Estimation of extreme quantiles from heavy-tailed distributions in a location-dispersion regression model - MISTIS
Article Dans Une Revue Electronic Journal of Statistics Année : 2020

Estimation of extreme quantiles from heavy-tailed distributions in a location-dispersion regression model

Résumé

We consider a location-dispersion regression model for heavy-tailed distributions when the multidimensional covariate is deterministic. In a first step, nonparametric estimators of the regression and dispersion functions are introduced. This permits, in a second step, to derive an estimator of the conditional extreme-value index computed on the residuals. Finally, a plug-in estimator of extreme conditional quantiles is built using these two preliminary steps. It is shown that the resulting semi-parametric estimator is asymptotically Gaussian and may benefit from the same rate of convergence as in the unconditional situation. Its finite sample properties are illustrated both on simulated and real tsunami data.
Fichier principal
Vignette du fichier
main_HAL.pdf (1.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02486937 , version 1 (21-02-2020)
hal-02486937 , version 2 (11-03-2020)
hal-02486937 , version 3 (16-09-2020)

Identifiants

Citer

Aboubacrène Ag Ahmad, Hadji Deme, Aliou Diop, Stéphane Girard, Antoine Usseglio-Carleve. Estimation of extreme quantiles from heavy-tailed distributions in a location-dispersion regression model. Electronic Journal of Statistics , 2020, 14 (2), pp.4421--4456. ⟨10.1214/20-EJS1779⟩. ⟨hal-02486937v3⟩
343 Consultations
408 Téléchargements

Altmetric

Partager

More