Polynomial Regression on Lie Groups and Application to SE(3) - MA2N - Mathématiques Appliquées, Méthodes et Analyse Numériques
Article Dans Une Revue Entropy Année : 2024

Polynomial Regression on Lie Groups and Application to SE(3)

Résumé

In this paper, we address the problem of estimating the position of a mobile such as a drone from noisy position measurements using the framework of Lie groups. To model the motion of a rigid body, the relevant Lie group happens to be the Special Euclidean group SE(n), with n=2 or 3. Our work was carried out using a previously used parametric framework which derived equations for geodesic regression and polynomial regression on Riemannian manifolds. Based on this approach, our goal was to implement this technique in the Lie group SE(3) context. Given a set of noisy points in SE(3) representing measurements on the trajectory of a mobile, one wants to find the geodesic that best fits those points in a Riemannian least squares sense. Finally, applications to simulated data are proposed to illustrate this work. The limitations of such a method and future perspectives are discussed.
Fichier principal
Vignette du fichier
entropy-26-00825.pdf (599.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04747804 , version 1 (06-11-2024)

Licence

Identifiants

Citer

Johan Aubray, Florence Nicol. Polynomial Regression on Lie Groups and Application to SE(3). Entropy, 2024, 26 (10), pp.825. ⟨10.3390/e26100825⟩. ⟨hal-04747804⟩
44 Consultations
10 Téléchargements

Altmetric

Partager

More