Numerical investigation of stabilization in the Hybridizable Discontinuous Galerkin method for linear anisotropic elastic equation
Résumé
This work is concerned with implementing the hybridizable discontinuous Galerkin (HDG) method to solve the linear anisotropic elastic equation in the frequency domain. First-order formulation with the compliance tensor and Voigt notation are employed to provide a compact description of the discretized problem and flexibility with highly heterogeneous media. We further focus on the question of optimal choices of stabilization in the definition of HDG numerical traces. For this purpose, we construct a hybridized Godunov-upwind flux for anisotropic elastic media possessing three distinct wavespeeds. This stabilization removes the need to choose a scaling factor, contrary to the identity and Kelvin–Christoffel based stabilizations which are popular choices in the literature. We carry out comparisons among these families for isotropic and anisotropic material, with constant background and highly heterogeneous ones, in two and three dimensions. These experiments establish the optimality of the Godunov stabilization which can be used as a reference choice for a generic material in which different types of waves propagate.
Origine | Fichiers produits par l'(les) auteur(s) |
---|