Electronic band gaps from Quantum Monte Carlo methods
Abstract
We develop a method for calculating the fundamental electronic gap of semiconductors and insulators using grand canonical Quantum Monte Carlo simulations. We discuss the origin of the bias introduced by supercell calculations of finite size and show how to correct the leading and subleading finite size errors either based on observables accessible in the finite-sized simulations or from DFT calculations. Our procedure is applied to solid molecular hydrogen and compared to experiment for carbon and silicon crystals.
Domains
Condensed Matter [cond-mat]
Origin : Publisher files allowed on an open archive