Fairness of linear regression in decision making - Réseau de recherche en Théorie des Systèmes Distribués, Modélisation, Analyse et Contrôle des Systèmes
Article Dans Une Revue International Journal of Data Science and Analytics Année : 2024

Fairness of linear regression in decision making

Equité de la régression linéaire dans la prise de décision

Résumé

Ranking systems conceived on historical data are central to our societies. Given a set of applicants and the information as to whether a past-applicant should have been selected or not, the task of fairly ranking the applicants (either by humans or by computers) is critical to the success of any institution. These tasks are typically carried out using regression methods, and considering the impact of these selection processes on our lives, it is natural to expect various fairness guarantees. In this article, we assume that affirmative action is enforced and that the number of candidates to admit from each protected group is predetermined. We demonstrate that even with this safety-net, classical linear regression methods may increase discrimination in the selection process, reinforcing implicit biases against minorities, in particular by poorly ranking the top minority applicants. We show that this phenomenon is intrinsic to linear regression methods and may happen even if the sensitive attribute is explicitly part of the input, or if a linear regression is computed on each minority group individually. We show that to better rank applicants it might be needed to adapt the choice of the regression methods (linear, polynomial, etc.) to each minority group individually.
Fichier principal
Vignette du fichier
FairnessOfLinearRegressionInDecisionMakingPreFinalVersion.pdf (274.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04778971 , version 1 (15-11-2024)

Identifiants

Citer

Vincent Cohen-Addad, Surya Teja Gavva, C S Karthik, Claire Mathieu, Namrata Namrata. Fairness of linear regression in decision making. International Journal of Data Science and Analytics, 2024, 18 (3), pp.337 - 347. ⟨10.1007/s41060-023-00423-7⟩. ⟨hal-04778971⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More