Linear stability of discrete shock profiles for systems of conservation laws - Centre International de Mathématiques et d'Informatique de Toulouse
Pré-Publication, Document De Travail Année : 2024

Linear stability of discrete shock profiles for systems of conservation laws

Résumé

We prove the linear orbital stability of spectrally stable stationary discrete shock profiles for conservative finite difference schemes applied to systems of conservation laws. The proof relies on an accurate description of the pointwise asymptotic behavior of the Green's function associated with those discrete shock profiles, improving on the result of Lafitte-Godillon [God03]. The main novelty of this stability result is that it applies to a fairly large family of schemes that introduce some artificial possibly high-order viscosity. The result is obtained under a sharp spectral assumption rather than by imposing a smallness assumption on the shock amplitude.
Fichier principal
Vignette du fichier
Coeuret_DSP_V2.pdf (1.55 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04270648 , version 1 (04-11-2023)
hal-04270648 , version 2 (19-12-2023)
hal-04270648 , version 3 (02-12-2024)

Identifiants

Citer

Lucas Coeuret. Linear stability of discrete shock profiles for systems of conservation laws. 2024. ⟨hal-04270648v3⟩

Collections

ANR CIMI-TOULOUSE
200 Consultations
90 Téléchargements

Altmetric

Partager

More