Estimating elastic and thermal contributions to lattice strains from operando X-ray diffraction measurements using fast simulations
Résumé
This work proposes an experimentally corrected numerical approach to improve simulation predictions. It involves first using a recently developed fast numerical thermomechanics model to predict lattice strains. Then, the predicted thermal and elastic strains are corrected using a minimization procedure under the strict constraint that the predicted lattice strains are strictly equal to the measured ones, thus improving the original estimates. This strategy is demonstrated for operando synchrotron X-ray diffraction measurements during directed energy deposition of a thin wall made from 316L stainless steel, which exhibits negligible solid-state phase transformations. Following validation, the corrected thermal and elastic strains are used to estimate temperature and stress evolution and study the difference in temperature and heating/cooling rate prediction caused by neglecting elastic strains.
Origine | Fichiers produits par l'(les) auteur(s) |
---|