Multi-phase high frequency solutions to Klein-Gordon-Maxwell equations in Lorenz gauge in (3+1) Minkowski spacetime - Centre de mathématiques Laurent Schwartz (CMLS)
Preprints, Working Papers, ... Year : 2024

Multi-phase high frequency solutions to Klein-Gordon-Maxwell equations in Lorenz gauge in (3+1) Minkowski spacetime

Solutions multi-phase haute-fréquence aux équations de Klein-Gordon-Maxwell en jauge de Lorenz dans l'espace de Minkowski de dimension (3+1)

Abstract

We study a 1-parameter family (A{\lambda}, {\Phi}{\lambda}){\lambda} of multi-phase high frequency solutions to Klein-Gordon-Maxwell equations in Lorenz gauge in the (3+1)-dimensional Minkowski spacetime. This family is based on an initial ansatz. We prove that for {\lambda} small enough the family of solutions exists on an interval uniform in {\lambda} only function of the initial ansatz. These solutions are close to an approximate solution constructed by geometric optics. The initial ansatz needs to be regular enough, to satisfy a polarization condition and to satisfy the constraints for Maxwell null-transport in Lorenz gauge, but there is no need for smallness of any kind. The phases need to interact in a coherent way. We also observe that the limit (A0, {\Phi}0) is not solution to Klein-Gordon-Maxwell equations but to a Klein-Gordon-Maxwell null-transport type system.
Fichier principal
Vignette du fichier
salviMPHFKGM2407.03554v1.pdf (786.5 Ko) Télécharger le fichier
Origin Files produced by the author(s)
licence

Dates and versions

hal-04708413 , version 1 (24-09-2024)

Licence

Identifiers

Cite

Tony Salvi. Multi-phase high frequency solutions to Klein-Gordon-Maxwell equations in Lorenz gauge in (3+1) Minkowski spacetime. 2024. ⟨hal-04708413⟩
37 View
5 Download

Altmetric

Share

More