation
terms such as ‘‘receptor 31 17’’ generated from the ‘‘Olfactory
receptor 17–31’’ term (Swiss-Prot P58170). However, these
nonsensical terms are unlikely to be found in the text and the
additional cost of precomputing the permutation dictionary
and additional searching is modest. The protein tyrosine
kinase and ion channel transporter literature, in contrast, did
not benefit from the use of the permutation dictionary for
identifying additional terms. The literature for these protein

Table 6. Mutation GraB versus MEMA Performance

Mutation Extraction Types MEMA Mutation GraB

Recall Precision Recall Precision

Percent Total Percent Total Percent Total Percent Total

Cited mutation 74.7 204/273 98.6 204/207 77.3 130/168 97.7 130/133

Contained mutation–gene pairs 35.2 57/162 93.4 57/61 69.3 52/75 85.2 52/61

doi:10.1371/journal.pcbi.0030016.t006

Table 4. Mutation GraB Performance on the Protein Tyrosine
Kinase Literature Sets

Evaluation

Metric

Development Set Validation Set All Articles

Word Graph Word Graph Word Graph

TP mutations 254 279 130 133 384 412

Precision 0.58 0.64 0.54 0.55 0.57 0.61

Recall 0.87 0.88 0.88 0.88 0.87 0.88

F-measure 0.70 0.74 0.67 0.68 0.69 0.72

doi:10.1371/journal.pcbi.0030016.t004

Table 5. Mutation GraB Performance on the Ion Channel
Transporter Literature Sets

Evaluation

Metric

Development Set Validation Set All Articles

Word Graph Word Graph Word Graph

TP Mutations 239 253 360 365 596 616

Precision 0.75 0.80 0.81 0.82 0.78 0.81

Recall 0.62 0.63 0.75 0.75 0.69 0.70

F-measure 0.68 0.70 0.78 0.79 0.73 0.75

doi:10.1371/journal.pcbi.0030016.t005
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families contained a more standardized nomenclature, and
the use of the permutation dictionary only increased the
number of spurious terms identified.

Since protein term identification is independent from the
rest of Mutation GraB, a switch from one method to another
is transparent to the other parts. While protein name
identification is a necessary component of Mutation GraB,
it is not the full focus of our efforts and is more thoughtfully
addressed in the recent BioCreative challenge.

Protein Disambiguation
The main task of the search metrics was to select the

correct protein to associate with a point mutation when
several proteins are found in the text. When only one protein
is found whose sequence matches the point mutation wild-

type amino acid, no disambiguation is necessary; the graph
bigram and word distance metrics are not utilized. In
instances where more than one protein can be assigned to a
point mutation, the search metrics are used to disambiguate.
Therefore, the main performance difference between the two
search metrics is not the overall F-measure, but the precision
measured in instances of multiple protein disambiguation.
Figure 3A–3C provides evidence that the graph bigram

metric performs better than the word distance metric in
these instances. Figure 3A–3B shows that the graph bigram
metric achieves a higher P at all levels of PPA greater than
one, while Figure 3C shows the graph bigram metric ahead in
all cases except for three PPA. The GPCR point mutations
were ideal for this analysis because of the wide range of PPA
values; a large number of mutations had two to six PPA. The

Table 8. Mutation GraB versus Mutation Miner Performance

Evaluation Metric Mutation Miner Mutation GraB

Protein–Organism Mutations Mutations–Protein–Organism Mutations

Precision 0.91 0.84 0.84 0.91

Recall 0.46 0.97 0.90 0.97

F-measure 0.61 0.90 0.87 0.94

doi:10.1371/journal.pcbi.0030016.t008

Table 7. Xylanase Literature Set and Proteins and Point Mutations within

PMID Format Proteins

Described

Point

Mutations

Number

MG PM

Number

MM PM

885954 PDF full text P18429 E106D 5 3

P07986 D164A, E168A, E274D, E274A

1359880 PDF full text P00694 D48E, D48S, E120S, E120D, E209D, E209S, E209C 7 3

8019418 PDF full text P09850 D39N, Y97F, E106Q, E106D, Y108F, R140K, R140N, Y194F,

E200D, E200Q, E200C

11 2

10220321 PDF full text P09850 Y97F, R140K, R140N 3 1

10860737 PDF full text P09850 N63D, E106Q, E200Q 3 1

11601976 PDF full text P10478 S172A 1 1

10752608 PDF full text P09850 N176C, S128C 2 5

9930661 Abstracta P33557 D64N 1 1

8376336 PDF full text P36917 D537N, D541Q, H572N, E600Q, D602N, D645N 6 3

11377763 PDF full text P36217 N42H, N43D, Y59M, N61L, N70E, N76D, S142C, Q157A,

I161E, N186C, Q194Y, Q194L, Q194H, Q194K

14 3

11917150 PDF full textb — — 0 11

15129722 Abstractc P36217 T34C, T60C 2 2

15260499 PDF full text P36217 T34C, N43D, Y59F, T60C, N70E, K90R, S142C, N186C, Q194H 9 3

15278768 PDF full text P36217 T33C, T39C, N43D, S47C, Y58F, T59C, N70E, K90R, L105C,

V139C, S142C, N186C, A189C, Q194H, Q194C

15 3

7764794 Abstractc P26514 F196Y, R197E, R197K, N214D 4 3

9201919 PDF full text P07986 E274D 7 2

P26514 H122R, H122S, H122Y, H248K, H248E, H248R

9681873 PDF full text P26514 H127E, H127Q, H127F, H127A, H127K, H127W 6 1

10235626 PDF full text P26514 W126F, W126A, W126H, Y213F, Y213A, Y213S, W307H,

W307A, W307F, W315F, W315A, W315H

12 4

9731776 PDF full text P07986 E168A, H246A, H246N 3 2

Total 111 54

aPDF copy-protected.
bNo instance of xylanase protein names in the article.
cElectronic full text not available.
Number MG PM represents the number of point mutations identified by us.
Number MM PM represents point mutations identified by Mutation Miner.
doi:10.1371/journal.pcbi.0030016.t007
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protein tyrosine kinase and ion channel transporter liter-
ature sets contained fewer point mutations in general and a
smaller spread of PPA. The ion channel transporter set,
especially, contained more than twice as many point
mutations with one PPA .1 PPA. This fact can explain why
the overall F-measures between the two metrics for the ion

channel transporter literature sets are quite similar. For the
set of point mutations with PPA � 1, the precision P ¼ 0.84
using the graph bigram metric and P ¼ 0.73 using the word
distance metric. This highlights the value of the graph bigram
metric over the word distance metric in disambiguation
situations.

Figure 4. Example of a Paragraph of Text Evaluated by the Graph Bigram and Word Distance Metrics

(A)Text is taken from a figure label from the article PMID 10889210.
(B)Graph generated by bigram traveral using the graph bigram method. The point mutation terms are in green, protein terms in blue, and regular
words in gray.
(C)Table shows the measurements between some selected words in the text using both the word distance and graph bigram metrics. The word–
distance measurements are below the diagonal, and the graph bigram measurements are above the diagonal. Two different word pairs are examined,
ffig, barsg and falteration, scatchardg.
The ffig, barsg words are shown in red in (A), the path is colored in red in (B), and the metric measurements are highlighted in red in (C). The falteration,
scatchardg items are highlighted in blue, correspondingly.
doi:10.1371/journal.pcbi.0030016.g004
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The basic assumption in using a word distance metric for
point mutation extraction was that the relative positioning
between entities in text is the best barometer of associability
and significance. We do know, however, that authors
describing point mutations often reference nonassociated
proteins in close proximity to point mutations, having
referenced the associated protein in a different part of the
text. This led us to conjecture that frequency as well as
positional data, codified in the graph bigram search metric,
would be a better method for associating entities for point
mutation extraction. Data from Figures 2–4 with PPA .1
supports this conjecture.

Manual Point Mutation Annotation
To approximate the performance of Mutation GraB on a

large scale of articles with the breadth of PubMed, it is
important to develop and test it on a smaller set of
representative articles. The size of our algorithm develop-
ment and validation sets reflects a compromise between what
is possible and what is practical. The manual processing time
for one article ranges from 10–60 min, depending on the
number of point mutations in the article and the difficulty in
validating them against the Swiss-Prot database. The defi-
nition of these ‘‘gold standard’’ annotations may change with
each updated release of Swiss-Prot, as some protein accession
numbers, protein names, protein keyword classifications, and
organism names change with each release. The generation
and updating of the gold standard annotations can take as
long as 100 h per 100 article set. This, coupled with the
current difficulty in retrieving full-text PDF articles from
journal sources, makes it prohibitive to work with literature
sets larger than 100 articles. Fortunately, the trends in
electronic publishing and the more open dissemination of
scientific literature favor the availability of an increasingly
large set of full-text articles.

Point Mutations in Images
When identifying point mutations in an article, we counted

mutations that occurred within images as true positive
mutations. These point mutations were represented com-
monly as text that occurs in a graphical diagram or chart.
Because the information encapsulated within the image is not
accessible to text-mining methods, Mutation GraB cannot
extract those mutations if they occur exclusively within
images in an article. Since a human reader can still identify

those mutations, we felt it necessary to include their presence
in our gold standard sets. However, removing them from the
gold standard sets can more accurately reflect Mutation
GraB’s performance on solely textual information. Table 9
shows the precision, recall, and F-measure of the three
protein family literature sets, with and without the image
mutations, processed by Mutation GraB using the graph
bigram metric. As expected, the presence or absence of image
mutations only affects the recall because they are classified as
either TP or TN by Mutation GraB. The GPCR literature set
contained the most image mutations, and removing those
mutations from comparison would increase the F-measure
from 0.79 to 0.87. The tyrosine kinase and ion channel
literature sets contained fewer image mutations, and,
accordingly, have smaller gains in F-measure with their
removal.
The GPCR literature set may contain a higher percentage

of image mutations because the articles were taken from the
tGRAP database and are expected to be more specific on
point mutations than its tyrosine kinase and ion channel
literature set counterparts. The tyrosine kinase and ion
channel literature sets were randomly selected from a
resulting PubMed search and have a lower point mutation
density due to a lower specificity of subject matter. None-
theless, when viewing the performance of Mutation GraB on
the literature sets, it is important to consider the effect of the
image mutations on the recall and overall F-measure.

Utility
Mutation GraB, if used on a large set of literature, has many

potential downstream applications. The immediate benefit
would be to generate a database of point mutations found in
the literature that could be linked to both its literature and its
protein database sources. The result of this database is the
ability to examine the effect of point mutations on the
structure and function of proteins within the framework of
protein families, subgroups, and superfamilies. It is difficult
to judge the amount of time saved by using Mutation GraB
versus hand annotation, but we estimate this difference as
significant. It took upward of 100 h to manually annotate 100
articles, whereas Mutation GraB processed the same volume
of articles in about 3 h. Even taking into account hand
correction of precision and recall errors, which took any-
where from 10–15 hours per 100 articles, Mutation GraB
should still reduce the time required by 80% when compared
with exclusively manual annotation. As with most text-mining
applications, errors in precision are more tolerable than
recall errors; we believe it is more important to identify and
label the point mutation, even though the protein association
may be incorrect, than to miss point mutations completely.
At a F-measure estimate of 0.7, using Mutation GraB and
correcting the precision and recall errors is still far more
efficient than manual annotation alone. The utility and
efficiency of Mutation GraB also relies upon the specificity of
the literature given. As one can imagine, examining a very
large set of nonspecific articles for a narrow set of protein
point mutations will yield low performance.

Conclusions
From our development and validation of Mutation GraB,

we can draw a few conclusions regarding the extraction of
point mutations from biomedical literature. Foremost, it is

Table 9. Mutation GraB Performance on All Protein Family
Literature Sets with and without Image Mutations Using the
Graph Bigram Metric

Evaluation

Metric

GPCR Tyrosine Kinase Ion Channel

Image No

Image

Image No

Image

Image No

Image

Image

mutations

295 — 12 — 74 —

Precision 0.86 0.86 0.61 0.61 0.82 0.82

Recall 0.74 0.88 0.88 0.90 0.70 0.76

F-measure 0.79 0.87 0.72 0.73 0.76 0.79

doi:10.1371/journal.pcbi.0030016.t009
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entirely possible to utilize text-mining tools to extract point
mutations at a level that warrants its usage. We can process
100 articles in anywhere from 1 h to 3 h, depending on the
number of point mutations found within the articles. Also, we
know that most articles discuss mutations originating from a
single protein. In these instances, no further processing is
required to correctly associate mutations and the proteins of
origin. For articles that discuss more than one protein,
however, a metric for choosing the right protein is necessary.
One idea for finding the correct association between proteins
and point mutations is to use the word distance between two
entities as a metric for association significance. We thought
that this metric was insufficient in many regards, and sought
to improve it by incorporating frequency data with positional
data to generate a heuristic for entity association. The result
of this was a metric that combines bigram analysis with
graph–theoretic searching that outperforms the simple word
distance measure. The graph bigram metric for entity
association could have many other applications in the
biotext-mining field, and could increase the amount of
information that can be automatically extracted from the
biomedical literature.

Materials and Methods

The overview of Mutation GraB is shown in Figure 2. The following
sections describe how the protein family literature sets were
generated, how Swiss-Prot entries were chosen, and how each article
was processed to extract the point mutations.

Article search and retrieval. Articles were searched for using
PubMed queries containing the protein family name, the MeSH term
‘‘point mutation’’, and the ‘‘full text’’ filter. The query ‘‘,protein
family. AND point mutation[mh] AND full text[sb]’’ was used to
retrieve the relevant literature, where ,protein family. is sub-
stituted by either ‘‘protein tyrosine kinase’’, or ‘‘ion channel
transporter’’; the GPCR PMID list was retrieved from the tGRAP
database. The resulting lists of PMIDs were individually searched
using the Entrez E-Utilities, retrieving the LinkOuts—external HTTP
links—for the full-text articles. We followed the LinkOuts and parsed
the returned HTML pages for links to PDF files, downloading the PDF
file when possible. The downloaded PDF files are converted to
Unicode text using the Unix ‘‘pdftotext’’ utility.

Text preprocessing. After conversion from PDF, the text was
preprocessed to create a more cohesive and manageable document.
We removed the ‘‘References’’ and ‘‘Acknowledgements’’ sections
from the text, as well as sections beginning with the text ‘‘this work
was supported by’’, ‘‘to whom correspondence’’, and ‘‘the abbrevia-
tions used are’’. A stop list consisting of the words ‘‘the’’, ‘‘and’’, ‘‘for’’,
‘‘with’’, ‘‘were’’, ‘‘that’’, ‘‘was’’, ‘‘from’’, ‘‘this’’, ‘‘are’’, ‘‘which’’, ‘‘a’’,
‘‘an’’, ‘‘or’’, and ‘‘of’’ was used and those words subsequently removed.

Dictionary creation. Two different dictionaries were created for
each protein family to be searched, a protein name dictionary and an
organism dictionary. The terms for both dictionaries were extracted
from the Swiss-Prot and Entrezgene databases. First, Swiss-Prot
entries for the protein families of interest were chosen based on the
contents of the ‘‘keyword’’ Swiss-Prot field. Protein tyrosine kinase
entries contained the words ‘‘Protein Tyrosine Kinase’’ in the
keyword field, GPCR entries contained ‘‘G Protein-Coupled Recep-
tor’’, and ion channel entries contained both ‘‘Ionic channel’’ and
‘‘Transmembrane’’. To generate the protein name dictionary, the
‘‘protein name’’ and ‘‘gene name’’ fields from a protein family Swiss-
Prot entry subset were compiled. If a Swiss-Prot entry had a related
Entrezgene database entry, the ‘‘gene name’’, ‘‘official symbol’’,
‘‘official fullname’’, and ‘‘aliases’’ Entrezgene fields were added to
the dictionary if they were not duplicates of the SwissProt names. The
organism dictionaries were generated by compiling the ‘‘organism’’
field from the respective Swiss-Prot entries. The word ‘‘murine’’ was
added to the organism dictionaries as a synonym for ‘‘mouse’’.

A second dictionary, which we called a permutation dictionary, was
also created from protein full names three words or longer. The
entries in this dictionary were permutations of the full names with
the permutations also being at least three words long. Since a set of n
elements will have n! permutations, and the number of ways of

obtaining an ordered k elements from a set of n elements is n!(n� k)!, a
term that consisted of five words will spawn 5! / (5 � 3)! ¼ 60
permutated terms. For example, permutations of the full name
‘‘Parathyroid Cell calcium-sensing receptor’’ include ‘‘calcium sens-
ing receptor’’, ‘‘cell calcium sensing’’, and ‘‘cell parathyroid sensing
calcium receptor’’. Fortunately, nonsensical word permutations are
unlikely to appear in actual text. This dictionary is searched in the
same manner as the protein full name terms in the standard
dictionary.

Manual annotation of articles. For each article processed by
Mutation GraB, we manually read and extracted the point mutations
from the text. We counted a point mutation as a TP point mutation if
the associated protein belonged to the corresponding Swiss-Prot
protein family set and if the wild-type amino acids of the mutation
and the protein matched. A point mutation is considered a TN if its
associated protein is not part of the Swiss-Prot set (i.e., belonging to a
different protein family) or if the wild-type amino acids do not
match. Point mutations that contain typographical errors are
considered TN point mutations as well as are point mutations whose
position numbering differs from the provided sequence in its
corresponding Swiss-Prot entry. These annotated TP and TN point
mutations were used as our ‘‘gold standard’’ sets to evaluate Mutation
GraB performance. These gold standard datasets are provided in
XML format for the GPCR (Datasets S1 and S2), tyrosine kinase
(Datasets S3 and S4), and ion channel transporter (Datasets S5 and
S6) literature sets.

Term identification and extraction. Regular expressions were
constructed to identify point mutation, protein name, and organism
name terms. A point mutation description usually consists of a wild-
type amino acid name, followed by the amino acid position number,
which is followed by the mutant amino acid name. The amino acids
can be represented in the single-letter or three-letter format, and the
regular expressions allow for some punctuation between the position
and the amino acids. Some common examples of point mutation
strings are ‘‘R123Y’’, ‘‘R(123)Y’’, ‘‘R-123-Y’’, ‘‘Arg123Tyr’’, ‘‘Arg(123)-
Tyr’’, and ‘‘Arg-123-Tyr’’. Point mutations with a different formatting
or representation in the grammar of the text were ignored.

To search for organism names, we created different levels of case-
sensitive and insensitive regular expressions. A tiered rule-based
approach based on similar methods [2,23,25], however, was used to
identify protein name terms. First, the protein name dictionary was
split into two groups, symbols (i.e., EPHB1) and full names (i.e.,
Ephrin type-B receptor 1). Two types of regular expressions were
created. One, a strict regular expression, is case-sensitive and does
not allow for variation from the protein symbol. A second regular
expression, which is more relaxed, is case-insensitive and allows for
non-alphanumeric characters to be removed or substituted by spaces.
For the protein symbols, both strict and relaxed regular expressions
were used with the addition of organism modifier prefixes or suffixes.
The prefixes ‘‘h’’, ‘‘m’’, and ‘‘r’’ were allowed for human, mouse, and
rat modifiers, and the ‘‘p’’ suffix was allowed for S. cerevisiae. For
protein full names, both types of regular expressions were used
without any additional modifications. We searched with the protein
symbols first followed by the protein full names, in each instance
using the strict regular expression formation followed by the relaxed.
We also allowed for Roman numeral replacement. If a protein name
has a single digit as the last character, such as ‘‘XYN2’’, we also
searched for the term ‘‘XYNII’’.

Point mutation–protein association. After identifying all the point
mutation, protein name, and organism name terms present in the
text, we looked for Swiss-Prot entries that corresponded to the
protein and organism names found. For example, the protein full
name ‘‘Alpha 1-B Adrenergic Receptor’’ and the organism name
‘‘rat’’ correspond to the unique Swiss-Prot entry P15823. If an article
contains multiple protein and organism names, multiple unique
Swiss-Prot entries may be represented. The wild-type amino acid of
each point mutation was then compared to the amino acid at the
specified position of each Swiss-Prot protein found in the text. We
also compared the amino acid sequence of any isoforms of the Swiss-
Prot protein as well as removing the signal sequence of the protein if
present. If the amino acids from the point mutation and the protein
sequence match, that protein was categorized as a possible
association for the point mutation. When a single Swiss-Prot protein
was possible for a point mutation, that protein was automatically
associated with the point mutation. When multiple proteins are
possible for a point mutation, the word distance or graph bigram
methods were used to select the best match for association.

Word distance metric. Let M be the set of point mutations with
multiple possible Swiss-Prot protein associations in an article. For
each m 2 M, let P be the set of protein names and O be the set of
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organism names represented by the possible proteins for m. Thus, for
m 2 M, p 2 Pjm, and o 2 Ojm, we created a list T¼ft1¼hm, p1, o1i, ..., ti
¼hm, pj, okig that represents the PPAs for point mutation m. The word
distance metric between terms wi and wj in the text, hword(wi, wj), is the
shortest number of words that separate any two instances of wi and wj.
Using this measurement, we associated point mutation m to the
protein whose protein name p and organism name o resulted in the
smallest dm, word ¼ hword(m, p) þ hword(m, o) þ hword(p, o). This is
essentially the triangulation of distances between the point mutation
term, protein name, and organism name, where the smallest sum of
distances represents the assumed correct association between point
mutation and Swiss-Prot protein.

Graph bigram metric. The graph bigram metric works in the same
manner as the word distance metric in terms of triangulating the
smallest distances between the relevant terms in the text. The
difference lies in how the distances are calculated. A graph was
constructed by assigning nodes to all of the words and terms in the
text. An edge connected two nodes if the represented words and/or
terms were adjacent to each other in the text. The reciprocal t
statistic provided a sensible way of measuring how likely it is that any
two words will occur next to each other. The t test quantifies the
likelihood that the adjacency of two words is significant. The larger
the t statistic, the greater the significance of the relationship. We set
the value of an edge between two nodes containing words wi and wj to
be the reciprocal of the t statistic:

hgraphðwi;wjÞ ¼
~x� lffiffiffiffiffiffiffiffiffiffi
s2=N

p
" #�1

where ~x¼ sample mean, s2¼ sample variance, N¼ sample size, and l¼
mean of distribution. When the t statistic is applied to a text mining
application, ~x ¼ ðwi�wjÞ=N , where wi�wj equals the number of times
wi is adjacent to wj, and N equals the number of words in the text. The
mean of the distribution, or the null hypothesis, is l¼ wi / N3 wj / N,
where wi and wj are the number of occurrences of word i and j,
respectively. For large samples, the variance s2 ’ ~x Dijkstra’s
algorithm is used to calculate the shortest path between any two
nodes in a graph, utilizing hgraph as the edge weight values. Since
Dijkstra’s algorithm does not work for negative distances, if any t
statistic for a bigram is negative, all t statistics for bigrams in that
article are normalized by the negative value so that the smallest t
statistic¼ 0. When calculating the d value for two terms, if the terms
are adjacent, we use the reciprocal t statistic value. If the terms are
not adjacent to each other in the text, we find the shortest path
between the two terms, and d is equal to the sum of distances hgraph
between nodes in the graph within the shortest path.

A more detailed example of the differences between the graph
bigram and word metrics is shown in Figure 4. Figure 4A shows text
from a GPCR article (PMID 10889210) that was used to create the
graph shown in Figure 4B. The text is a paragraph from a figure label
from the article. Figure 4C shows the distances generated by the two
search metrics between some selected words from the text; below the
diagonal the numbers are generated by the word distance metric, and
above the diagonal by the graph bigram metric. This example is not
meant to show an instance of mutation extraction, but is only meant
to highlight characteristics of text that are interpreted differently by
each metric. Since most full-text articles have point mutations,
protein names, and organism names scattered about the entirety of
the text, an example detailing a point mutation extraction would be
too complicated to illustrate in a figure. The path in Figure 4B
highlighted in red shows a bigram traversal between the word ‘‘fig’’
and the word ‘‘bars’’. In the text in Figure 4A, we can see that the

words are each found only once in the text and they are on opposite
ends of the paragraph. Using the word distance metric, hword(fig, bars)
¼ 157, which is one of the largest distances measured for that text.
The graph bigram metric measures hgraph(fig, bars) ¼ 5.26, which,
when compared with the other values for hgraph, is not the largest
measured. This is because the bigram path traverses the word
‘‘receptor’’, which is found as a bigram with both ‘‘basal’’ and ‘‘bars’’.
This example shows how two words can be far apart in word distance
but still be measured more significantly using the graph bigram
metric.

Conversely, we can examine the path in Figure 4B highlighted in
blue. The words ‘‘alteration’’ and ‘‘scatchard’’, when measured by the
word distance metric, yield hword(alteration, scatchard)¼ 41, meaning
there are only 40 words that separate the two. This measure is fairly
significant when compared with the other hword measurements.
However, when using the graph bigram metric, we see that
hgraph(alteration, scatchard) ¼ 9.80, a larger and far less significant
relationship when compared with other hgraph measurements. The
path generated in the graph for these words is far longer than for
‘‘fig’’ and ‘‘bars’’, and, accordingly, the graph bigram distance is
larger. This highlights a situation where two words close in word
distance have a less significant graph bigram measurement.
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Dataset S1. G Protein–Coupled Receptor Development

Found at doi:10.1371/journal.pcbi.0030016.sd001 (1.5 MB XML).

Dataset S2. G Protein–Coupled Receptor Validation Set

Found at doi:10.1371/journal.pcbi.0030016.sd002 (1.7 MB XML).

Dataset S3. Tyrosine Kinase Development Set

Found at doi:10.1371/journal.pcbi.0030016.sd003 (894 KB XML).

Dataset S4. Tyrosine Kinase Validation Set

Found at doi:10.1371/journal.pcbi.0030016.sd004 (650 KB XML).

Dataset S5. Ion Channel Transporter Development Set

Found at doi:10.1371/journal.pcbi.0030016.sd005 (1.2 MB XML).

Dataset S6. Ion Channel Transporter Validation Set

Found at doi:10.1371/journal.pcbi.0030016.sd006 (1.4 MB XML).
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